rom

Possible Modifiers of the Association Between Change in Weight Status From Child Through Adult Ages and Later Risk of Type 2 Diabetes

OBJECTIVE

We investigated the association between changes in weight status from childhood through adulthood and subsequent type 2 diabetes risks and whether educational attainment, smoking, and leisure time physical activity (LTPA) modify this association.

RESEARCH DESIGN AND METHODS

Using data from 10 Danish and Finnish cohorts including 25,283 individuals, childhood BMI at 7 and 12 years was categorized as normal or high using age- and sex-specific cutoffs (<85th or ≥85th percentile). Adult BMI (20–71 years) was categorized as nonobese or obese (<30.0 or ≥30.0 kg/m2, respectively). Associations between BMI patterns and type 2 diabetes (989 women and 1,370 men) were analyzed using Cox proportional hazards regressions and meta-analysis techniques.

RESULTS

Compared with individuals with a normal BMI at 7 years and without adult obesity, those with a high BMI at 7 years and adult obesity had higher type 2 diabetes risks (hazard ratio [HR]girls 5.04 [95% CI 3.92–6.48]; HRboys 3.78 [95% CI 2.68–5.33]). Individuals with a high BMI at 7 years but without adult obesity did not have a higher risk (HRgirls 0.74 [95% CI 0.52–1.06]; HRboys 0.93 [95% CI 0.65–1.33]). Education, smoking, and LTPA were associated with diabetes risks but did not modify or confound the associations with BMI changes. Results for 12 years of age were similar.

CONCLUSIONS

A high BMI in childhood was associated with higher type 2 diabetes risks only if individuals also had obesity in adulthood. These associations were not influenced by educational and lifestyle factors, indicating that BMI is similarly related to the risk across all levels of these factors.




rom

Markers of Early Life Infection in Relation to Adult Diabetes: Prospective Evidence From a National Birth Cohort Study Over Four Decades




rom

Facility-Level Variation in Cardiac Stress Test Use Among Patients With Diabetes: Findings From the Veterans Affairs National Database




rom

Accuracy of the Ottawa score in risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism: a systematic review and meta-analysis

In patients with cancer-associated venous thromboembolism, knowledge of the estimated rate of recurrent events is important for clinical decision-making regarding anticoagulant therapy. The Ottawa score is a clinical prediction rule designed for this purpose, stratifying patients according to their risk of recurrent venous thromboembolism during the first six months of anticoagulation. We conducted a systematic review and meta-analysis of studies validating either the Ottawa score in its original or modified versions. Two investigators independently reviewed the relevant articles published from 1st June 2012 to 15th December 2018 and indexed in MEDLINE and EMBASE. Nine eligible studies were identified; these included a total of 14,963 patients. The original score classified 49.3% of the patients as high-risk, with a sensitivity of 0.7 [95% confidence interval (CI): 0.6-0.8], a 6-month pooled rate of recurrent venous thromboembolism of 18.6% (95%CI: 13.9-23.9). In the low-risk group, the recurrence rate was 7.4% (95%CI: 3.4-12.5). The modified score classified 19.8% of the patients as low-risk, with a sensitivity of 0.9 (95%CI: 0.4-1.0) and a 6-month pooled rate of recurrent venous thromboembolism of 2.2% (95%CI: 1.6-2.9). In the high-risk group, recurrence rate was 10.2% (95%CI: 6.4-14.6). Limitations of our analysis included type and dosing of anticoagulant therapy. We conclude that new therapeutic strategies are needed in patients at high risk for recurrent cancer-associated venous thromboembolism. Low-risk patients, as per the modified score, could be good candidates for oral anticoagulation. (This systematic review was registered with the International Prospective Registry of Systematic Reviews as: PROSPERO CRD42018099506).




rom

IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification

1q21 amplification is an important prognostic marker in multiple myeloma. In this study we identified that IL6R (the interleukin-6 membrane receptor) and ADAR1 (an RNA editing enzyme) are critical genes located within the minimally amplified 1q21 region. Loss of individual genes caused suppression to the oncogenic phenotypes, the magnitude of which was enhanced when both genes were concomitantly lost. Mechanistically, IL6R and ADAR1 collaborated to induce a hyper-activation of the oncogenic STAT3 pathway. High IL6R confers hypersensitivity to interleukin-6 binding, whereas, ADAR1 forms a constitutive feed-forward loop with STAT3 in a P150-isoform-predominant manner. In this respect, ADAR1-P150 acts as a direct transcriptional target for STAT3 and this STAT3-induced-P150 in turn directly interacts with and stabilizes the former protein, leading to a larger pool of proteins acting as oncogenic transcription factors for pro-survival genes. The importance of both IL6R and ADAR1-P150 in STAT3 signaling was further validated when concomitant knockdown of both genes impeded IL6-induced-STAT3 pathway activation. Clinical evaluation of various datasets of myeloma patients showed that low expression of either one or both genes was closely associated with a compromised STAT3 signature, confirming the involvement of IL6R and ADAR1 in the STAT3 pathway and underscoring their essential role in disease pathogenesis. In summary, our findings highlight the complexity of the STAT3 pathway in myeloma, in association with 1q21 amplification. This study therefore reveals a novel perspective on 1q21 abnormalities in myeloma and a potential therapeutic target for this cohort of high-risk patients.




rom

An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens

MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC.




rom

Appropriation of GPIb{alpha} from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation

Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-β1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-β1-stimulated cremaster muscle, while in the ApoE–/– model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic.




rom

Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women

In iron-depleted women without anemia, oral iron supplements induce an increase in serum hepcidin (SHep) that persists for 24 hours, decreasing iron absorption from supplements given later on the same or next day. Consequently, iron absorption from supplements is highest if iron is given on alternate days. Whether this dosing schedule is also beneficial in women with iron-deficiency anemia (IDA) given high-dose iron supplements is uncertain. The primary objective of this study was to assess whether, in women with IDA, alternate-day administration of 100 and 200 mg iron increases iron absorption compared to consecutive-day iron administration. Secondary objectives were to correlate iron absorption with SHep and iron status parameters. We performed a cross-over iron absorption study in women with IDA (n=19; median hemoglobin 11.5 mg/dL; mean serum ferritin 10 mg/L) who received either 100 or 200 mg iron as ferrous sulfate given at 8 AM on days 2, 3 and 5 labeled with stable iron isotopes 57Fe, 58Fe and 54Fe; after a 16-day incorporation period, the other labeled dose was given at 8 AM on days 23, 24 and 26 (days 2, 3 and 5 of the second period). Iron absorption on days 2 and 3 (consecutive) and day 5 (alternate) was assessed by measuring erythrocyte isotope incorporation. For both doses, SHep was higher on day 3 than on day 2 (P<0.001) or day 5 (P<0.01) with no significant difference between days 2 and 5. Similarly, for both doses, fractional iron absorption (FIA) on days 2 and 5 was 40-50% higher than on day 3 (P<0.001), while absorption on day 2 did not differ significantly from day 5. There was no significant difference in the incidence of gastrointestinal side effects comparing the two iron doses (P=0.105). Alternate day dosing of oral iron supplements in anemic women may be preferable because it sharply increases FIA. If needed, to provide the same total amount of iron with alternate day dosing, twice the daily target dose should be given on alternate days, as total iron absorption from a single dose of 200 mg given on alternate days was approximately twice that from 100 mg given on consecutive days (P<0.001). In IDA, even if hepatic hepcidin expression is strongly suppressed by iron deficiency and erythropoietic drive, the intake of oral iron supplements leads to an acute hepcidin increase for 24 hours. The study was funded by ETH Zürich, Switzerland. This study has been registered at www.clinicaltrials.gov as #NCT03623997.




rom

Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.




rom

Characterization of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: a case series from the first-time-in-human clinical trial




rom

Revisiting the link between platelets and depression through genetic epidemiology: new insights from platelet distribution width




rom

5-formylcytosine and 5-hydroxymethyluracil as surrogate markers of TET2 and SF3B1 mutations in myelodysplastic syndrome, respectively




rom

Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue Through the XOR-Catalyzed Nitric Oxide Pathway

An aging global population combined with sedentary lifestyles and unhealthy diets has contributed to an increasing incidence of obesity and type 2 diabetes. These metabolic disorders are associated with perturbations to nitric oxide (NO) signaling and impaired glucose metabolism. Dietary inorganic nitrate, found in high concentration in green leafy vegetables, can be converted to NO in vivo and demonstrates antidiabetic and antiobesity properties in rodents. Alongside tissues including skeletal muscle and liver, white adipose tissue is also an important physiological site of glucose disposal. However, the distinct molecular mechanisms governing the effect of nitrate on adipose tissue glucose metabolism and the contribution of this tissue to the glucose-tolerant phenotype remain to be determined. Using a metabolomic and stable-isotope labeling approach, combined with transcriptional analysis, we found that nitrate increases glucose uptake and oxidative catabolism in primary adipocytes and white adipose tissue of nitrate-treated rats. Mechanistically, we determined that nitrate induces these phenotypic changes in primary adipocytes through the xanthine oxidoreductase–catalyzed reduction of nitrate to NO and independently of peroxisome proliferator–activated receptor-α. The nitrate-mediated enhancement of glucose uptake and catabolism in white adipose tissue may be a key contributor to the antidiabetic effects of this anion.




rom

Methylated Vnn1 at promoter regions induces asthma occurrence via the PI3K/Akt/NF{kappa}B-mediated inflammation in IUGR mice [RESEARCH ARTICLE]

Yan Xing, Hongling Wei, Xiumei Xiao, Zekun Chen, Hui Liu, Xiaomei Tong, and Wei Zhou

Infants with intrauterine growth retardation (IUGR) have a high risk of developing bronchial asthma in childhood, but the underlying mechanisms remain unclear. This study aimed to disclose the role of vascular non-inflammatory molecule 1 (vannin-1, encoded by the Vnn1 gene) and its downstream signaling in IUGR asthmatic mice induced by ovalbumin. Significant histological alterations and an increase of vannin-1 expression were revealed in IUGR asthmatic mice, accompanied by elevated methylation of Vnn1 promoter regions. In IUGR asthmatic mice, we also found (i) a direct binding of HNF4α and PGC1α to Vnn1 promoter by ChIP assay; (ii) a direct interaction of HNF4α with PGC1α; (iii) upregulation of phospho-PI3K p85/p55 and phospho-AktSer473 and downregulation of phospho-PTENTyr366, and (iv) an increase in nuclear NFB p65 and a decrease in cytosolic IB-α. In primary cultured bronchial epithelial cells derived from the IUGR asthmatic mice, knockdown of Vnn1 prevented upregulation of phospho-AktSer473 and an increase of reactive oxygen species (ROS) and TGF-β production. Taken together, we demonstrate that elevated vannin-1 activates the PI3K/Akt/NFB signaling pathway, leading to ROS and inflammation reactions responsible for asthma occurrence in IUGR individuals. We also disclose that interaction of PGC1α and HNF4α promotes methylation of Vnn1 promoter regions and then upregulates vannin-1 expression.




rom

Women&#x2019;s experiences of diagnosis and management of polycystic ovary syndrome: a mixed-methods study in general practice

BackgroundPolycystic ovary syndrome (PCOS) is a common lifelong metabolic condition with serious associated comorbidities. Evidence points to a delay in diagnosis and inconsistency in the information provided to women with PCOS.AimTo capture women’s experiences of how PCOS is diagnosed and managed in UK general practice.Design and settingThis was a mixed-methods study with an online questionnaire survey and semi-structured telephone interviews with a subset of responders.MethodAn online survey to elicit women’s experiences of general practice PCOS care was promoted by charities and BBC Radio Leicester. The survey was accessible online between January 2018 and November 2018. A subset of responders undertook a semi-structured telephone interview to provide more in-depth data.ResultsA total of 323 women completed the survey (average age 35.4 years) and semi-structured interviews were conducted with 11 women. There were five key themes identified through the survey responses. Participants described a variable lag time from presentation to PCOS diagnosis, with a median of 6–12 months. Many had experienced mental health problems associated with their PCOS symptoms, but had not discussed these with the GP. Many were unable to recall any discussion about associated comorbidities with the GP. Some differences were identified between the experiences of women from white British backgrounds and those from other ethnic backgrounds.ConclusionFrom the experiences of the women in this study, it appears that PCOS in general practice is not viewed as a long-term condition with an increased risk of comorbidities including mental health problems. Further research should explore GPs’ awareness of comorbidities and the differences in PCOS care experienced by women from different ethnic backgrounds.




rom

Fitter, Better, Sooner: helping your patients in general practice recover more quickly from surgery




rom

A note from the distant past




rom

Managing patients with COVID-19 infections: a first-hand experience from the Wuhan Mobile Cabin Hospital




rom

WORKING TO ADVANCE THE HEALTH OF RURAL AMERICANS: AN UPDATE FROM THE ABFM [Family Medicine Updates]




rom

View From the Canoe: Co-Designing Research Pacific Style [Reflections]

In 2016, Rose Lamont and Tana Fishman were the first patient-clinician dyad from outside North America to attend the North American Primary Care Research Group (NAPCRG) Patient and Clinician Engagement Program workshop. They returned to New Zealand inspired and formed the Pacific People’s Health Advisory Group and a Pacific practice-based research network (PBRN). They are guided by the principles of co-design, and the Samoan research framework fa’afaletui, which emphasizes a collective approach and importance of reciprocity and relationships. Their collective inquiry aims to reduce health inequalities experienced by Pacific people in South Auckland. Their community group members and PBRN are generating research questions being answered by university-based graduate students. When they embarked, they knew not the direction in which they headed. With guidance, their community members and clinicians have led the way. By giving everyone a say in where they are going and how they get there, they are modeling what they wish to achieve—an egalitarian approach which decreases disparities for Pacific people.




rom

Lessons from the Experience in Wuhan to Reduce Risk of COVID-19 Infection in Patients Undergoing Long-Term Hemodialysis




rom

Association of Serum Uromodulin with Death, Cardiovascular Events, and Kidney Failure in CKD

Background and objectives

Uromodulin is exclusively produced by tubular epithelial cells and released into urine and serum. Higher serum uromodulin has been associated with lower risk for kidney failure in Chinese patients with CKD and with lower risk for mortality in the elderly and in patients undergoing coronary angiography. We hypothesized that lower serum uromodulin is associated with mortality, cardiovascular events, and kidney failure in white patients with CKD.

Design, setting, participants, & measurements

We measured serum uromodulin in 5143 participants enrolled in the German CKD (GCKD) study. The associations of baseline serum uromodulin with all-cause mortality, major adverse cardiovascular events (MACE; a composite of cardiovascular mortality, nonfatal myocardial infarction or stroke, or incident peripheral vascular disease), and kidney failure (dialysis or transplantation) were evaluated using multivariable Cox proportional hazard regression analyses in a cohort study design, adjusting for demographics, eGFR, albuminuria, cardiovascular risk factors, and medication.

Results

The mean age of participants was 60±12 years, 60% were male. Mean serum uromodulin concentration was 98±60 ng/ml, eGFR was 49±18 ml/min per 1.73 m2, and 78% had eGFR <60 ml/min per 1.73 m2. Participants in lower serum uromodulin quartiles had lower eGFR and higher albuminuria, prevalence of diabetes, hypertension, coronary artery disease, and more frequent history of stroke at baseline. During a follow-up of 4 years, 335 participants died, 417 developed MACE, and 229 developed kidney failure. In multivariable analysis, the highest serum uromodulin quartile was associated with lower hazard for mortality (hazard ratio [HR], 0.57; 95% CI, 0.38 to 0.87), MACE (HR, 0.63; 95% CI, 0.45 to 0.90), and kidney failure (HR, 0.24; 95% CI, 0.10 to 0.55) compared with the lowest quartile.

Conclusions

Higher serum uromodulin is independently associated with lower risk for mortality, cardiovascular events, and kidney failure in white patients with CKD.

Clinical Trial registry name and registration number

Deutsches Register für Klinische Studien (DRKS; German national database of clinical studies), DRKS00003971.




rom

The Elusive Promise of Bioimpedance in Fluid Management of Patients Undergoing Dialysis




rom

Circulating Uromodulin and Risk of Cardiovascular Events and Kidney Failure




rom

IL1{alpha} Antagonizes IL1{beta} and Promotes Adaptive Immune Rejection of Malignant Tumors

We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β–/–, IL1α–/–, and IL1R1–/– mice. Tumors grew progressively in IL1R–/– and IL1α–/– mice but were often absent in IL1β–/– mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages. Antibodies to IL1β prevented tumor growth in wild-type (WT) mice but not in IL1R1–/– or IL1α–/– mice. Antibodies to IL1α promoted tumor growth in IL1β–/– mice and reversed the tumor-suppressive effect of anti-IL1β in WT mice. Depletion of CD8+ T cells and blockade of lymphocyte mobilization abrogated the IL1β–/– tumor suppressive effect, as did crossing IL1β–/– mice to SCID or Rag1–/– mice. Finally, blockade of IL1β synergized with blockade of PD-1 to inhibit tumor growth in WT mice. These results suggest that IL1β promotes tumor growth, whereas IL1α inhibits tumor growth by enhancing T-cell–mediated antitumor immunity.




rom

Intratumoral Delivery of a PD-1-Blocking scFv Encoded in Oncolytic HSV-1 Promotes Antitumor Immunity and Synergizes with TIGIT Blockade

Oncolytic virotherapy can lead to systemic antitumor immunity, but the therapeutic potential of oncolytic viruses in humans is limited due to their insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). Here, we showed that locoregional oncolytic virotherapy upregulated the expression of PD-L1 in the TME, which was mediated by virus-induced type I and type II IFNs. To explore PD-1/PD-L1 signaling as a direct target in tumor tissue, we developed a novel immunotherapeutic herpes simplex virus (HSV), OVH-aMPD-1, that expressed a single-chain variable fragment (scFv) against PD-1 (aMPD-1 scFv). The virus was designed to locally deliver aMPD-1 scFv in the TME to achieve enhanced antitumor effects. This virus effectively modified the TME by releasing damage-associated molecular patterns, promoting antigen cross-presentation by dendritic cells, and enhancing the infiltration of activated T cells; these alterations resulted in antitumor T-cell activity that led to reduced tumor burdens in a liver cancer model. Compared with OVH, OVH-aMPD-1 promoted the infiltration of myeloid-derived suppressor cells (MDSC), resulting in significantly higher percentages of CD155+ granulocytic-MDSCs (G-MDSC) and monocytic-MDSCs (M-MDSC) in tumors. In combination with TIGIT blockade, this virus enhanced tumor-specific immune responses in mice with implanted subcutaneous tumors or invasive tumors. These findings highlighted that intratumoral immunomodulation with an OV expressing aMPD-1 scFv could be an effective stand-alone strategy to treat cancers or drive maximal efficacy of a combination therapy with other immune checkpoint inhibitors.




rom

A Sampling of Highlights from the Literature: Article Recommendations from Our Deputy and Senior Editors




rom

Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans [Enzymology and Protein Engineering]

Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme’s optimal reaction conditions and catalytic efficiency (Km/kcat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors.

IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs.




rom

Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2 [Biodegradation]

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.

IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.




rom

Microbial Diversity in Deep-Subsurface Hot Brines of Northwest Poland: from Community Structure to Isolate Characteristics [Geomicrobiology]

Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes. Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic.

IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth’s crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported.




rom

Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah [Microbial Ecology]

Microbial mat communities are associated with extensive (~700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.

IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ~700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.




rom

Relative contribution of maternal adverse childhood experiences to understanding childrens externalizing and internalizing behaviours at age 5: findings from the All Our Families cohort

Background:

The negative effect of adverse childhood experiences (ACEs) on physical and mental health has led to calls for routine screening for ACEs in primary care settings. We aimed to examine the association between maternal ACEs and children’s behaviour problems (externalizing and internalizing) at age 5 in the context of other known predictors.

Methods:

We analyzed data from mother-and-child dyads participating in the All Our Families cohort in Calgary, Canada, between 2011 and 2017. Data were collected for factors related to the individual child (sex, age, temperament and behaviour), the mother (adverse childhood experiences, mental health, personality and parenting) and sociodemographic characteristics (family income, ethnicity and family structure) when the children were 3 and 5 years of age. We used logistic regression models to estimate crude and adjusted associations between maternal ACEs and children’s externalizing (hyperactivity and aggression) and internalizing (anxiety, depression and somatization) behaviours.

Results:

Data were available for 1688 mother-and-child dyads. In the crude models, the presence of 4 or more maternal ACEs was associated with children’s externalizing and internalizing behaviours at age 5. However, these associations were attenuated with adjustment. Persistent maternal mental health symptoms were associated with both externalizing and internalizing behaviours at age 5 (adjusted odds ratio [OR] 4.20, 95% confidence interval [CI] 2.50–7.05, and adjusted OR 2.52, 95% CI 1.66–3.81, respectively). High levels of ineffective parenting behaviours were also associated with both externalizing and internalizing behaviours at age 5 (adjusted OR 6.27, 95% CI 4.30–9.14, and adjusted OR 1.43, 95% CI 1.03–1.99, respectively).

Interpretation:

The association between maternal ACEs and children’s behaviour at age 5 was weakened in the presence of other maternal and family-level factors. Assessments of maternal mental health and parenting behaviours may be better targets for identifying children at risk of behavioural problems.




rom

Applicant gender and matching to first-choice discipline: a cross-sectional analysis of data from the Canadian Resident Matching Service (2013-2019)

Background:

Previous studies examining potential sex and gender bias in the Canadian Resident Matching Service (CaRMS) match have had conflicting results. We examined the results of the CaRMS match over the period 2013–2019 to determine the potential association between applicants’ gender and the outcome of matching to their first-choice discipline.

Methods:

In this cross-sectional analysis, we determined the risk of matching to one’s first-choice discipline in CaRMS by applicant gender and year, for all Canadian medical students who participated in the first iteration of the R-1 match for the years 2013 to 2019. We analyzed data in 3 categories of disciplines according to CaRMS classifications: family medicine, nonsurgical disciplines and surgical disciplines. We excluded disciplines with fewer than 10 applicants.

Results:

Match results were available for 20 033 participants, of whom 11 078 (55.3%) were female. Overall, female applicants were significantly more likely to match to their first-choice discipline (relative risk [RR] 1.03, 95% confidence interval [CI] 1.02–1.04). After adjustment for match year and stratification by discipline categories, we found that female applicants were more likely to match to family medicine as their first choice (RR 1.04, 95% CI 1.03–1.05) and less likely to match to a first-choice surgical discipline (RR 0.95, 95% CI 0.91–1.00) than their male peers. There was no significant difference between the genders in matching to one’s first-choice nonsurgical discipline (RR 1.01, 95% CI 0.99–1.03).

Interpretation:

These results suggest an association between an applicant’s gender and the probability of matching to one’s first-choice discipline. The possibility of gender bias in the application process for residency programs should be further evaluated and monitored.




rom

Proportion of female recipients of resident-selected awards across Canada from 2000 to 2018: a retrospective observational study

Background:

Female physicians have been shown to receive fewer awards from medical societies than their male colleagues. We examined the sex distribution of recipients of Canadian residency association awards.

Methods:

We conducted a retrospective observational study of the sex of staff and resident physician recipients of resident-selected awards from provincial and national residency associations using data from 2000–2018. We classified awards into professionalism, advocacy and wellness awards, and education and teaching awards based on award names and descriptions, and compared the proportion of male and female recipients in these categories.

Results:

We identified 314 recipients of staff physician awards and 129 recipients of resident physician awards. Male staff and resident physicians had higher odds of receiving awards than their female counterparts (odds ratio [OR] 1.45, 95% confidence interval [CI] 1.13–1.89 and OR 1.70, 95% CI 1.18–2.46, respectively). There was a reduction in the odds of male residents’ receiving an award over the study period (OR 0.94, 95% CI 0.90–0.98). Male physicians had higher odds of receiving education and teaching awards than female physicians as staff but not as residents (OR 3.21, 95% CI 1.72–5.95 and OR 1.96, 95% CI 0.84–4.60, respectively).

Interpretation:

Male staff and resident physicians in Canada had higher odds of receiving awards from provincial and national residency associations between 2000 and 2018 than their female counterparts. Given this disparity, it would be prudent for organizations that distribute awards to physicians, residents and medical students to examine their nomination criteria and processes for potential bias.




rom

Detection of ctDNA from Dried Blood Spots after DNA Size Selection

Abstract
Background
Recent advances in the study and clinical applications of circulating tumor DNA (ctDNA) are limited by practical considerations of sample collection. Whole-genome sequencing (WGS) is increasingly used for analysis of ctDNA, identifying copy-number alterations and fragmentation patterns. We hypothesized that low-depth/shallow WGS (sWGS) data may be generated from minute amounts of cell-free DNA, and that fragment-size selection may remove contaminating genomic DNA from small blood volumes. Dried blood spots have practical advantages for sample collection, may facilitate serial sampling, and could support novel study designs in humans and animal models.
Methods
We developed a protocol for the isolation and analysis of cell-free DNA from dried blood spots using filter paper cards and bead-based size selection. DNA extracted and size-selected from dried spots was analyzed using sWGS and polymerase chain reaction (PCR).
Results
Analyzing a 50 μL dried blood spot from frozen whole blood of a patient with melanoma, we identified ctDNA based on the presence of tumor-specific somatic copy-number alterations, and found a fragment-size profile similar to that observed in plasma DNA. We found alterations in different chromosomes in blood spots from 2 patients with high-grade serous ovarian carcinoma. Extending this approach to serial dried blood spots from mouse xenograft models, we detect tumor-derived cell-free DNA and identified ctDNA from the originally grafted ascites.
Conclusion
Our data suggest that ctDNA can be detected and monitored in dried blood spots from archived and fresh blood samples, enabling new approaches for sample collection and novel study/trial designs for both patients and in vivo models.




rom

Commentary on Cryptogenic Cushing Syndrome Due to a White Lie

Cushing syndrome results from chronic excessive exposure to glucocorticoids, impacting virtually every organ system with the most dominant effects on fat metabolism, immune function, and musculoskeletal systems. Endogenous Cushing syndrome is rare, most usually due to excess ACTH secretion from pituitary, and less frequently from ectopic tumors. Other cases result from ACTH-independent adrenal overproduction of cortisol.




rom

Commentary on Cryptogenic Cushing Syndrome Due to a White Lie

This interesting case report from South Africa focuses on a difficult diagnostic challenge: apparent Cushing syndrome with inconsistent laboratory findings.




rom

Cryptogenic Cushing Syndrome Due to a White Lie

Cushing syndromeExogenousDexamethasoneSkinWhiteningCream




rom

Shining a Light on Venous Thromboembolism




rom

In Vivo Imaging of Venous Thrombus and Pulmonary Embolism Using Novel Murine Venous Thromboembolism Model

This work established a new murine venous thromboembolism (VTE) model. This model has multiple novel features representing clinical VTE that include the following: 1) deep venous thrombosis (DVT) was formed and extended in the long axis of femoral/saphenous vein; 2) thrombus was formed in a venous valve pocket; 3) deligation of suture-induced spontaneous pulmonary emboli of fibrin-rich DVT; and 4) cardiac motion-free femoral/saphenous vein allowed high-resolution intravital microscopic imaging of fibrin-rich DVT. This new model requires only commercially available epifluorescence microscopy. Therefore, this model has significant potential for better understanding of VTE pathophysiology.




rom

"ERS International Congress 2019: highlights from Best Abstract awardees". Lorna E. Latimer, Marieke Duiverman, Mahmoud I. Abdel-Aziz, Gulser Caliskan, Sara M. Mensink-Bout, Alberto Mendoza-Valderrey, Aurelien Justet, Junichi Omura, Karthi Srika




rom

Promoting Early Inpatient Transition From IV to Oral Antibiotics




rom

Additional safety consideration for azithromycin in the management of SARS-CoV-2 infection [Letters]




rom

Myositis from intramuscular oil injections in a bodybuilder [Practice]




rom

Proteomic Analysis of CSF from Patients with Leptomeningeal Melanoma Metastases Identifies Signatures Associated with Disease Progression and Therapeutic Resistance

Purpose:

The development of leptomeningeal melanoma metastases (LMM) is a rare and devastating complication of the late-stage disease, for which no effective treatments exist. Here, we performed a multi-omics analysis of the cerebrospinal fluid (CSF) from patients with LMM to determine how the leptomeningeal microenvironment shapes the biology and therapeutic responses of melanoma cells.

Experimental Design:

A total of 45 serial CSF samples were collected from 16 patients, 8 of these with confirmed LMM. Of those with LMM, 7 had poor survival (<4 months) and one was an extraordinary responder (still alive with survival >35 months). CSF samples were analyzed by mass spectrometry and incubated with melanoma cells that were subjected to RNA sequencing (RNA-seq) analysis. Functional assays were performed to validate the pathways identified.

Results:

Mass spectrometry analyses showed the CSF of most patients with LMM to be enriched for pathways involved in innate immunity, protease-mediated damage, and IGF-related signaling. All of these were anticorrelated in the extraordinary responder. RNA-seq analysis showed CSF to induce PI3K/AKT, integrin, B-cell activation, S-phase entry, TNFR2, TGFβ, and oxidative stress responses in the melanoma cells. ELISA assays confirmed that TGFβ expression increased in the CSF of patients progressing with LMM. CSF from poorly responding patients conferred tolerance to BRAF inhibitor therapy in apoptosis assays.

Conclusions:

These analyses identified proteomic/transcriptional signatures in the CSF of patients who succumbed to LMM. We further showed that the CSF from patients with LMM has the potential to modulate BRAF inhibitor responses and may contribute to drug resistance.

See related commentary by Glitza Oliva and Tawbi, p. 2083




rom

Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study

Purpose:

KEYNOTE-158 (ClinicalTrials.gov identifier: NCT02628067) investigated the efficacy and safety of pembrolizumab across multiple cancers. We present results from patients with previously treated advanced well-differentiated neuroendocrine tumors (NET).

Patients and Methods:

Pembrolizumab 200 mg was administered every 3 weeks for 2 years or until progression, intolerable toxicity, or physician/patient decision. Tumor imaging was performed every 9 weeks for the first year and then every 12 weeks. Endpoints included objective response rate (ORR) per RECIST v1.1 by independent central radiologic review (primary) and duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety (secondary).

Results:

A total of 107 patients with NETs of the lung, appendix, small intestine, colon, rectum, or pancreas were treated. Median age was 59.0 years (range, 29–80), 44.9% had ECOG performance status 1, 40.2% had received ≥3 prior therapies for advanced disease, and 15.9% had PD-L1–positive tumors (combined positive score ≥1). Median follow-up was 24.2 months (range, 0.6–33.4). ORR was 3.7% (95% CI, 1.0–9.3), with zero complete responses and four partial responses (three pancreatic and one rectal) all in patients with PD-L1–negative tumors. Median DOR was not reached, with one of four responses ongoing after ≥21 months follow-up. Median PFS was 4.1 months (95% CI, 3.5–5.4); the 6-month PFS rate was 39.3%. Median OS was 24.2 months (95% CI, 15.8–32.5). Treatment-related adverse events (AE) occurred in 75.7% of patients, 21.5% of whom had grade 3–5 AEs.

Conclusions:

Pembrolizumab monotherapy showed limited antitumor activity and manageable safety in patients with previously treated advanced well-differentiated NETs.




rom

Selected Articles from This Issue




rom

Co-occurrence of Plasmid-Mediated Tigecycline and Carbapenem Resistance in Acinetobacter spp. from Waterfowls and Their Neighboring Environment [Epidemiology and Surveillance]

Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1. Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.




rom

Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018 [Epidemiology and Surveillance]

Omadacycline is a broad-spectrum aminomethylcycline approved in October 2018 by the U.S. Food and Drug Administration for treating acute bacterial skin and skin structure infections and community-acquired pneumonia as both an oral and intravenous once-daily formulation. In this report, the activities of omadacycline and comparators were tested against 49,000 nonduplicate bacterial isolates collected prospectively during 2016 to 2018 from medical centers in Europe (24,500 isolates, 40 medical centers [19 countries]) and the United States (24,500 isolates, 33 medical centers [23 states and all 9 U.S. census divisions]). Omadacycline was tested by broth microdilution following the methods in Clinical and Laboratory Standards Institute document M07 (Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 11th ed., 2018). Omadacycline (MIC50/90, 0.12/0.25 mg/liter) inhibited 98.6% of Staphylococcus aureus isolates at ≤0.5 mg/liter, including 96.3% of methicillin-resistant S. aureus isolates and 99.8% of methicillin-susceptible S. aureus isolates. Omadacycline potency was comparable for Streptococcus pneumoniae (MIC50/90, 0.06/0.12 mg/liter), viridans group streptococci (MIC50/90, 0.06/0.12 mg/liter), and beta-hemolytic streptococci (MIC50/90, 0.12/0.25 mg/liter), regardless of species and susceptibility to penicillin, macrolides, or tetracycline. Omadacycline was active against all Enterobacterales tested (MIC50/90, 1/8 mg/liter; 87.5% of isolates were inhibited at ≤4 mg/liter) except Proteus mirabilis (MIC50/90, 16/>32 mg/liter) and indole-positive Proteus spp. (MIC50/90, 8/32 mg/liter) and was most active against Escherichia coli (MIC50/90, 0.5/2 mg/liter), Klebsiella oxytoca (MIC50/90, 1/2 mg/liter), and Citrobacter spp. (MIC50/90, 1/4 mg/liter). Omadacycline inhibited 92.4% of Enterobacter cloacae species complex and 88.5% of Klebsiella pneumoniae isolates at ≤4 mg/liter. Omadacycline was active against Haemophilus influenzae (MIC50/90, 0.5/1 mg/liter), regardless of β-lactamase status, and against Moraxella catarrhalis (MIC50/90, ≤0.12/0.25 mg/liter). The potent activity of omadacycline against Gram-positive and -negative bacteria indicates that omadacycline merits further study in serious infections in which multidrug resistance and mixed Gram-positive and Gram-negative bacterial infections may be a concern.




rom

Genomic Characterization of Neisseria gonorrhoeae Strains from 2016 U.S. Sentinel Surveillance Displaying Reduced Susceptibility to Azithromycin [Epidemiology and Surveillance]

In 2016, the proportion of Neisseria gonorrhoeae isolates with reduced susceptibility to azithromycin rose to 3.6%. A phylogenetic analysis of 334 N. gonorrhoeae isolates collected in 2016 revealed a single, geographically diverse lineage of isolates with MICs of 2 to 16 μg/ml that carried a mosaic-like mtr locus, whereas the majority of isolates with MICs of ≥16 μg/ml appeared sporadically and carried 23S rRNA mutations. Continued molecular surveillance of N. gonorrhoeae isolates will identify new resistance mechanisms.