f

FLOW SPEED MEASUREMENT METHOD AND FLOW SPEED MEASUREMENT SYSTEM

A flow speed measurement method includes conducting a heat exchange at a prescribed part of a surface of a pipe, the flow speed measurement method further includes measuring a temperature distribution in a pipe-axis-direction on the surface of the pipe in a case that the heat exchange has been conducted at the prescribed part, and the flow speed measurement method further includes determining a flow speed of a thermal fluid flowing inside the pipe, based on the temperature distribution measured.




f

FLOW SENSOR

The invention relates to a flow sensor (1), comprising: a semiconductor module (2) on which a temperature sensing means (13a, 13b) and a heat source (12) are arranged, a flow channel (6) for guiding the fluid medium in a flow direction (D), and a wall (W) delimiting the flow channel, wherein said heat source (12) and said temperature sensing means (13a, 13b) are configured such that they are in thermal contact with said wall (W). According to the invention, said wall (W) comprises a glass member (4) and a metal member (3a), wherein the glass member (4) is connected to the metal member (3a).




f

METHOD OF OPERATING A SENSOR ASSEMBLY FOR A FLUID TANK OF A MOTOR VEHICLE, AND CORRESPONDING SENSOR ASSEMBLY

In a method of operating a sensor assembly for a fluid tank of a motor vehicle, plural sensor elements of the sensor assembly are electrically connected to a sensor controller. The sensor controller determines measuring data from the sensor elements, and transmits the measuring data from at least some of the sensor elements separately and at least in part sequentially to a reprogrammable control unit.




f

METHOD FOR DETERMINING A LIQUID LEVEL AND QUALITY IN A TANK

The invention relates to a method for determining a liquid level in a tank (1) comprised in a vehicle, wherein said method uses an ultrasonic sensor (4) for emitting and receiving ultrasonic waves (11). Basically the liquid level is determined based upon measuring the transition time of an ultrasonic wave (11) emitted by the ultrasonic sensor, wherein said emitted wave is deflected two times before being reflected by the surface (2) of the liquid contained in the tank.




f

ELECTROMAGNETIC FLOW METER

A first detection electrode that outputs a first flow rate signal and a second detection electrode that outputs a second flow rate signal, a differential circuit that outputs a differential flow rate signal obtained by obtaining a difference between the first flow rate signal and the second flow rate signal, an AC signal generation circuit that causes a first AC current to flow between the first detection electrode and the ground electrode and causes a second AC current with a reverse phase at the same frequency as that of the first AC current to flow between the second detection electrode and the ground electrode, and a diagnosis unit that diagnoses an abnormality of at least either of the first detection electrode or the second detection electrode based on a differential flow rate signal.




f

ON-TOOL MASS FLOW CONTROLLER DIAGNOSTIC SYSTEMS AND METHODS

Mass flow controllers with on-tool diagnostic capabilities and methods for on-tool diagnosis of mass flow controllers are disclosed herein. One method includes opening a control valve to a fixed position and closing an upstream valve to produce a flow rate that decreases from a high flow rate, across a range of flow rates, to a low flow rate. A pressure signal is generated that is indicative of a pressure of the fluid within a volume between the upstream valve and a sensor tube, and a flow sensor signal is provided with the mass flow sensor that is indicative of a mass flow rate of the fluid through the main flow path. Ratio curves are produced that relate, across the range of flow rates, a rate of change of the pressure signal to the flow sensor signal and comparing a test ratio curve to a previously generated baseline ratio curve.




f

FORCE DETECTOR, ROBOT, ELECTRONIC COMPONENT CARRYING APPARATUS, ELECTRONIC COMPONENT TESTING APPARATUS, PART PROCESSING APPARATUS, AND MOVING OBJECT

A force detector includes a first substrate, a second substrate, a circuit board provided between the first substrate and the second substrate, and an element mounted on the circuit board and outputting a signal in response to an external force, wherein a hole is formed in the circuit board at a location where the element is placed, and a first convex part inserted into the hole and protruding toward the element is provided on the first substrate. Further, the element is placed within a periphery of the first convex part as seen from a direction perpendicular to the first substrate.




f

Pre-Loaded Force Sensors

Pre-loaded force sensitive input devices, force sensing resistors (FSR), are formed as a multiple membrane assembly that is capable of detecting low intensity pressure inputs and quantifying varying applications of pressure to the sensor surface. Pre-loading the force sensor elements results in controlled amount of force between the two substrates causing a constant state of pre-load and eliminating the low-end or minimal pressure signal noise associated with unloaded sensors. Pre-loading the force sensing resistor sensors also enables the sensor to detect removal of low intensity pressure input such as might occur during theft of light weight articles placed in contact with the pre-loaded force sensor. Using an FSR or FSR Matrix Array will enable any handling of protected retail packaging to be detected and identified. A library of “touches” can be established that will yield cutting, ripping, twisting, etc. making the detection of a theft in progress more accurate.




f

SENSOR FOR DETECTING A PRESSURE OF A FLUID MEDIUM

A sensor for detecting a pressure of a fluid medium is provided. The sensor includes a sensor element for detecting the pressure of the fluid medium, a supply duct for supplying the fluid medium to the sensor element and a control and/or evaluation circuit for processing signals of the sensor element. The control and/or evaluation circuit is situated on the sensor element.




f

Detection and Assessment of Damage to Composite Structure

A system comprising: a parent structure made of composite material and having a repair site; a repair patch made of composite material, the repair patch being bonded to the parent structure at the repair site; and a sensor embedded in the repair patch. The system may further comprise non-volatile memory and an interface unit embedded in the repair patch and electrically connected to the sensor. In one embodiment, the sensor is a loop-shaped sensor comprising an electrically conductive structure having an electrical conductivity that varies as a function of a pressure exerted on the repair patch. In another embodiment, the sensor comprises a sensor chip having nonvolatile memory. In a further embodiment, the sensor comprises an optical fiber that is sensitive to changes in pressure on or strain in the repair patch.




f

SENSOR ARRANGEMENT AND MEASUREMENT METHOD FOR A TURBOMACHINE

A sensor arrangement with a sensor element for measuring at least one physical and/or chemical fluid characteristic in a turbomachine is provided. The sensor element detects the at least one fluid characteristic inside a non-contact seal, in particular a labyrinth seal, between a rotor stage and a stator stage, wherein during operation the sensor element is in contact with the fluid flow along the flow path inside the labyrinth seal.




f

Drilling-Resistance Measuring Device for Use Underwater

The invention relates to a drilling-resistance measuring device (10) and to a method for material testing in a humid environment or underwater. The drilling-resistance measuring device (10) comprises a housing (1), in which a drive and a drill chuck (3) coupled to the drive are arranged, in which drill chuck a drilling needle (4) is or can be releasably held, wherein the housing (1) has a drilling-needle outlet opening (5') enclosed by a drilling-needle outlet guide (5), through which drilling-needle outlet opening the drilling needle (4) extends out of the housing (1). The drilling-resistance measuring device (10) comprises at least one water-tight bellows (6), which is arranged in the interior of the housing (1) around the drilling needle (4) between the drill chuck (3) and the drilling-needle outlet guide (5), wherein moisture or water can enter the bellows (6) through the drilling-needle outlet opening (5').




f

SYSTEMS AND METHODS FOR ULTRASONIC INSPECTION OF TURBINE COMPONENTS

Embodiments of the disclosure relate to ultrasonic inspection of turbine components. In one embodiment, a method for ultrasonic inspection of a turbine component can include mounting at least one array of transducer elements to the turbine component, (a) separately pulsing a transducer element of the at least one array of transducer elements to transmit a signal to the turbine component, (b) capturing reflected signals from the turbine component at each transducer element in the at least one array of transducer elements, repeating (a) and (b) for each of the other transducer elements in the at least one array of transducer elements, maintaining a constant relative position of the array of transducer elements with respect to the turbine component, analyzing the captured reflected signals using a computer, generating an image of the interior volume of the turbine component by reconstruction of the captured reflected signals and based at least in part on detecting an anomaly in the image of the interior volume of the turbine component, identifying at least one defect or failure in the turbine component.




f

Heated Transfer Line

A flexible, foldable light-weight gas chromatography transfer line suitable for connecting a gas chromatograph (GC) to a spectrometer, such as a mass spectrometer or optical spectrometer, in particular to the ion source of the spectrometer, such as an inductively coupled plasma (ICP) ion source. The transfer line has a heating arrangement that allows maintaining an even temperature profile, which improves quality of spectra. The transfer line has low thermal mass and the heating can be controlled with the control unit of the GC.




f

Volumetric Flow Regulation in Multi-Dimensional Liquid Analysis Systems

A multi-dimensional liquid analysis system includes a first dimension system and a second dimension system, wherein outflow from the first dimension system is separated at a flow splitter under controlled conditions. The flow splitter separates the first dimension outflow into first and second split outlet flows, with one of the split outlet flows being metered to a designated flow rate with a flow metering device disposed downstream from the flow splitter. The flow metering device selectively closes or opens an outlet flow path to define a volumetric flow rate along that outlet flow path, so that the other split outlet flow is correspondingly controlled.




f

METHOD FOR OPERATING A TEST STATION FOR PORTABLE GAS-MEASURING DEVICES AS WELL AS TEST STATION FOR PORTABLE GAS-MEASURING DEVICES

A method for operating a test station (10) for portable gas-measuring devices (20) is provided. The gas-measuring device (20) is arranged in fluid-communication with the test station (10) via at least one interface (13). A flow time is set, during which the test gas (30) is fed and a waiting time is set, during which no test gas (30) is fed. After an end of the feed of the at least one test gas results of the test are analyzed. The test station (10) is configured for feeding at least one test gas (30) to the interface (13). The test station (10) for portable gas-measuring devices (20) has at least one interface (13) for the fluid-communicating arrangement of the gas-measuring device (20), and wherein the test station (10) is configured for feeding at least one test gas (30) to the interface (13).




f

DEVICES AND METHODS FOR IDENTIFYING A BIOLOGICAL OR CHEMICAL RESIDUE IN AN LIQUID SAMPLE

The invention discloses methods and devices for rapidly detecting a biological and/or chemical residue in a liquid sample. In some embodiments of the instant invention, a single antenna is generally employed in proximity to an aqueous solution in a disposable cup, with electrical outputs being recorded by an electrical metering device in communication with the single antenna. Commercial plastic cups may be used for detection of electric fields related to cleanliness of water samples. General and specific target detection may be performed with various embodiments of the instant invention.




f

Technologies for controlling degradation of sensing circuits

Technologies for controlling degradation of a sensor mote including detecting a trigger event and initiating degradation of at least a portion of the sensor mote in response to the trigger event. The trigger event may be embodied as any type of event detectable by the sensor mote such as a trigger signal, particular sensed data, expiration of a reference time period, completion of a task, and so forth. The sensor mote may imitate the degradation by, for example, controlling a valve to release a chemical stored in the sensor mote or allow a substance into the sensor mote.




f

Sensor and Method for Producing a Sensor

A sensor includes a sensor core, a deviating component, and an aligning component. The sensor core has a cable that leaves the sensor core in essentially an exit direction, and a counter-structure. The aligning component has an aligning structure adapted to the counter-structure. The deviating component and aligning component define a final alignment of the cable in a direction different than the exit direction. The deviating component is pushed onto the sensor core. The aligning component is pushed laterally onto the sensor core in a mounting direction relative to the sensor core, and is engaged with the counter-structure of the sensor core.




f

APPARATUS, METHOD, AND SYSTEM FOR DETECTING ACCELERATION AND MOTOR MONITORING

Described is a system which includes: a cable including: a first fiber optic interconnect to provide an input light; and a second fiber optic interconnect to provide an output light; and a first housing coupled to the cable, the first housing including: a first deflection circuit to deflect the input light received from the first fiber optic interconnect in response to a vibration or movement of the first housing; and a second housing coupled to the cable, the second housing including: a light source to generate the input light for transmission to the first deflection circuit via the first fiber optic interconnect; and a photo detector to receive the output light from the first deflection circuit via the second fiber optic interconnect.




f

SUBSTRATE FOR SENSOR, PHYSICAL QUANTITY DETECTION SENSOR, ACCELERATION SENSOR, ELECTRONIC APPARATUS, AND MOVING OBJECT

A substrate for a sensor includes: a base section; a movable section connected to the base section; an arm portion as a support portion extending along the movable section from the base section; a first gap portion having a protrusion portion in which one of the movable section and the arm portion protrudes toward the other of the movable section and the arm portion, and having a predetermined gap between the protrusion portion on one side and the other of the movable section and the support portion; and a second gap portion which is located further toward the base section side than the first gap portion has a gap wider than the predetermined gap, in which in the first gap portion, one of the movable section and the arm portion has a ridge portion on the side facing the first gap portion.




f

MEMS DEVICE TO SELECTIVELY MEASURE EXCITATION IN DIFFERENT DIRECTIONS

A method and system for a sensor system of a device is disclosed. The sensor system includes a first MEMS sensor (FMEMS), a second MEMS sensor (SMEMS) and a signal processor (SP). An excitation is imparted to the device along a first axis (FA). The FMEMS has a first primary sense axis (FPSA), moves in response to a component of the excitation along the FA aligned with the FPSA and outputs a first signal proportional to an excitation along the FPSA. The SMEMS has a second primary sense axis (SPSA), moves in response to a component of the excitation along the FA aligned with the SPSA and outputs a second signal proportional to an excitation along the SPSA. The SP combines the first signal and the second signal to output a third signal proportional to the excitation along the FA. The FA, the FPSA and the SPSA have different orientations.




f

SYSTEMS AND METHODS FOR THERMALLY REGULATING SENSOR OPERATION

Systems and methods are provided for calibrating and regulating the temperature of a sensor. One or more temperature adjusting devices can be provided to regulate the temperature of the sensor. One or more of the temperature adjusting devices can be provided to perform a calibration to determine a relationship between sensor bias and sensor temperature. The one or more temperature adjusting devices can be built into the sensor.




f

AMPLIFYING ELECTRONIC CIRCUIT WITH REDUCED START-UP TIME FOR A SIGNAL INCLUDING QUADRATURE COMPONENTS

An electronic circuit for amplifying signals with two components in phase quadrature, which includes: a feedback amplifier with a feedback capacitor; a switch that drives charging and discharging of the feedback capacitor; an additional capacitor; and a coupling circuit, which alternatively connects the additional capacitor in parallel to the feedback capacitor or else decouples the additional capacitor from the feedback capacitor. The switch opens at a first instant, where a first one of the two components assumes a first zero value; the coupling circuit decouples the additional capacitor from the feedback capacitor in a way synchronous with a second instant, where the first component assumes a second zero value.




f

PROCESSES FOR FABRICATING ORGANIC PHOTODETECTORS AND RELATED PHOTODETECTORS AND SYSTEMS

A process for fabricating an organic photodetector is presented. The process includes providing an array of thin film transistor assemblies, each thin film transistor assembly including a first electrode disposed on a thin film transistor; disposing an organic semiconductor layer on the array; disposing a second electrode layer including a first inorganic material on the organic semiconductor layer through a shadow mask to form a first etch stop layer; and removing portions of the organic semiconductor layer unprotected by the first etch stop layer using a dry etching process to form a multilayered structure. An organic photodetector, for example an organic x-ray detector fabricated by the process is further presented. An x-ray system including the organic x-ray detector is also presented.




f

POWER SYSTEM FOR SUPPLYING HIGH VOLTAGE TO AN ELECTRON BEAM EMITTER

Power system for supplying high voltage to an electron beam emitter, which is adapted to sterilize a packaging container or a packaging material by electron beam irradiation, the power system comprising a voltage multiplier for generating a high voltage, a first voltage measurement device for measuring an output voltage level of the voltage multiplier and providing a first measured voltage value, and an actuator for modifying the output voltage level of the voltage multiplier based on the first measured voltage value provided by the first voltage measurement device, characterized in that the power system further comprises a second voltage measurement device adapted to independently measure the output voltage level of the voltage multiplier and provide a second measured voltage value.




f

EUV LPP SOURCE WITH IMPROVED DOSE CONTROL BY TRACKING DOSE OVER SPECIFIED WINDOW

A method and apparatus for controlling a dose of extreme ultraviolet (EUV) radiation generated by a laser produced plasma (LPP) EUV light source. In one embodiment, a running total of the EUV energy generated over a predetermined number of laser pulses is measured; once that number of pulses is exceeded, the energy from the pulse immediately preceding the most recent predetermined number of pulses is dropped from the running total, so that the running total is from the most recent predetermined number of pulses. If the running total of the EUV energy exceeds a target dose, the next pulse is caused to not hit a droplet. This avoids the unwanted side effects of various prior art solutions, such as needing to miss many droplets in a row, or requiring the laser pulses to be shortened or reduced in power as in other prior art solutions.




f

PROCESS FOR CONTROLLING, UNDER VOID, A JET OF PARTICLES WITH AN AERODYNAMIC LENS AND ASSOCIATED AERODYNAMIC LENS

The invention relates to a method for controlling the divergence of a jet of particles in vacuo with an aerodynamic lens, the aerodynamic lens including at least one chamber; a diaphragm, a so-called inlet diaphragm, intended to form an inlet of the aerodynamic lens for a jet of particles, the inlet diaphragm having a given diameter (d1); and another diaphragm, a so-called outlet diaphragm, intended to form an outlet of the aerodynamic lens for this jet of particles; the method including: a step for generating the jet of particles from the inlet to the outlet, in vacuo, of the aerodynamic lens; and a step for adjusting the diameter (ds) of the outlet diaphragm for controlling the divergence of the jet of particles.




f

APPARATUS CONFIGURED FOR COLLECTION AND STERILIZATION OF EXPECTORATES

Disclosed is an apparatus configured for collection and sterilization of expectorates. According to the embodiments of the invention, the apparatus includes a receptacle having an interior space defined by a bottom wall, and one or more side walls, an opening at a top portion for selectively receiving a separator for the expectorates to pass therethrough and be received at the interior space, and a power source, one or more light sources, such as ultraviolet (UV) light source radiating rays of sufficient wavelengths capable of sterilizing the expectorates received at the interior space, a reflective source surrounding the interior space of the receptacle for substantially reflecting the radiated rays throughout the interior space to effectively sterilize the expectorates received at the interior space, and a receptacle lid removably engaging the separator to close the opening at the top portion of the receptacle.




f

USE OF FLUORESCENT POLYMERS IN MARKING COMPOSITIONS FOR THE DIAGNOSTIC DETERMINATION OF CLEANING PERFORMANCE

The present invention generally relates to fluorescent marking compositions and their use to determine whether a surface has been cleaned. More particularly, the marking compositions comprise fluorescent polymers.




f

ENCODER, HOLDING MEMBER, METHOD OF MOUNTING AN ENCODER, DRIVE APPARATUS, AND ROBOT APPARATUS, AND STAGE APPARATUS

An encoder, including: a scale that has a pattern and is mountable to a rotary member of an object to be measured; a main body including a detector that detects the pattern, the main body being mountable to a non-rotating portion of the object to be measured; and a holding member including: an abutment portion that is removably provided to the main body from outside the main body and passes through the main body to abut the scale; and a pushing portion that is capable of pushing the abutment portion toward the scale.




f

Optical Fibre Sensor System

An optical fibre sensor system and a method for determining a location of a disturbance having a signal processor with a plurality of activation cells adapted to react to components of a back-scattered signal and label the disturbance.




f

PROXIMITY SENSING DEVICE AND LIGHT GUIDING METHOD THEREOF

A proximity sensing device includes: a light source, a sensing unit, a light guide unit, and a window. The light source emits light, which is guided by the light guide unit to the window. The emitted light reflected by an object is received by the same window. The light guide unit includes a partial-transmissive-partial-reflective (PTPR) optical element, whereby the light emitted from the light source is reflected by the PTPR optical element, while the light reflected by the object passes through the PTPR optical element. There is only one window required.




f

FLUID ANALYZER WITH MODULATION FOR LIQUIDS AND GASES

A fluid analyzer includes an optical source and an optical detector defining an optical beam path through an interrogation region of a fluid flow cell. Flow-control devices conduct analyte and reference fluids through a channel and the interrogation region, and manipulate fluid flow in response to control signals to move a fluid boundary separating the analyte and reference fluids across the interrogation region. A controller generates control signals to (1) cause the fluid boundary to be moved across the interrogation region accordingly, (2) sample an output signal from the optical detector at a first interval during which the interrogation region contains more analyte fluid than reference fluid and at a second interval during which the interrogation region contains more reference fluid than analyte fluid, and (3) determine from samples of the output signal a measurement value indicative of an optically measured characteristic of the analyte fluid.




f

MEASUREMENT OF PROPERTIES OF AN ORGANIC MATERIAL

Measuring system for measuring the properties of an organic material, e.g. meat, comprising a light source unit emitting light within at least one chosen range of wavelengths, the light source unit being coupled to a light guide in a ferrule being adapted to be introduced into said material, the system also comprising detector means for being adapted to receive light within said at least two wavelength ranges comprised within said emitted range of wavelengths, having passed through a chosen length in said material, and analyzing means for evaluating the condition of the material based on the measured absorption in the material in said at least two ranges of wavelengths




f

SENSOR CAP FOR OPTOCHEMICAL SENSOR

The present disclosure relates to a sensor cap for an optochemical sensor for determining or monitoring at least one analyte present in a medium having a substantially cylindrical plug-in component and a sleeve-shaped outer component. The plug-in component has an optical component with a convex-shaped surface region for optimal flow, and the optical component at least partially consists of a material transparent to measuring radiation. On the surface region of the optical component is an analyte-sensitive matrix having at least one functional layer. The plug-in component and the sleeve-shaped component are designed such that the connecting region coming into contact with the medium is between the plug-in component and the sleeve-shaped outer component in the edge region of the optical component or is at a radial distance from the edge region of the optical component, and is sealed, without a gap, facing the medium.




f

RAY CALIBRATION DEVICE AND OPERATING METHOD THEREOF, AND RADIATION IMAGING SYSTEM AND OPERATING METHOD THEREOF

The present disclosure provides a ray calibration device and a working method thereof, and a radiation imaging system and a working method thereof, and belongs to the field of radiation imaging technology. The present disclosure can solve the problems that the existing calibration devices have low calibration efficiency and require relatively large spaces. The ray calibration device of the present disclosure includes a driving part, a cam part and a calibration part, wherein the calibration part is located below the cam part; the driving part is adapted to drive the cam part to rotate; and the cam part is adapted to exert a force on the calibration part to enable the calibration part to move into a ray area downwards.




f

METHODS FOR INCREASING SENSITIVITY OF DETECTION AND/OR QUANTIFICATION OF NEGATIVELY CHARGED ANALYTES

The present technology provides methods for increasing sensitivity of detection and/or quantification of a negatively charged analyte, e.g., an oligonucleotide, using an analytical system that comprises liquid chromatography and mass spectrometry. The methods comprise passing an acidic solution through the analytical system, i.e., through a fluidic path from the mobile phase reservoir to the detector to remove or displace, at least in part, metal ions adsorbed to charged sites in the fluidic path.




f

SCINTILLATOR CONFIGURATIONS AND METHODS FOR FABRICATING THE SAME

A scintillator block is presented. The scintillator block includes at least one scintillator having an isotropic volume. Furthermore, the scintillator block includes a laser-generated three-dimensional pattern positioned within the isotropic volume of the at least one scintillator, where the laser-generated three-dimensional pattern is configured to modify one or more optical properties within the isotropic volume of the at least one scintillator, and where the three-dimensional pattern varies along one or more of a depth, a width, and an angular orientation of the at least one scintillator.




f

LINEAR-RESPONSE NANOCRYSTAL SCINTILLATORS AND METHODS OF USING THE SAME

Systems and devices incorporating radiation detection, and techniques and materials for improved radiation detection are provided that involve a nano-scintillator exhibiting a linear luminescent emission response to stimulating electromagnetic radiation. The nano-scintillator can include at least one nanocrystal comprising a rare earth element, a lanthanide dopant, and a spectator dopant, wherein the nanocrystal exhibits a linear luminescent emission response to stimulating electromagnetic radiation of wavelengths less than 100 nm. As one example, the nanocrystal is [Y2-xO3; Eux, Liy], where x is 0.05 to 0.1 and y is 0.1 to 0.16, and has an average nanoparticle size of 40 to 70 nm. These nanocrystals can be fabricated through a glycine combustion method.




f

Detectors, System and Method for Detecting Ionizing Radiation Using High Energy Current

Detectors, a system and a method for detecting ionizing radiation are provided. In some aspects, a detector includes a first layer comprising a first conducting material, and a second layer comprising a second conducting material, wherein at least one of the first layer and second layer is configured to produce secondary particles upon irradiation by an ionizing radiation. The detector also includes a separating layer positioned between the first and second layer configured to transport therebetween at least one of charges associated with the secondary particles and charges produced by the secondary particles, wherein an electric current generated by the charges, and collected between the first and second layer, is indicative of properties the ionizing radiation.




f

MEMORY WITH ENHANCEMENT TO PERFORM RADIATION MEASUREMENT

Techniques are described that includes using a memory to store data within a system. The techniques include lowering a supply voltage applied to said memory and ceasing use of the memory to store data within the system. The techniques further include reading values from the memory with the supply voltage being lowered. The techniques further include determining a radiation level from an amount of corrupted ones of the values.




f

NEUTRON DETECTOR AND METHOD FOR DETECTING NEUTRONS

An apparatus comprises a neutron detector. The neutron detector comprises a conversion layer comprising a mixture of a neutron absorbing material and a scintillation material; and a photodetector optically coupled to the conversion layer and arranged to detect photons generated as a result of neutron absorption events in the conversion layer; wherein the apparatus is adapted to be carried by a user and the conversion layer is positioned within the neutron detector such that when the apparatus is being carried by a user in normal use neutrons are absorbed in the conversion layer after passing through the user such that the user's body provides a neutron moderating effect. In some cases the apparatus may be carried in association with a backpack or clothing worn by a user, for example, the neutron detector may be sized to fit in a pocket. In other cases the apparatus may be a hand-held device with the conversion layer arranged within a handle of the device to be gripped by a user when being carried.




f

Gamma-Ray Detectors For Downhole Applications

Methods and related systems are described for gamma-ray detection. A gamma-ray detector is made depending on its properties and how those properties are affected by the data analysis. Desirable properties for a downhole detector include; high temperature operation, reliable/robust packaging, good resolution, high countrate capability, high density, high Z, low radioactive background, low neutron cross-section, high light output, single decay time, efficiency, linearity, size availability, etc. Since no single detector has the optimum of all these properties, a downhole tool design preferably picks the best combination of these in existing detectors, which will optimize the performance of the measurement in the required environment and live with the remaining non-optimum properties. A preferable detector choice is one where the required measurement precision (logging speed) is obtained for all of the required inelastic elements and/or minimization of unwanted background signals that complicate the data analysis.




f

Electronic Devices Having Infrared-Transparent Window Coatings

An electronic device may have a display with a cover layer. A light-based component such as an infrared-light proximity sensor or other infrared-light-based component may be aligned with a window in the display cover layer. The window may block visible light and transmit infrared light. A coating in the window may include a thin-film filter formed from a stack of inorganic dielectric layers. The thin-film filter may block visible light and transmit infrared light. The coating may also include at least one layer of material such as a semiconductor material that absorbs visible light and that passes infrared light. This material may be interposed between the thin-film filter and the display cover layer. Antireflection properties and color adjustment properties may be provided using thin-film layers between the thin-film filter and the display cover layer.




f

Protective Device and Laser Raman Safety Inspection Apparatus Comprising the Same

Embodiments of the present invention provide a protective device including a sliding door and a housing, together forming a closed space, wherein, a guide rail is provided on the housing, and the sliding door is slidable along the guide rail to open or close the closed space. In addition, embodiments of the present invention also provide a laser Raman safety inspection apparatus including the abovementioned protective device.




f

CONTROL SYSTEM AND METHOD FOR LITHOGRAPHY APPARATUS

A method for initializing a first operation in a first module at a first start time value in a first time base, the method comprising generating a clock signal, generating a second time base in the first module based on the clock signal, determining a second sync value in the second time base, determining a first sync value in the first time base corresponding to a second sync value in the second time base, determining a start trigger value in the second time base based on the first sync value and the start time value in the first time base, and initializing the first operation in the first module based on the start trigger value and a current value of the second time base in the first module.




f

METHOD OF FABRICATING AN INTEGRATED CIRCUIT WITH A PATTERN DENSITY-OUTLIER-TREATMENT FOR OPTIMIZED PATTERN DENSITY UNIFORMITY

The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.




f

Monitoring Liquid Chromatography Elution to Determine When to Perform a Lockmass Calibration

A method of mass spectrometry is disclosed that comprises acquiring mass spectral data during a single experimental run or acquisition of a mass spectrometer and determining a first time T during the single experimental run or acquisition for calibrating the mass spectrometer. The step of determining the first time T further comprises determining a time when the mass spectral data being acquired during the single experimental run or acquisition is equal to or below a threshold. The mass spectrometer is then calibrated by introducing calibrant or lockmass ions at the first time T.




f

ACTIVE STABILIZATION OF ION TRAP RADIOFREQUENCY POTENTIALS

Disclosed are improved methods and structures for actively stabilizing the oscillation frequency of a trapped ion by noninvasively sampling and rectifying the high voltage RF potential at circuit locations between a step-up transformer and a vacuum feedthrough leading to the ion trap electrodes. We use this sampled/rectified signal in a feedback loop to regulate the RF input amplitude to the circuit. By employing techniques and structures according to the present disclosure we are advantageously able to stabilize a 1 MHz trapped ion oscillation frequency to