ph The ARMA alphabet soup: A tour of ARMA model variants By projecteuclid.org Published On :: Tue, 07 Dec 2010 09:23 EST Scott H. Holan, Robert Lund, Ginger DavisSource: Statist. Surv., Volume 4, 232--274.Abstract: Autoregressive moving-average (ARMA) difference equations are ubiquitous models for short memory time series and have parsimoniously described many stationary series. Variants of ARMA models have been proposed to describe more exotic series features such as long memory autocovariances, periodic autocovariances, and count support set structures. This review paper enumerates, compares, and contrasts the common variants of ARMA models in today’s literature. After the basic properties of ARMA models are reviewed, we tour ARMA variants that describe seasonal features, long memory behavior, multivariate series, changing variances (stochastic volatility) and integer counts. A list of ARMA variant acronyms is provided. References:Aknouche, A. and Guerbyenne, H. (2006). Recursive estimation of GARCH models. Communications in Statistics-Simulation and Computation 35 925–938.Alzaid, A. A. and Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR (p)) process. Journal of Applied Probability 27 314–324.Anderson, P. L., Tesfaye, Y. G. and Meerschaert, M. M. (2007). Fourier-PARMA models and their application to river flows. Journal of Hydrologic Engineering 12 462–472.Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66 59–65.Basawa, I. V. and Lund, R. (2001). Large sample properties of parameter estimates for periodic ARMA models. Journal of Time Series Analysis 22 651–663.Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics 21 79–109.Bertelli, S. and Caporin, M. (2002). A note on calculating autocovariances of long-memory processes. Journal of Time Series Analysis 23 503–508.Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31 307–327.Bollerslev, T. (2008). Glossary to ARCH (GARCH). CREATES Research Paper 2008-49.Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. The Journal of Political Economy 96 116–131.Bondon, P. and Palma, W. (2007). A class of antipersistent processes. Journal of Time Series Analysis 28 261–273.Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes. The Annals of Probability 20 1714–1730.Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control, 4th ed. Wiley, New Jersey.Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation estimation for all-pass time series models. Annals of Statistics 29 919–946.Brockwell, P. J. (1994). On continuous-time threshold ARMA processes. Journal of Statistical Planning and Inference 39 291–303.Brockwell, P. J. (2001). Continuous-time ARMA processes. In Stochastic Processes: Theory and Methods, ( D. N. Shanbhag and C. R. Rao, eds.). Handbook of Statistics 19 249–276. Elsevier.Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.Brockwell, P. J. and Davis, R. A. (2002). Introduction to Time Series and Forecasting, 2nd ed. Springer, New York.Brockwell, P. J. and Marquardt, T. (2005). Lèvy-driven and fractionally integrated ARMA processes with continuous-time paramaters. Statistica Sinica 15 477–494.Chan, K. S. (1990). Testing for threshold autoregression. Annals of Statistics 18 1886–1894.Chan, N. H. (2002). Time Series: Applications to Finance. John Wiley & Sons, New York.Chan, N. H. and Palma, W. (1998). State space modeling of long-memory processes. Annals of Statistics 26 719–740.Chan, N. H. and Palma, W. (2006). Estimation of long-memory time series models: A survey of different likelihood-based methods. Advances in Econometrics 20 89–121.Chatfield, C. (2003). The Analysis of Time Series: An Introduction, 6th ed. Chapman & Hall/CRC, Boca Raton.Chen, W., Hurvich, C. M. and Lu, Y. (2006). On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series. Journal of the American Statistical Association 101 812–822.Chernick, M. R., Hsing, T. and McCormick, W. P. (1991). Calculating the extremal index for a class of stationary sequences. Advances in Applied Probability 23 835–850.Chib, S., Nardari, F. and Shephard, N. (2006). Analysis of high dimensional multivariate stochastic volatility models. Journal of Econometrics 134 341–371.Cryer, J. D. and Chan, K. S. (2008). Time Series Analysis: With Applications in R. Springer, New York.Cui, Y. and Lund, R. (2009). A new look at time series of counts. Biometrika 96 781–792.Davis, R. A., Dunsmuir, W. T. M. and Wang, Y. (1999). Modeling time series of count data. In Asymptotics, Nonparametrics and Time Series, ( S. Ghosh, ed.). Statistics Textbooks Monograph 63–113. Marcel Dekker, New York.Davis, R. A., Dunsmuir, W. and Streett, S. B. (2003). Observation-driven models for Poisson counts. Biometrika 90 777–790.Davis, R. A. and Resnick, S. I. (1996). Limit theory for bilinear processes with heavy-tailed noise. The Annals of Applied Probability 6 1191–1210.Deistler, M. and Hannan, E. J. (1981). Some properties of the parameterization of ARMA systems with unknown order. Journal of Multivariate Analysis 11 474–484.Dufour, J. M. and Jouini, T. (2005). Asymptotic distribution of a simple linear estimator for VARMA models in echelon form. Statistical Modeling and Analysis for Complex Data Problems 209–240.Dunsmuir, W. and Hannan, E. J. (1976). Vector linear time series models. Advances in Applied Probability 8 339–364.Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford University Press, Oxford.Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 987–1007.Engle, R. F. (2002). Dynamic conditional correlation. Journal of Business and Economic Statistics 20 339–350.Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric Reviews 5 1–50.Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd ed. John Wiley & Sons, New York.Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis 4 221–238.Gladyšhev, E. G. (1961). Periodically correlated random sequences. Soviet Math 2 385–388.Granger, C. W. J. (1982). Acronyms in time series analysis (ATSA). Journal of Time Series Analysis 3 103–107.Granger, C. W. J. and Andersen, A. P. (1978). An Introduction to Bilinear Time Series Models. Vandenhoeck and Ruprecht Göttingen.Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1 15–29.Gray, H. L., Zhang, N. F. and Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis 10 233–257.Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton, New Jersey.Hannan, E. J. (1955). A test for singularities in Sydney rainfall. Australian Journal of Physics 8 289–297.Hannan, E. J. (1969). The identification of vector mixed autoregressive-moving average system. Biometrika 56 223–225.Hannan, E. J. (1970). Multiple Time Series. John Wiley & Sons, New York.Hannan, E. J. (1976). The identification and parameterization of ARMAX and state space forms. Econometrica 44 713–723.Hannan, E. J. (1979). The Statistical Theory of Linear Systems. In Developments in Statistics ( P. R. Krishnaiah, ed.) 83–121. Academic Press, New York.Hannan, E. J. and Deistler, M. (1987). The Statistical Theory of Linear Systems. John Wiley & Sons, New York.Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.Haslett, J. and Raftery, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland’s wind power resource. Applied Statistics 38 1–50.Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68 165–176.Hui, Y. V. and Li, W. K. (1995). On fractionally differenced periodic processes. Sankhyā: The Indian Journal of Statistics, Series B 57 19–31.Jacobs, P. A. and Lewis, P. A. W. (1978a). Discrete time series generated by mixtures. I: Correlational and runs properties. Journal of the Royal Statistical Society. Series B (Methodological) 40 94–105.Jacobs, P. A. and Lewis, P. A. W. (1978b). Discrete time series generated by mixtures II: Asymptotic properties. Journal of the Royal Statistical Society. Series B (Methodological) 40 222–228.Jacobs, P. A. and Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. Journal of Time Series Analysis 4 19–36.Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics 22 389–395.Jones, R. H. and Brelsford, W. M. (1967). Time series with periodic structure. Biometrika 54 403–408.Kedem, B. and Fokianos, K. (2002). Regression Models for Time Series Analysis. John Wiley & Sons, New Jersey.Ko, K. and Vannucci, M. (2006). Bayesian wavelet-based methods for the detection of multiple changes of the long memory parameter. IEEE Transactions on Signal Processing 54 4461–4470.Kohn, R. (1979). Asymptotic estimation and hypothesis testing results for vector linear time series models. Econometrica 47 1005–1030.Kokoszka, P. S. and Taqqu, M. S. (1995). Fractional ARIMA with stable innovations. Stochastic Processes and their Applications 60 19–47.Kokoszka, P. S. and Taqqu, M. S. (1996). Parameter estimation for infinite variance fractional ARIMA. Annals of Statistics 24 1880–1913.Lawrance, A. J. and Lewis, P. A. W. (1980). The exponential autoregressive-moving average EARMA(p,q) process. Journal of the Royal Statistical Society. Series B (Methodological) 42 150–161.Ling, S. and Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of the American Statistical Association 92 1184–1194.Liu, J. and Brockwell, P. J. (1988). On the general bilinear time series model. Journal of Applied Probability 25 553–564.Lund, R. and Basawa, I. V. (2000). Recursive prediction and likelihood evaluation for periodic ARMA models. Journal of Time Series Analysis 21 75–93.Lund, R., Shao, Q. and Basawa, I. (2006). Parsimonious periodic time series modeling. Australian & New Zealand Journal of Statistics 48 33–47.Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer-Verlag, New York.Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, New York.MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman & Hall/CRC, Boca Raton.Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220.Marriott, J., Ravishanker, N., Gelfand, A. and Pai, J. (1996). Bayesian analysis of ARMA processes: Complete sampling-based inference under exact likelihoods. In Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner ( D. Berry, K. Challoner and J. Geweke, eds.) 243–256. Wiley, New York.McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability 20 822–835.Mikosch, T. and Starica, C. (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Review of Economics and Statistics 86 378–390.Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 347–370.Nelson, D. B. and Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics 10 229–235.Ooms, M. and Franses, P. H. (2001). A seasonal periodic long memory model for monthly river flows. Environmental Modelling & Software 16 559–569.Pagano, M. (1978). On periodic and multiple autoregressions. Annals of Statistics 6 1310–1317.Pai, J. S. and Ravishanker, N. (1998). Bayesian analysis of autoregressive fractionally integrated moving-average processes. Journal of Time Series Analysis 19 99–112.Palma, W. (2007). Long-Memory Time Series: Theory and Methods. John Wiley & Sons, New Jersey.Palma, W. and Chan, N. H. (2005). Efficient estimation of seasonal long-range-dependent processes. Journal of Time Series Analysis 26 863–892.Pfeifer, P. E. and Deutsch, S. J. (1980). A three-stage iterative procedure for space-time modeling. Technometrics 22 35–47.Prado, R. and West, M. (2010). Time Series Modeling, Computation and Inference. Chapman & Hall/CRC, Boca Raton.Quoreshi, A. M. M. S. (2008). A long memory count data time series model for financial application. Preprint.R Development Core Team, (2010). R: A Language and Environment for Statistical Computing. http://www.R-project.org.Ravishanker, N. and Ray, B. K. (1997). Bayesian analysis of vector ARMA models using Gibbs sampling. Journal of Forecasting 16 177–194.Ravishanker, N. and Ray, B. K. (2002). Bayesian prediction for vector ARFIMA processes. International Journal of Forecasting 18 207–214.Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. Springer, New York.Resnick, S. I. and Willekens, E. (1991). Moving averages with random coefficients and random coefficient autoregressive models. Communications in Statistics. Stochastic Models 7 511–525.Rootzén, H. (1986). Extreme value theory for moving average processes. The Annals of Probability 14 612–652.Scotto, M. G. (2007). Extremes for solutions to stochastic difference equations with regularly varying tails. REVSTAT–Statistical Journal 5 229–247.Shao, Q. and Lund, R. (2004). Computation and characterization of autocorrelations and partial autocorrelations in periodic ARMA models. Journal of Time Series Analysis 25 359–372.Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and its Applications: With R Examples, 2nd ed. Springer, New York.Silvennoinen, A. and Teräsvirta, T. (2009). Multivariate GARCH models. In Handbook of Financial Time Series ( T. Andersen, R. Davis, J. Kreib, and T. Mikosch, eds.) Springer, New York.Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53 165–188.Startz, R. (2008). Binomial autoregressive moving average models with an application to U.S. recessions. Journal of Business and Economic Statistics 26 1–8.Stramer, O., Tweedie, R. L. and Brockwell, P. J. (1996). Existence and stability of continuous time threshold ARMA processes. Statistica Sinica 6 715–732.Subba Rao, T. (1981). On the theory of bilinear time series models. Journal of the Royal Statistical Society. Series B (Methodological) 43 244–255.Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society. Series B (Methodological) 42 245–292.Troutman, B. M. (1979). Some results in periodic autoregression. Biometrika 66 219–228.Tsai, H. (2009). On continuous-time autoregressive fractionally integrated moving average processes. Bernoulli 15 178–194.Tsai, H. and Chan, K. S. (2000). A note on the covariance structure of a continuous-time ARMA process. Statistica Sinica 10 989–998.Tsai, H. and Chan, K. S. (2005). Maximum likelihood estimation of linear continuous time long memory processes with discrete time data. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67 703–716.Tsai, H. and Chan, K. S. (2008). A note on inequality constraints in the GARCH model. Econometric Theory 24 823–828.Tsay, R. S. (1989). Parsimonious parameterization of vector autoregressive moving average models. Journal of Business and Economic Statistics 7 327–341.Tunnicliffe-Wilson, G. (1979). Some efficient computational procedures for high order ARMA models. Journal of Statistical Computation and Simulation 8 301–309.Ursu, E. and Duchesne, P. (2009). On modelling and diagnostic checking of vector periodic autoregressive time series models. Journal of Time Series Analysis 30 70–96.Vecchia, A. V. (1985a). Maximum likelihood estimation for periodic autoregressive moving average models. Technometrics 27 375–384.Vecchia, A. V. (1985b). Periodic autoregressive-moving average (PARMA) modeling with applications to water resources. Journal of the American Water Resources Association 21 721–730.Vidakovic, B. (1999). Statistical Modeling by Wavelets. John Wiley & Sons, New York.West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd ed. Springer, New York.Wold, H. (1954). A Study in the Analysis of Stationary Time Series. Almquist & Wiksell, Stockholm.Woodward, W. A., Cheng, Q. C. and Gray, H. L. (1998). A k-factor GARMA long-memory model. Journal of Time Series Analysis 19 485–504.Zivot, E. and Wang, J. (2006). Modeling Financial Time Series with S-PLUS, 2nd ed. Springer, New York. Full Article
ph Holtermann and the A&A Photographic Company By feedproxy.google.com Published On :: Thu, 10 Sep 2015 02:50:04 +0000 We recently received a comment about authorship of the Holtermann Collection. Although it may seem a purely historica Full Article
ph On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED) By arxiv.org Published On :: In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones. Full Article
ph Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED) By arxiv.org Published On :: In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models. Full Article
ph On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED) By arxiv.org Published On :: Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods. Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied. Full Article
ph Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED) By arxiv.org Published On :: A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels. Full Article
ph Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST]) By arxiv.org Published On :: The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model. Full Article
ph Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG]) By arxiv.org Published On :: We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems. Full Article
ph A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph]) By arxiv.org Published On :: This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service. Full Article
ph Deep learning of physical laws from scarce data. (arXiv:2005.03448v1 [cs.LG]) By arxiv.org Published On :: Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. Recent advances in sparse identification show encouraging success in distilling closed-form governing equations from data for a wide range of nonlinear dynamical systems. However, the fundamental bottleneck of this approach lies in the robustness and scalability with respect to data scarcity and noise. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated on discovering a variety of PDE systems with different levels of data scarcity and noise. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture. Full Article
ph Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG]) By arxiv.org Published On :: Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks. We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges. Full Article
ph Entries now open for the 2020 National Biography Award By feedproxy.google.com Published On :: Mon, 09 Dec 2019 23:38:42 +0000 Tuesday 10 December 2019 Entries are now open for the 2020 National Biography Award – Australia's richest prize for biography and memoir writing. Full Article
ph mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package. Full Article
ph Arabo-Persian physiological theories in late Imperial China By blog.wellcomelibrary.org Published On :: Thu, 22 Feb 2018 11:20:20 +0000 The last seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 27 February. Speaker: Dr Dror Weil (Max Planck Institute for the History of Science, Berlin) Bodies translated: the circulation of Arabo-Persian physiological theories in late… Continue reading Full Article Early Medicine Events and Visits China Chinese medicine physiology seminars
ph Plant-fire interactions : applying ecophysiology to wildfire management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Resco de Dios, Víctor, authorCallnumber: OnlineISBN: 9783030411923 (electronic book) Full Article
ph Phytoremediation potential of perennial grasses By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Pandey, Vimal Chandra, authorCallnumber: OnlineISBN: 9780128177334 (electronic bk.) Full Article
ph Phytoremediation : in-situ applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030000998 (electronic bk.) Full Article
ph Phytomanagement of fly ash By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Pandey, Vimal Chandra, authorCallnumber: OnlineISBN: 9780128185452 (electronic bk.) Full Article
ph Neuroinflammation and schizophrenia By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030391416 (electronic bk.) Full Article
ph Neonatal lung ultrasonography By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789402415490 (electronic bk.) Full Article
ph Microbial endophytes : functional biology and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196540 (print) Full Article
ph Microbial endophytes : prospects for sustainable agriculture By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 0128187255 Full Article
ph Methylotrophs : microbiology, biochemistry and genetics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781351074513 (electronic bk.) Full Article
ph Medical pharmacology at a glance By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Neal, M. J., author.Callnumber: OnlineISBN: 9781119548096 (epub) Full Article
ph Maxillofacial cone beam computed tomography : principles, techniques and clinical applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319620619 (electronic bk.) Full Article
ph Insect sex pheromone research and beyond : from molecules to robots By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811530821 (electronic bk.) Full Article
ph Insect metamorphosis : from natural history to regulation of development and evolution By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Bellés, X., authorCallnumber: OnlineISBN: 9780128130216 Full Article
ph Functional and preservative properties of phytochemicals By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196861 (electronic bk.) Full Article
ph European whales, dolphins, and porpoises : marine mammal conservation in practice By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Evans, Peter G. H., authorCallnumber: OnlineISBN: 9780128190548 electronic book Full Article
ph Encyclopedia of molecular pharmacology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030215736 (electronic bk.) Full Article
ph Ecophysiology of pesticides : interface between pesticide chemistry and plant physiology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Parween, Talat, author.Callnumber: OnlineISBN: 9780128176146 Full Article
ph Development of biopharmaceutical drug-device products By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030314156 (electronic bk.) Full Article
ph Controlled and modified atmosphere for fresh and fresh-cut produce By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128046210 Full Article
ph Computed body tomography with MRI correlation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781496370495 (hbk.) Full Article
ph Climate change and food security with emphasis on wheat By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128195277 Full Article
ph Biology and physiology of freshwater neotropical fishes By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128158739 (electronic bk.) Full Article
ph Beyond our genes : pathophysiology of gene and environment interaction and epigenetic inheritance By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030352134 (electronic bk.) Full Article
ph Basic Electrocardiography By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Petty, Brent G. author. aut http://id.loc.gov/vocabulary/relators/autCallnumber: OnlineISBN: 9783030328863 978-3-030-32886-3 Full Article
ph Bacteriophages : biology, technology, therapy By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319405988 electronic book Full Article
ph Atlas of Lymphatic System in Cancer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Gantsev, Shamil. author. aut http://id.loc.gov/vocabulary/relators/autCallnumber: OnlineISBN: 9783030409678 978-3-030-40967-8 Full Article
ph Anatomical chart company atlas of pathophysiology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Atlas of pathophysiology.Callnumber: OnlineISBN: 9781496370921 Full Article
ph 100 cases in clinical pharmacology, therapeutics and prescribing By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Layne, Kerry, author.Callnumber: OnlineISBN: 9780429624537 electronic book Full Article
ph Health Worker Data Alliance: Monitoring Emotional, Physical and... By www.prweb.com Published On :: Surveys provide secure, anonymous feedback from staff at all levels of healthcare organizations(PRWeb May 06, 2020)Read the full story at https://www.prweb.com/releases/health_worker_data_alliance_monitoring_emotional_physical_and_occupational_health_of_healthcare_workers_during_covid_19/prweb17101008.htm Full Article
ph Markov equivalence of marginalized local independence graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Søren Wengel Mogensen, Niels Richard Hansen. Source: The Annals of Statistics, Volume 48, Number 1, 539--559.Abstract: Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph. Full Article
ph Concentration and consistency results for canonical and curved exponential-family models of random graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Michael Schweinberger, Jonathan Stewart. Source: The Annals of Statistics, Volume 48, Number 1, 374--396.Abstract: Statistical inference for exponential-family models of random graphs with dependent edges is challenging. We stress the importance of additional structure and show that additional structure facilitates statistical inference. A simple example of a random graph with additional structure is a random graph with neighborhoods and local dependence within neighborhoods. We develop the first concentration and consistency results for maximum likelihood and $M$-estimators of a wide range of canonical and curved exponential-family models of random graphs with local dependence. All results are nonasymptotic and applicable to random graphs with finite populations of nodes, although asymptotic consistency results can be obtained as well. In addition, we show that additional structure can facilitate subgraph-to-graph estimation, and present concentration results for subgraph-to-graph estimators. As an application, we consider popular curved exponential-family models of random graphs, with local dependence induced by transitivity and parameter vectors whose dimensions depend on the number of nodes. Full Article
ph Sparse high-dimensional regression: Exact scalable algorithms and phase transitions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Dimitris Bertsimas, Bart Van Parys. Source: The Annals of Statistics, Volume 48, Number 1, 300--323.Abstract: We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes $n$ and number of regressors $p$ in the 100,000s, that is, two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe new phase transition phenomena. Contrary to traditional complexity theory which suggests that the difficulty of a problem increases with problem size, the sparse regression problem has the property that as the number of samples $n$ increases the problem becomes easier in that the solution recovers 100% of the true signal, and our approach solves the problem extremely fast (in fact faster than Lasso), while for small number of samples $n$, our approach takes a larger amount of time to solve the problem, but importantly the optimal solution provides a statistically more relevant regressor. We argue that our exact sparse regression approach presents a superior alternative over heuristic methods available at present. Full Article
ph The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Emmanuel J. Candès, Pragya Sur. Source: The Annals of Statistics, Volume 48, Number 1, 27--42.Abstract: This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp “phase transition.” We introduce an explicit boundary curve $h_{mathrm{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n ightarrow kappa $, we show that if the problem is sufficiently high dimensional in the sense that $kappa >h_{mathrm{MLE}}$, then the MLE does not exist with probability one. Conversely, if $kappa <h_{mathrm{MLE}}$, the MLE asymptotically exists with probability one. Full Article
ph A smeary central limit theorem for manifolds with application to high-dimensional spheres By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Benjamin Eltzner, Stephan F. Huckemann. Source: The Annals of Statistics, Volume 47, Number 6, 3360--3381.Abstract: The (CLT) central limit theorems for generalized Fréchet means (data descriptors assuming values in manifolds, such as intrinsic means, geodesics, etc.) on manifolds from the literature are only valid if a certain empirical process of Hessians of the Fréchet function converges suitably, as in the proof of the prototypical BP-CLT [ Ann. Statist. 33 (2005) 1225–1259]. This is not valid in many realistic scenarios and we provide for a new very general CLT. In particular, this includes scenarios where, in a suitable chart, the sample mean fluctuates asymptotically at a scale $n^{alpha }$ with exponents $alpha <1/2$ with a nonnormal distribution. As the BP-CLT yields only fluctuations that are, rescaled with $n^{1/2}$, asymptotically normal, just as the classical CLT for random vectors, these lower rates, somewhat loosely called smeariness, had to date been observed only on the circle. We make the concept of smeariness on manifolds precise, give an example for two-smeariness on spheres of arbitrary dimension, and show that smeariness, although “almost never” occurring, may have serious statistical implications on a continuum of sample scenarios nearby. In fact, this effect increases with dimension, striking in particular in high dimension low sample size scenarios. Full Article
ph Sampling and estimation for (sparse) exchangeable graphs By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Victor Veitch, Daniel M. Roy. Source: The Annals of Statistics, Volume 47, Number 6, 3274--3299.Abstract: Sparse exchangeable graphs on $mathbb{R}_{+}$, and the associated graphex framework for sparse graphs, generalize exchangeable graphs on $mathbb{N}$, and the associated graphon framework for dense graphs. We develop the graphex framework as a tool for statistical network analysis by identifying the sampling scheme that is naturally associated with the models of the framework, formalizing two natural notions of consistent estimation of the parameter (the graphex) underlying these models, and identifying general consistent estimators in each case. The sampling scheme is a modification of independent vertex sampling that throws away vertices that are isolated in the sampled subgraph. The estimators are variants of the empirical graphon estimator, which is known to be a consistent estimator for the distribution of dense exchangeable graphs; both can be understood as graph analogues to the empirical distribution in the i.i.d. sequence setting. Our results may be viewed as a generalization of consistent estimation via the empirical graphon from the dense graph regime to also include sparse graphs. Full Article
ph Phase transition in the spiked random tensor with Rademacher prior By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Wei-Kuo Chen. Source: The Annals of Statistics, Volume 47, Number 5, 2734--2756.Abstract: We consider the problem of detecting a deformation from a symmetric Gaussian random $p$-tensor $(pgeq3)$ with a rank-one spike sampled from the Rademacher prior. Recently, in Lesieur et al. (Barbier, Krzakala, Macris, Miolane and Zdeborová (2017)), it was proved that there exists a critical threshold $eta_{p}$ so that when the signal-to-noise ratio exceeds $eta_{p}$, one can distinguish the spiked and unspiked tensors and weakly recover the prior via the minimal mean-square-error method. On the other side, Perry, Wein and Bandeira (Perry, Wein and Bandeira (2017)) proved that there exists a $eta_{p}'<eta_{p}$ such that any statistical hypothesis test cannot distinguish these two tensors, in the sense that their total variation distance asymptotically vanishes, when the signa-to-noise ratio is less than $eta_{p}'$. In this work, we show that $eta_{p}$ is indeed the critical threshold that strictly separates the distinguishability and indistinguishability between the two tensors under the total variation distance. Our approach is based on a subtle analysis of the high temperature behavior of the pure $p$-spin model with Ising spin, arising initially from the field of spin glasses. In particular, we identify the signal-to-noise criticality $eta_{p}$ as the critical temperature, distinguishing the high and low temperature behavior, of the Ising pure $p$-spin mean-field spin glass model. Full Article