era

Measuring Oral Health Literacy of Refugees: Associations with Dental Care Utilization and Oral Health Self-Efficacy

Purpose: The purpose of this study was to analyze associations between the oral health literacy of refugees and two oral health outcomes: dental care utilization and oral health self-efficacy.Methods: A convenience sample of refugees in the greater Los Angeles area attending English as a second language (ESL) classes sponsored by two refugee assistance organizations was used for this cross-sectional, correlational study. Participants responded to a questionnaire using items from the Health Literacy in Dentistry (HeLD) scale, in addition to items concerning dental care utilization and oral health self-efficacy. Descriptive statistics, chi-square and Fisher's Exact tests were used to analyze results.Results: Sixty-two refugees volunteered to participate (n=62). A majority of the respondents were female from Iraq or Syria, and selected the item “with little difficulty” for all oral health literacy tasks. In regards to dental care utilization, more than half of the respondents were considered high utilizers (63%, n=34) meaning they had visited a dental office within the last year; while a little more than one-third (37%, n=20), were low utilizers, indicating they had either never been to a dental office or it had been more than one year since they had dental treatment. Statistical analysis showed associations between oral health literacy and dental care utilization. However, few associations between oral health literacy and oral health self-efficacy were identified (p=0.0045).Conclusions: Results support the provision of easily obtainable and understandable oral health information to increase oral health literacy and dental care utilization among refugee populations. Future research is needed to examine the oral health literacy among refugees resettling in the United States.




era

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




era

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




era

Lipid rafts as a therapeutic target [Thematic Reviews]

Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.




era

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




era

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




era

Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions

ABSTRACT

Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.

IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets.




era

Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells

ABSTRACT

In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction.

IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections.




era

Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network

ABSTRACT

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.

IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa. The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.




era

Genetic and Chemical-Genetic Interactions Map Biogenesis and Permeability Determinants of the Outer Membrane of Escherichia coli

ABSTRACT

Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ~30, ~36, and ~40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability.

IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli. We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics.




era

Reply to Losick, "Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay"




era

CO2/HCO3- Accelerates Iron Reduction through Phenolic Compounds

ABSTRACT

Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3 and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3 levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3 and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments.

IMPORTANCE In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3 levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3 levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature.




era

New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection

ABSTRACT

Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile. However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils.

IMPORTANCE Clostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile. Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI.




era

Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay




era

Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

ABSTRACT

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.




era

The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans

ABSTRACT

Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells.

IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells.




era

Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection

ABSTRACT

Human noroviruses (HuNoVs) are the leading cause of nonbacterial gastroenteritis worldwide. Histo-blood group antigen (HBGA) expression is an important susceptibility factor for HuNoV infection based on controlled human infection models and epidemiologic studies that show an association of secretor status with infection caused by several genotypes. The fucosyltransferase 2 gene (FUT2) affects HBGA expression in intestinal epithelial cells; secretors express a functional FUT2 enzyme, while nonsecretors lack this enzyme and are highly resistant to infection and gastroenteritis caused by many HuNoV strains. These epidemiologic associations are confirmed by infections in stem cell-derived human intestinal enteroid (HIE) cultures. GII.4 HuNoV does not replicate in HIE cultures derived from nonsecretor individuals, while HIEs from secretors are permissive to infection. However, whether FUT2 expression alone is critical for infection remains unproven, since routinely used secretor-positive transformed cell lines are resistant to HuNoV replication. To evaluate the role of FUT2 in HuNoV replication, we used CRISPR or overexpression to genetically manipulate FUT2 gene function to produce isogenic HIE lines with or without FUT2 expression. We show that FUT2 expression alone affects both HuNoV binding to the HIE cell surface and susceptibility to HuNoV infection. These findings indicate that initial binding to a molecule(s) glycosylated by FUT2 is critical for HuNoV infection and that the HuNoV receptor is present in nonsecretor HIEs. In addition to HuNoV studies, these isogenic HIE lines will be useful tools to study other enteric microbes where infection and/or disease outcome is associated with secretor status.

IMPORTANCE Several studies have demonstrated that secretor status is associated with susceptibility to human norovirus (HuNoV) infection; however, previous reports found that FUT2 expression is not sufficient to allow infection with HuNoV in a variety of continuous laboratory cell lines. Which cellular factor(s) regulates susceptibility to HuNoV infection remains unknown. We used genetic manipulation of HIE cultures to show that secretor status determined by FUT2 gene expression is necessary and sufficient to support HuNoV replication based on analyses of isogenic lines that lack or express FUT2. Fucosylation of HBGAs is critical for initial binding and for modification of another putative receptor(s) in HIEs needed for virus uptake or uncoating and necessary for successful infection by GI.1 and several GII HuNoV strains.




era

Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor {alpha} and {beta} Repertoires

ABSTRACT

Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.

IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.




era

Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses

ABSTRACT

Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.

IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.




era

Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To Generate Infectious Particles

ABSTRACT

Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.

IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.




era

Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response

ABSTRACT

The global stress response controlled by the alternative sigma factor RpoS protects enteric bacteria from a variety of environmental stressors. The role of RpoS in other, nonenteric bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, is less well understood. Here, we employed experimental social evolution to reveal that cooperative behavior via secreted public goods is an important function in the RpoS response of P. aeruginosa. Using whole-genome sequencing, we identified rpoS loss-of-function mutants among isolates evolved in a protein growth medium that requires extracellular proteolysis. We found that rpoS mutants comprise up to 25% of the evolved population and that they behave as social cheaters, with low fitness in isolation but high fitness in mixed culture with the cooperating wild type. We conclude that rpoS mutants cheat because they exploit an RpoS-controlled public good produced by the wild type, the secreted aminopeptidase PaAP, and because they do not carry the metabolic costs of expressing PaAP and many other gene products in the large RpoS regulon. Our results suggest that PaAP is an integral part of a proteolytic sequence in P. aeruginosa that permits the utilization of protein as a nutrient source. Our work broadens the scope of stress response functions in bacteria.

IMPORTANCE Bacterial stress responses are generally considered protective measures taken by individual cells. Enabled by an experimental evolution approach, we describe a contrasting property, collective nutrient acquisition, in the RpoS-dependent stress response of the opportunistic human pathogen P. aeruginosa. Specifically, we identify the secreted P. aeruginosa aminopeptidase (PaAP) as an essential RpoS-controlled function in extracellular proteolysis. As a secreted "public good," PaAP permits cheating by rpoS mutants that save the metabolic costs of expressing RpoS-controlled genes dispensable under the given growth conditions. Proteolytic enzymes are important virulence factors in P. aeruginosa pathogenesis and constitute a potential target for antimicrobial therapy. More broadly, our work contributes to recent findings in higher organisms that stress affects not only individual fitness and competitiveness but also cooperative behavior.




era

The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology

ABSTRACT

Mobile elements—plasmids and phages—are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis. This microbe’s genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.

IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements.




era

Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus

ABSTRACT

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus.

IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.




era

Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation

ABSTRACT

The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C–DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation.

IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies.




era

Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored

After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention.




era

Place Matters: From Health and Health Care Disparities to Equity and Liberation

Place—a confluence of the social, economic, political, physical, and built environments—is fundamental to our understanding of health and health inequities among marginalized racial groups in the United States. Moreover, racism, defined as a system of structuring opportunity and assigning value based on the social interpretation of how one looks (i.e., race), has shaped the places people live in North Carolina. This problem is deeply imbedded in all of our systems, from housing to health care, affecting the ability of every resident of the state to flourish and thrive.




era

Polygenic risk scores of several subtypes of epilepsies in a founder population

Objective

Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes.

Methods

We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics.

Results

We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype.

Conclusions

Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically.




era

WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production

Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD. Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants.




era

OsNAR2.1 Interaction with OsNIT1 and OsNIT2 Functions in Root-growth Responses to Nitrate and Ammonium

The nitrate transport accessory protein OsNAR2 plays a critical role in root-growth responses to nitrate and nitrate acquisition in rice (Oryza sativa). In this study, a pull-down assay combined with yeast two-hybrid and coimmunoprecipitation analyses revealed that OsNAR2.1 interacts with OsNIT1 and OsNIT2. Moreover, an in vitro nitrilase activity assay indicated that indole-3-acetonitrile (IAN) is hydrolyzed to indole-3-acetic acid (IAA) by OsNIT1, the activity of which was enhanced 3- to 4-fold by OsNIT2 and in excess of 5- to 8-fold by OsNAR2.1. Knockout (KO) of OsNAR2.1 was accompanied by repressed expression of both OsNIT1 and OsNIT2, whereas KO of OsNIT1 and OsNIT2 in the osnit1 and osnit2 mutant lines did not affect expression of OsNAR2.1 or the root nitrate acquisition rate. osnit1 and osnit2 displayed decreased primary root length and lateral root density. Double KO of OsNAR2.1 and OsNIT2 caused further decreases in lateral root density under nitrate supply. Ammonium supply repressed OsNAR2.1 expression whereas it upregulated OsNIT1 and OsNIT2 expression. Both osnit1 and osnit2 showed root growth hypersensitivity to external ammonium; however, less root growth sensitivity to external IAN, higher expression of three IAA-amido synthetase genes, and a lower rate of 3H-IAA movement toward the roots were observed. Taken together, we conclude that the interaction of OsNIT1 and OsNIT2 activated by OsNAR2.1 and nitrogen supply is essential for maintaining root growth possibly via altering the IAA ratio of free to conjugate forms and facilitating its transportation.




era

The Calcium Sensor CBL2 and Its Interacting Kinase CIPK6 Are Involved in Plant Sugar Homeostasis via Interacting with Tonoplast Sugar Transporter TST2

Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK)-mediated calcium signaling has been widely reported to function in plant development and various stress responses, particularly in ion homeostasis. Sugars are the most important primary metabolites, and thus sugar homeostasis requires precise regulation. Here, we describe a CBL2-CIPK6-Tonoplast-Localized Sugar Transporter2 (TST2) molecular module in cotton (Gossypium hirsutum) that regulates plant sugar homeostasis, in particular Glc homeostasis. GhCIPK6 is recruited to the tonoplast by GhCBL2 and interacts with the tonoplast-localized sugar transporter GhTST2. Overexpression of either GhCBL2, GhCIPK6, or GhTST2 was sufficient to promote sugar accumulation in transgenic cotton, whereas RNAi-mediated knockdown of GhCIPK6 expression or CRISPR-Cas9-mediated knockout of GhTST2 resulted in significantly decreased Glc content. Moreover, mutation of GhCBL2 or GhTST2 in GhCIPK6-overexpressing cotton reinstated sugar contents comparable to wild-type plants. Heterologous expression of GhCIPK6 in Arabidopsis (Arabidopsis thaliana) also promoted Glc accumulation, whereas mutation of AtTST1/2 in GhCIPK6-overexpressing Arabidopsis similarly reinstated wild-type sugar contents, thus indicating conservation of CBL2-CIPK6-TST2-mediated sugar homeostasis among different plant species. Our characterization of the molecular players behind plant sugar homeostasis may be exploited to improve sugar contents and abiotic stress resistance in plants.




era

The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1

Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P. trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P. trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus x canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar. A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed.




era

Allelic Mutations in the Ripening-Inhibitor Locus Generate Extensive Variation in Tomato Ripening

RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor.




era

SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance

Heat stress (HS) has serious effects on plant development, resulting in heavy agricultural losses. A critical transcription factor network is involved in plant adaptation to high temperature. DEHYDRATION RESPONSIVE ELEMENT-BINDING PROTEIN2A (DREB2A) is a key transcription factor that functions in plant thermotolerance. The DREB2A protein is unstable under normal temperature and is degraded by the 26S proteasome; however, the mechanism by which DREB2A protein stability dramatically increases in response to HS remains poorly understood. In this study, we found that the DREB2A protein of Arabidopsis (Arabidopsis thaliana) is stabilized under high temperature by the posttranslational modification SUMOylation. Biochemical data indicated that DREB2A is SUMOylated at K163, a conserved residue adjacent to the negative regulatory domain during HS. SUMOylation of DREB2A suppresses its interaction with BPM2, a ubiquitin ligase component, consequently increasing DREB2A protein stability under high temperature. In addition, analysis of plant heat tolerance and marker gene expression indicated that DREB2A SUMOylation is essential for its function in the HS response. Collectively, our data reveal a role for SUMOylation in the maintenance of DREB2A stability under high temperature, thus improving our understanding of the regulatory mechanisms underlying HS response in plant cells.




era

Sulfotransferase1 Is the Enzymatic Hub of Sulfated Salicinoids in Poplar




era

Looking back to go forward: adherence to inhaled therapy before biologic therapy in severe asthma

For decades inhaled corticosteroids have been central to the management of asthma and are proven to be effective in maintaining symptom control, reducing exacerbations and preserving quality of life through mediation of airway inflammation. However, a small minority of patients have disease which is refractory to high dose inhaled corticosteroid (ICS) therapy and require additional oral corticosteroids to achieve acceptable control of symptoms and exacerbations. Severe asthma represents less than 10% of the total asthma population [1] but is the most serious, life-affecting and costly form of the condition [2].




era

No association of COVID-19 transmission with temperature or UV radiation in Chinese cities

The coronavirus disease 2019 (COVID-19) epidemic, which was first reported in December 2019 in Wuhan, China, has caused 80 904 confirmed cases as of 9 March 2020, with 28 673 cases being reported outside of China. It has been declared a pandemic by the World Health Organization (WHO), has exhibited human-to-human transmissibility and has spread rapidly across countries [1]. Although the Chinese government has taken various measures to control city-to-city transmission (e.g. shutting down cities, extending holidays) and many other countries have implemented measures (such as airport screening and testing patients who have reported symptoms), the number of cases is still increasing quickly throughout the world.




era

Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma

Introduction

Inhaled corticosteroids (ICS) achieve disease control in the majority of asthmatic patients, although adherence to prescribed ICS is often poor. Patients with severe eosinophilic asthma may require treatment with oral corticosteroids (OCS) and/or biologic agents such as mepolizumab. It is unknown if ICS adherence changes on, or alters clinical response to, biologic therapy.

Methods

We examined ICS adherence and clinical outcomes in OCS-dependent severe eosinophilic asthma patients who completed 1 year of mepolizumab therapy. The ICS medicines possession ratio (MPR) was calculated (the number of doses of ICS issued on prescription/expected number) for the year before and the year after biologic initiation. Good adherence was defined as MPR >0.75, intermediate 0.74–0.51 and poor <0.5. We examined outcomes after 12 months of biologic therapy, including OCS reduction and annualised exacerbation rate (AER), stratified by adherence to ICS on mepolizumab.

Results

Out of 109 patients commencing mepolizumab, 91 who had completed 12 months of treatment were included in the final analysis. While receiving mepolizumab, 68% had good ICS adherence, with 16 (18%) having poor ICS adherence. ICS use within the cohort remained similar before (MPR 0.81±0.32) and during mepolizumab treatment (0.82±0.32; p=0.78). Patients with good adherence had greater reductions in OCS dose (median (interquartile range) OCS reduction 100 (74–100)% versus 60 (27–100)%; p=0.031) and exacerbations (AER change –2.1±3.1 versus 0.3±2.5; p=0.011) than those with poor adherence. Good ICS adherence predicted the likelihood of stopping maintenance OCS (adjusted OR 3.19, 95% CI 1.02–9.94; p=0.045).

Conclusion

ICS nonadherence is common in severe eosinophilic asthma patients receiving mepolizumab, and is associated with a lesser reduction in OCS requirements and AER.




era

Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin

The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7].




era

Parental Considerations Regarding Cure and Late Effects for Children With Cancer

BACKGROUND:

More than 80% of children with cancer become long-term survivors, yet most survivors experience late effects of treatment. Little is known about how parents and physicians consider late-effects risks against a potential survival benefit when making treatment decisions.

METHODS:

We used a discrete choice experiment to assess the importance of late effects on treatment decision-making and acceptable trade-offs between late-effects risks and survival benefit. We surveyed 95 parents of children with cancer and 41 physicians at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center to assess preferences for 5 late effects of treatment: neurocognitive impairment, infertility, cardiac toxicity, second malignancies, and impaired growth and development.

RESULTS:

Each late effect had a statistically significant association with treatment choice, as did survival benefit (P < .001). Avoidance of severe cognitive impairment was the most important treatment consideration to parents and physicians. Parents also valued cure and decreased risk of second malignancies; physician decision-making was driven by avoidance of second malignancies and infertility. Both parents and physicians accepted a high risk of infertility (parents, a 137% increased risk; physicians, an 80% increased risk) in exchange for a 10% greater chance of cure.

CONCLUSIONS:

Avoidance of severe neurocognitive impairment was the predominant driver of parent and physician treatment preferences, even over an increased chance of cure. This highlights the importance of exploring parental late-effects priorities when discussing treatment options.




era

ACA Medicaid Expansion and Insurance Coverage Among New Mothers Living in Poverty

BACKGROUND:

Medicaid plays a critical role during the perinatal period, but pregnancy-related Medicaid eligibility only extends for 60 days post partum. In 2014, the Affordable Care Act’s (ACA’s) Medicaid expansions increased adult Medicaid eligibility to 138% of the federal poverty level in participating states, allowing eligible new mothers to remain covered after pregnancy-related coverage expires. We investigate the impact of ACA Medicaid expansions on insurance coverage among new mothers living in poverty.

METHODS:

We define new mothers living in poverty as women ages 19 to 44 with incomes below the federal poverty level who report giving birth in the past 12 months. We use 2010–2017 American Community Survey data and a difference-in-differences approach using parental Medicaid-eligibility thresholds to estimate the effect of ACA Medicaid expansions on insurance coverage among poor new mothers.

RESULTS:

A 100-percentage-point increase in parental Medicaid-eligibility is associated with an 8.8-percentage-point decrease (P < .001) in uninsurance, a 13.2-percentage-point increase (P < .001) in Medicaid coverage, and a 4.4-percentage-point decrease in private or other coverage (P = .001) among poor new mothers. The average increase in Medicaid eligibility is associated with a 28% decrease in uninsurance, a 13% increase in Medicaid coverage, and an 18% decline in private or other insurance among poor new mothers in expansion states. However, in 2017, there were ~142 000 remaining uninsured, poor new mothers.

CONCLUSIONS:

ACA Medicaid expansions are associated with increased Medicaid coverage and reduced uninsurance among poor new mothers. Opportunities remain for expansion and nonexpansion states to increase insurance coverage among new mothers living in poverty.




era

Topoisomerases Modulate the Timing of Meiotic DNA Breakage and Chromosome Morphogenesis in Saccharomyces cerevisiae [Genome Integrity and Transmission]

During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae. We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1. Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination.




era

Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT]

Key Points

  • E4 is an enhancer element that regulates transcriptions of TCR genes.

  • E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs.

  • Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs.




    era

    Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant [Bacterial Infections]

    Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer’s disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069cap) through allelic exchange following natural transformation. HS069cap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069cap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069cap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.




    era

    The Paralogous Transcription Factors Stp1 and Stp2 of Candida albicans Have Distinct Functions in Nutrient Acquisition and Host Interaction [Molecular Pathogenesis]

    Nutrient acquisition is a central challenge for all organisms. For the fungal pathogen Candida albicans, utilization of amino acids has been shown to be critical for survival, immune evasion, and escape, while the importance of catabolism of host-derived proteins and peptides in vivo is less well understood. Stp1 and Stp2 are paralogous transcription factors (TFs) regulated by the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing system and have been proposed to have distinct, if uncertain, roles in protein and amino acid utilization. We show here that Stp1 is required for proper utilization of peptides but has no effect on amino acid catabolism. In contrast, Stp2 is critical for utilization of both carbon sources. Commensurate with this observation, we found that Stp1 controls a very limited set of genes, while Stp2 has a much more extensive regulon that is partly dependent on the Ssy1 amino acid sensor (amino acid uptake and catabolism) and partly Ssy1 independent (genes associated with filamentous growth, including the regulators UME6 and SFL2). The ssy1/ and stp2/ mutants showed reduced fitness in a gastrointestinal (GI) colonization model, yet induced greater damage to epithelial cells and macrophages in a manner that was highly dependent on the growth status of the fungal cells. Surprisingly, the stp1/ mutant was better able to colonize the gut but the mutation had no effect on host cell damage. Thus, proper protein and amino acid utilization are both required for normal host interaction and are controlled by an interrelated network that includes Stp1 and Stp2.




    era

    De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host.




    era

    A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription [Bacterial Infections]

    Antimicrobial peptides play an important role in host defense against Vibrio cholerae. Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carRr and carRs alleles, respectively, and replaced the carRs allele of a sensitive strain with the carRr allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains.




    era

    GABARAPL2 Is Critical for Growth Restriction of Toxoplasma gondii in HeLa Cells Treated with Gamma Interferon [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    Gamma interferon (IFN-)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN- stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that -aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN--treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN- -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN--dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response.




    era

    Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte

    Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression.




    era

    Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa.




    era

    Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins.