on The moduli of non-differentiability for Gaussian random fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Wensheng Wang, Zhonggen Su, Yimin Xiao. Source: Bernoulli, Volume 26, Number 2, 1410--1430.Abstract: We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes. Full Article
on Stratonovich stochastic differential equation with irregular coefficients: Girsanov’s example revisited By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ilya Pavlyukevich, Georgiy Shevchenko. Source: Bernoulli, Volume 26, Number 2, 1381--1409.Abstract: In this paper, we study the Stratonovich stochastic differential equation $mathrm{d}X=|X|^{alpha }circ mathrm{d}B$, $alpha in (-1,1)$, which has been introduced by Cherstvy et al. ( New J. Phys. 15 (2013) 083039) in the context of analysis of anomalous diffusions in heterogeneous media. We determine its weak and strong solutions, which are homogeneous strong Markov processes spending zero time at $0$: for $alpha in (0,1)$, these solutions have the form egin{equation*}X_{t}^{ heta }=((1-alpha)B_{t}^{ heta })^{1/(1-alpha )},end{equation*} where $B^{ heta }$ is the $ heta $-skew Brownian motion driven by $B$ and starting at $frac{1}{1-alpha }(X_{0})^{1-alpha }$, $ heta in [-1,1]$, and $(x)^{gamma }=|x|^{gamma }operatorname{sign}x$; for $alpha in (-1,0]$, only the case $ heta =0$ is possible. The central part of the paper consists in the proof of the existence of a quadratic covariation $[f(B^{ heta }),B]$ for a locally square integrable function $f$ and is based on the time-reversion technique for Markovian diffusions. Full Article
on On stability of traveling wave solutions for integro-differential equations related to branching Markov processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Pasha Tkachov. Source: Bernoulli, Volume 26, Number 2, 1354--1380.Abstract: The aim of this paper is to prove stability of traveling waves for integro-differential equations connected with branching Markov processes. In other words, the limiting law of the left-most particle of a (time-continuous) branching Markov process with a Lévy non-branching part is demonstrated. The key idea is to approximate the branching Markov process by a branching random walk and apply the result of Aïdékon [ Ann. Probab. 41 (2013) 1362–1426] on the limiting law of the latter one. Full Article
on A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Denis Talay, Milica Tomašević. Source: Bernoulli, Volume 26, Number 2, 1323--1353.Abstract: In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model. Full Article
on Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Emanuele Dolera, Stefano Favaro. Source: Bernoulli, Volume 26, Number 2, 1294--1322.Abstract: Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem. Full Article
on Strictly weak consensus in the uniform compass model on $mathbb{Z}$ By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Nina Gantert, Markus Heydenreich, Timo Hirscher. Source: Bernoulli, Volume 26, Number 2, 1269--1293.Abstract: We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus. Full Article
on Dynamic linear discriminant analysis in high dimensional space By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Binyan Jiang, Ziqi Chen, Chenlei Leng. Source: Bernoulli, Volume 26, Number 2, 1234--1268.Abstract: High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset. Full Article
on Consistent structure estimation of exponential-family random graph models with block structure By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Schweinberger. Source: Bernoulli, Volume 26, Number 2, 1205--1233.Abstract: We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis. Full Article
on Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Yating Liu, Gilles Pagès. Source: Bernoulli, Volume 26, Number 2, 1171--1204.Abstract: We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper. Full Article
on Robust regression via mutivariate regression depth By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Chao Gao. Source: Bernoulli, Volume 26, Number 2, 1139--1170.Abstract: This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression. Full Article
on Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti. Source: Bernoulli, Volume 26, Number 2, 1098--1138.Abstract: This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019). Full Article
on A Bayesian nonparametric approach to log-concave density estimation By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ester Mariucci, Kolyan Ray, Botond Szabó. Source: Bernoulli, Volume 26, Number 2, 1070--1097.Abstract: The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations. Full Article
on A unified principled framework for resampling based on pseudo-populations: Asymptotic theory By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Pier Luigi Conti, Daniela Marella, Fulvia Mecatti, Federico Andreis. Source: Bernoulli, Volume 26, Number 2, 1044--1069.Abstract: In this paper, a class of resampling techniques for finite populations under $pi $ps sampling design is introduced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory are provided. New approaches to construct pseudo populations based on various forms of calibrations are proposed. Finally, a simulation study is performed. Full Article
on Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Sumit Mukherjee. Source: Bernoulli, Volume 26, Number 2, 1016--1043.Abstract: A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why statistics such as alternating $k$-star are non-degenerate, whereas subgraph counts are degenerate. It is further shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-degenerate Exponential Random Graph Models. Full Article
on Stable processes conditioned to hit an interval continuously from the outside By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Leif Döring, Philip Weissmann. Source: Bernoulli, Volume 26, Number 2, 980--1015.Abstract: Conditioning stable Lévy processes on zero probability events recently became a tractable subject since several explicit formulas emerged from a deep analysis using the Lamperti transformations for self-similar Markov processes. In this article, we derive new harmonic functions and use them to explain how to condition stable processes to hit continuously a compact interval from the outside. Full Article
on The maximal degree in a Poisson–Delaunay graph By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Gilles Bonnet, Nicolas Chenavier. Source: Bernoulli, Volume 26, Number 2, 948--979.Abstract: We investigate the maximal degree in a Poisson–Delaunay graph in $mathbf{R}^{d}$, $dgeq 2$, over all nodes in the window $mathbf{W}_{ ho }:= ho^{1/d}[0,1]^{d}$ as $ ho $ goes to infinity. The exact order of this maximum is provided in any dimension. In the particular setting $d=2$, we show that this quantity is concentrated on two consecutive integers with high probability. A weaker version of this result is discussed when $dgeq 3$. Full Article
on Distances and large deviations in the spatial preferential attachment model By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Christian Hirsch, Christian Mönch. Source: Bernoulli, Volume 26, Number 2, 927--947.Abstract: This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express the rate function as solution to an entropy minimisation problem in the space of stationary marked point processes. Full Article
on Convergence of the age structure of general schemes of population processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner. Source: Bernoulli, Volume 26, Number 2, 893--926.Abstract: We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation. Full Article
on Recurrence of multidimensional persistent random walks. Fourier and series criteria By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Peggy Cénac, Basile de Loynes, Yoann Offret, Arnaud Rousselle. Source: Bernoulli, Volume 26, Number 2, 858--892.Abstract: The recurrence and transience of persistent random walks built from variable length Markov chains are investigated. It turns out that these stochastic processes can be seen as Lévy walks for which the persistence times depend on some internal Markov chain: they admit Markov random walk skeletons. A recurrence versus transience dichotomy is highlighted. Assuming the positive recurrence of the driving chain, a sufficient Fourier criterion for the recurrence, close to the usual Chung–Fuchs one, is given and a series criterion is derived. The key tool is the Nagaev–Guivarc’h method. Finally, we focus on particular two-dimensional persistent random walks, including directionally reinforced random walks, for which necessary and sufficient Fourier and series criteria are obtained. Inspired by ( Adv. Math. 208 (2007) 680–698), we produce a genuine counterexample to the conjecture of ( Adv. Math. 117 (1996) 239–252). As for the one-dimensional case studied in ( J. Theoret. Probab. 31 (2018) 232–243), it is easier for a persistent random walk than its skeleton to be recurrent. However, such examples are much more difficult to exhibit in the higher dimensional context. These results are based on a surprisingly novel – to our knowledge – upper bound for the Lévy concentration function associated with symmetric distributions. Full Article
on Robust estimation of mixing measures in finite mixture models By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Nhat Ho, XuanLong Nguyen, Ya’acov Ritov. Source: Bernoulli, Volume 26, Number 2, 828--857.Abstract: In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data. Full Article
on Stochastic differential equations with a fractionally filtered delay: A semimartingale model for long-range dependent processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Richard A. Davis, Mikkel Slot Nielsen, Victor Rohde. Source: Bernoulli, Volume 26, Number 2, 799--827.Abstract: In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which is based on the linear stochastic delay differential equation and produces stationary processes with hyperbolically decaying autocovariance functions. The model departs from the usual way of incorporating this type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter to the drift term rather than to the noise term. The advantages of this approach are that the corresponding long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider the task of simulating from the defining SFDDEs. Full Article
on Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Jing Lei. Source: Bernoulli, Volume 26, Number 1, 767--798.Abstract: We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions. Full Article
on Robust modifications of U-statistics and applications to covariance estimation problems By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stanislav Minsker, Xiaohan Wei. Source: Bernoulli, Volume 26, Number 1, 694--727.Abstract: Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions. Full Article
on A unified approach to coupling SDEs driven by Lévy noise and some applications By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Mingjie Liang, René L. Schilling, Jian Wang. Source: Bernoulli, Volume 26, Number 1, 664--693.Abstract: We present a general method to construct couplings of stochastic differential equations driven by Lévy noise in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling which are often discussed in the literature. As applications, we prove regularity results for the transition semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by additive Lévy noise. Full Article
on On frequentist coverage errors of Bayesian credible sets in moderately high dimensions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Keisuke Yano, Kengo Kato. Source: Bernoulli, Volume 26, Number 1, 616--641.Abstract: In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory. Full Article
on Normal approximation for sums of weighted $U$-statistics – application to Kolmogorov bounds in random subgraph counting By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Nicolas Privault, Grzegorz Serafin. Source: Bernoulli, Volume 26, Number 1, 587--615.Abstract: We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals and weighted $U$-statistics made of independent Bernoulli random variables. Such bounds are applied to normal approximation for the renormalized subgraph counts in the Erdős–Rényi random graph. This approach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while recovering recent results obtained for triangles and improving other bounds in the Wasserstein distance. Full Article
on Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
on Operator-scaling Gaussian random fields via aggregation By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Yi Shen, Yizao Wang. Source: Bernoulli, Volume 26, Number 1, 500--530.Abstract: We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-sum random fields. In this model, each copy in the aggregation is a $pm 1$-valued random field built from two correlated one-dimensional random walks, the law of each determined by a random persistence parameter. A flexible joint distribution of the two parameters is introduced, and given the parameters the two correlated random walks are conditionally independent. For the aggregated random field, when the persistence parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence parameters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit is more delicate, and in particular depends on the growth rates of the underlying rectangular region along two directions: at different rates different operator-scaling Gaussian random fields appear as the region area tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where fractional Brownian sheets arise in the limit. Full Article
on Multivariate count autoregression By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan. Source: Bernoulli, Volume 26, Number 1, 471--499.Abstract: We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example. Full Article
on Subspace perspective on canonical correlation analysis: Dimension reduction and minimax rates By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Zhuang Ma, Xiaodong Li. Source: Bernoulli, Volume 26, Number 1, 432--470.Abstract: Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by the recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose two losses based on the principal angles between the model spaces spanned by the sample canonical variates and their population correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation risks under the proposed error metrics, which reveal how the performance of sample CCA depends adaptively on key quantities including the dimensions, the sample size, the condition number of the covariance matrices and particularly the population canonical correlation coefficients. The optimality of our uniform upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces. To the best of our knowledge, for the first time our paper separates $p_{1}$ and $p_{2}$ for the first order term in the upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives $(1-lambda_{k}^{2})(1-lambda_{k+1}^{2})/(lambda_{k}-lambda_{k+1})^{2}$ for the first time in the non-asymptotic CCA estimation convergence rates, which is essential to understand the behavior of CCA when the leading canonical correlation coefficients are close to $1$. Full Article
on Construction results for strong orthogonal arrays of strength three By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Chenlu Shi, Boxin Tang. Source: Bernoulli, Volume 26, Number 1, 418--431.Abstract: Strong orthogonal arrays were recently introduced as a class of space-filling designs for computer experiments. The most attractive are those of strength three for their economical run sizes. Although the existence of strong orthogonal arrays of strength three has been completely characterized, the construction of these arrays has not been explored. In this paper, we provide a systematic and comprehensive study on the construction of these arrays, with the aim at better space-filling properties. Besides various characterizing results, three families of strength-three strong orthogonal arrays are presented. One of these families deserves special mention, as the arrays in this family enjoy almost all of the space-filling properties of strength-four strong orthogonal arrays, and do so with much more economical run sizes than the latter. The theory of maximal designs and their doubling constructions plays a crucial role in many of theoretical developments. Full Article
on High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
on SPDEs with fractional noise in space: Continuity in law with respect to the Hurst index By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Luca M. Giordano, Maria Jolis, Lluís Quer-Sardanyons. Source: Bernoulli, Volume 26, Number 1, 352--386.Abstract: In this article, we consider the quasi-linear stochastic wave and heat equations on the real line and with an additive Gaussian noise which is white in time and behaves in space like a fractional Brownian motion with Hurst index $Hin (0,1)$. The drift term is assumed to be globally Lipschitz. We prove that the solution of each of the above equations is continuous in terms of the index $H$, with respect to the convergence in law in the space of continuous functions. Full Article
on Weak convergence of quantile and expectile processes under general assumptions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Tobias Zwingmann, Hajo Holzmann. Source: Bernoulli, Volume 26, Number 1, 323--351.Abstract: We show weak convergence of quantile and expectile processes to Gaussian limit processes in the space of bounded functions endowed with an appropriate semimetric which is based on the concepts of epi- and hypo- convergence as introduced in A. Bücher, J. Segers and S. Volgushev (2014), ‘ When Uniform Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hypographs ’, Annals of Statistics 42 . We impose assumptions for which it is known that weak convergence with respect to the supremum norm generally fails to hold. For quantiles, we consider stationary observations, where the marginal distribution function is assumed to be strictly increasing and continuous except for finitely many points and to admit strictly positive – possibly infinite – left- and right-sided derivatives. For expectiles, we focus on independent and identically distributed (i.i.d.) observations. Only a finite second moment and continuity at the boundary points but no further smoothness properties of the distribution function are required. We also show consistency of the bootstrap for this mode of convergence in the i.i.d. case for quantiles and expectiles. Full Article
on Prediction and estimation consistency of sparse multi-class penalized optimal scoring By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Irina Gaynanova. Source: Bernoulli, Volume 26, Number 1, 286--322.Abstract: Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes. Full Article
on Estimation of the linear fractional stable motion By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stepan Mazur, Dmitry Otryakhin, Mark Podolskij. Source: Bernoulli, Volume 26, Number 1, 226--252.Abstract: In this paper, we investigate the parametric inference for the linear fractional stable motion in high and low frequency setting. The symmetric linear fractional stable motion is a three-parameter family, which constitutes a natural non-Gaussian analogue of the scaled fractional Brownian motion. It is fully characterised by the scaling parameter $sigma>0$, the self-similarity parameter $Hin(0,1)$ and the stability index $alphain(0,2)$ of the driving stable motion. The parametric estimation of the model is inspired by the limit theory for stationary increments Lévy moving average processes that has been recently studied in ( Ann. Probab. 45 (2017) 4477–4528). More specifically, we combine (negative) power variation statistics and empirical characteristic functions to obtain consistent estimates of $(sigma,alpha,H)$. We present the law of large numbers and some fully feasible weak limit theorems. Full Article
on Needles and straw in a haystack: Robust confidence for possibly sparse sequences By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eduard Belitser, Nurzhan Nurushev. Source: Bernoulli, Volume 26, Number 1, 191--225.Abstract: In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results. Full Article
on A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Michael V. Boutsikas, Eutichia VaggelatouSource: Bernoulli, Volume 16, Number 2, 301--330.Abstract: Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration. Full Article
on English given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- England. Full Article
on The Thomson family : fisherman in Buckhaven, retailers in Kapunda / compiled by Elizabeth Anne Howell. By www.catalog.slsa.sa.gov.au Published On :: Thomson (Family) Full Article
on Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
on High on the hill : the people of St Philip & St James Church, Old Noarlunga / City of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
on From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown. By www.catalog.slsa.sa.gov.au Published On :: Hewish Henry -- Family. Full Article
on With a bottle of whisky in my hand : the family of James Grant and Isabella Masson / by Carolyn Cowgill. By www.catalog.slsa.sa.gov.au Published On :: Grant (Family) Full Article
on The Yangya Hicks : tales from the Hicks family of Yangya near Gladstone, South Australia, written from the 12th of May 1998 / by Joyce Coralie Hale (nee Hicks) (28.12.1923-17.12.2003). By www.catalog.slsa.sa.gov.au Published On :: Hicks (Family) Full Article
on High on the hill : the people of St Philip & St James Church, Old Noarlunga%cCity of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
on Gordon of Huntly : heraldic heritage : cadets to South Australia / Robin Gregory Gordon. By www.catalog.slsa.sa.gov.au Published On :: South Australia -- Genealogy. Full Article
on The Klemm family : descendants of Johann Gottfried Klemm and Anna Louise Klemm : these forebears are honoured and remembered at a reunion at Gruenberg, Moculta 11th-12th March 1995. By www.catalog.slsa.sa.gov.au Published On :: Klemm (Family) Full Article
on The story of Thomas & Ann Stone family : including Helping Hobart's Orphans, the King's Orphan School for Boys 1831-1836 / Alexander E.H. Stone. By www.catalog.slsa.sa.gov.au Published On :: King's Orphan Schools (New Town, Tas.) Full Article
on Discover Protestant nonconformity in England and Wales / Paul Blake. By www.catalog.slsa.sa.gov.au Published On :: Dissenters, Religious -- Great Britain. Full Article