on An approximate likelihood perspective on ABC methods By projecteuclid.org Published On :: Fri, 08 Jun 2018 22:03 EDT George Karabatsos, Fabrizio Leisen. Source: Statistics Surveys, Volume 12, 66--104.Abstract: We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined. Full Article
on Variable selection methods for model-based clustering By projecteuclid.org Published On :: Thu, 26 Apr 2018 04:00 EDT Michael Fop, Thomas Brendan Murphy. Source: Statistics Surveys, Volume 12, 18--65.Abstract: Model-based clustering is a popular approach for clustering multivariate data which has seen applications in numerous fields. Nowadays, high-dimensional data are more and more common and the model-based clustering approach has adapted to deal with the increasing dimensionality. In particular, the development of variable selection techniques has received a lot of attention and research effort in recent years. Even for small size problems, variable selection has been advocated to facilitate the interpretation of the clustering results. This review provides a summary of the methods developed for variable selection in model-based clustering. Existing R packages implementing the different methods are indicated and illustrated in application to two data analysis examples. Full Article
on A design-sensitive approach to fitting regression models with complex survey data By projecteuclid.org Published On :: Wed, 17 Jan 2018 04:00 EST Phillip S. Kott. Source: Statistics Surveys, Volume 12, 1--17.Abstract: Fitting complex survey data to regression equations is explored under a design-sensitive model-based framework. A robust version of the standard model assumes that the expected value of the difference between the dependent variable and its model-based prediction is zero no matter what the values of the explanatory variables. The extended model assumes only that the difference is uncorrelated with the covariates. Little is assumed about the error structure of this difference under either model other than independence across primary sampling units. The standard model often fails in practice, but the extended model very rarely does. Under this framework some of the methods developed in the conventional design-based, pseudo-maximum-likelihood framework, such as fitting weighted estimating equations and sandwich mean-squared-error estimation, are retained but their interpretations change. Few of the ideas here are new to the refereed literature. The goal instead is to collect those ideas and put them into a unified conceptual framework. Full Article
on Basic models and questions in statistical network analysis By projecteuclid.org Published On :: Thu, 07 Sep 2017 22:02 EDT Miklós Z. Rácz, Sébastien Bubeck. Source: Statistics Surveys, Volume 11, 1--47.Abstract: Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as Pólya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more. Full Article
on Measuring multivariate association and beyond By projecteuclid.org Published On :: Wed, 16 Nov 2016 22:00 EST Julie Josse, Susan Holmes. Source: Statistics Surveys, Volume 10, 132--167.Abstract: Simple correlation coefficients between two variables have been generalized to measure association between two matrices in many ways. Coefficients such as the RV coefficient, the distance covariance (dCov) coefficient and kernel based coefficients are being used by different research communities. Scientists use these coefficients to test whether two random vectors are linked. Once it has been ascertained that there is such association through testing, then a next step, often ignored, is to explore and uncover the association’s underlying patterns. This article provides a survey of various measures of dependence between random vectors and tests of independence and emphasizes the connections and differences between the various approaches. After providing definitions of the coefficients and associated tests, we present the recent improvements that enhance their statistical properties and ease of interpretation. We summarize multi-table approaches and provide scenarii where the indices can provide useful summaries of heterogeneous multi-block data. We illustrate these different strategies on several examples of real data and suggest directions for future research. Full Article
on A comparison of spatial predictors when datasets could be very large By projecteuclid.org Published On :: Tue, 19 Jul 2016 14:13 EDT Jonathan R. Bradley, Noel Cressie, Tao Shi. Source: Statistics Surveys, Volume 10, 100--131.Abstract: In this article, we review and compare a number of methods of spatial prediction, where each method is viewed as an algorithm that processes spatial data. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, fixed rank kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $mathrm{CO}_{2}$ data from NASA’s AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data. Full Article
on Fundamentals of cone regression By projecteuclid.org Published On :: Thu, 19 May 2016 09:04 EDT Mariella Dimiccoli. Source: Statistics Surveys, Volume 10, 53--99.Abstract: Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution. Full Article
on A survey of bootstrap methods in finite population sampling By projecteuclid.org Published On :: Tue, 15 Mar 2016 09:17 EDT Zeinab Mashreghi, David Haziza, Christian Léger. Source: Statistics Surveys, Volume 10, 1--52.Abstract: We review bootstrap methods in the context of survey data where the effect of the sampling design on the variability of estimators has to be taken into account. We present the methods in a unified way by classifying them in three classes: pseudo-population, direct, and survey weights methods. We cover variance estimation and the construction of confidence intervals for stratified simple random sampling as well as some unequal probability sampling designs. We also address the problem of variance estimation in presence of imputation to compensate for item non-response. Full Article
on A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection By projecteuclid.org Published On :: Tue, 19 Jan 2016 09:04 EST Clément Marteau, Theofanis Sapatinas. Source: Statistics Surveys, Volume 9, 253--297.Abstract: We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches. Full Article
on Some models and methods for the analysis of observational data By projecteuclid.org Published On :: Tue, 15 Sep 2015 20:40 EDT José A. Ferreira. Source: Statistics Surveys, Volume 9, 106--208.Abstract: This article provides a concise and essentially self-contained exposition of some of the most important models and non-parametric methods for the analysis of observational data, and a substantial number of illustrations of their application. Although for the most part our presentation follows P. Rosenbaum’s book, “Observational Studies”, and naturally draws on related literature, it contains original elements and simplifies and generalizes some basic results. The illustrations, based on simulated data, show the methods at work in some detail, highlighting pitfalls and emphasizing certain subjective aspects of the statistical analyses. Full Article
on $M$-functionals of multivariate scatter By projecteuclid.org Published On :: Fri, 20 Mar 2015 09:11 EDT Lutz Dümbgen, Markus Pauly, Thomas Schweizer. Source: Statistics Surveys, Volume 9, 32--105.Abstract: This survey provides a self-contained account of $M$-estimation of multivariate scatter. In particular, we present new proofs for existence of the underlying $M$-functionals and discuss their weak continuity and differentiability. This is done in a rather general framework with matrix-valued random variables. By doing so we reveal a connection between Tyler’s (1987a) $M$-functional of scatter and the estimation of proportional covariance matrices. Moreover, this general framework allows us to treat a new class of scatter estimators, based on symmetrizations of arbitrary order. Finally these results are applied to $M$-estimation of multivariate location and scatter via multivariate $t$-distributions. Full Article
on Semi-parametric estimation for conditional independence multivariate finite mixture models By projecteuclid.org Published On :: Fri, 06 Feb 2015 08:39 EST Didier Chauveau, David R. Hunter, Michael Levine. Source: Statistics Surveys, Volume 9, 1--31.Abstract: The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets. Full Article
on Log-concavity and strong log-concavity: A review By projecteuclid.org Published On :: Tue, 09 Dec 2014 09:09 EST Adrien Saumard, Jon A. Wellner. Source: Statistics Surveys, Volume 8, 45--114.Abstract: We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strong log-concavity on $mathbb{R}$ under convolution follows from a fundamental monotonicity result of Efron (1965). We provide a new proof of Efron’s theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning. Full Article
on Errata: A survey of Bayesian predictive methods for model assessment, selection and comparison By projecteuclid.org Published On :: Wed, 26 Feb 2014 09:10 EST Aki Vehtari, Janne Ojanen. Source: Statistics Surveys, Volume 8, , 1--1.Abstract: Errata for “A survey of Bayesian predictive methods for model assessment, selection and comparison” by A. Vehtari and J. Ojanen, Statistics Surveys , 6 (2012), 142–228. doi:10.1214/12-SS102. Full Article
on Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain By projecteuclid.org Published On :: Mon, 28 Oct 2013 09:06 EDT Sean L. Simpson, F. DuBois Bowman, Paul J. LaurientiSource: Statist. Surv., Volume 7, 1--36.Abstract: Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. Full Article
on A survey of Bayesian predictive methods for model assessment, selection and comparison By projecteuclid.org Published On :: Thu, 27 Dec 2012 12:22 EST Aki Vehtari, Janne OjanenSource: Statist. Surv., Volume 6, 142--228.Abstract: To date, several methods exist in the statistical literature for model assessment, which purport themselves specifically as Bayesian predictive methods. The decision theoretic assumptions on which these methods are based are not always clearly stated in the original articles, however. The aim of this survey is to provide a unified review of Bayesian predictive model assessment and selection methods, and of methods closely related to them. We review the various assumptions that are made in this context and discuss the connections between different approaches, with an emphasis on how each method approximates the expected utility of using a Bayesian model for the purpose of predicting future data. Full Article
on The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy By projecteuclid.org Published On :: Tue, 16 Oct 2012 09:36 EDT Nancy HeckmanSource: Statist. Surv., Volume 6, 113--141.Abstract: The popular cubic smoothing spline estimate of a regression function arises as the minimizer of the penalized sum of squares $sum_{j}(Y_{j}-mu(t_{j}))^{2}+lambda int_{a}^{b}[mu''(t)]^{2},dt$, where the data are $t_{j},Y_{j}$, $j=1,ldots,n$. The minimization is taken over an infinite-dimensional function space, the space of all functions with square integrable second derivatives. But the calculations can be carried out in a finite-dimensional space. The reduction from minimizing over an infinite dimensional space to minimizing over a finite dimensional space occurs for more general objective functions: the data may be related to the function $mu$ in another way, the sum of squares may be replaced by a more suitable expression, or the penalty, $int_{a}^{b}[mu''(t)]^{2},dt$, might take a different form. This paper reviews the Reproducing Kernel Hilbert Space structure that provides a finite-dimensional solution for a general minimization problem. Particular attention is paid to the construction and study of the Reproducing Kernel Hilbert Space corresponding to a penalty based on a linear differential operator. In this case, one can often calculate the minimizer explicitly, using Green’s functions. Full Article
on Prediction in several conventional contexts By projecteuclid.org Published On :: Tue, 08 May 2012 08:50 EDT Bertrand Clarke, Jennifer ClarkeSource: Statist. Surv., Volume 6, 1--73.Abstract: We review predictive techniques from several traditional branches of statistics. Starting with prediction based on the normal model and on the empirical distribution function, we proceed to techniques for various forms of regression and classification. Then, we turn to time series, longitudinal data, and survival analysis. Our focus throughout is on the mechanics of prediction more than on the properties of predictors. Full Article
on Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
on Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy By projecteuclid.org Published On :: Fri, 04 Feb 2011 09:16 EST Gregory J. Matthews, Ofer HarelSource: Statist. Surv., Volume 5, 1--29.Abstract: There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure. References:Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217. Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.General Assembly of the United Nations, 1948. Universal declaration of human rights.Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077. Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196. Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462. Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588. Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422. Full Article
on Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview By projecteuclid.org Published On :: Fri, 12 Nov 2010 11:39 EST A. Philip Dawid, Vanessa DidelezSource: Statist. Surv., Volume 4, 184--231.Abstract: We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘ G -computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability , which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality. References:Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 31 171–187.Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics 6. http://tinyurl.com/33dfssfCowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society, Series B 41 1–31.Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2 25–36.Dawid, A. P. (1998). Conditional independence. In Encyclopedia of Statistical Science ({U}pdate Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146–155. Wiley-Interscience, New York.Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 95 407–448.Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence 32 335–372.Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International Statistical Review 70 161–189. Corrigenda, ibid ., 437.Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford University Press.Dawid, A. P. (2010). Beware of the DAG! In Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59–86. http://tinyurl.com/33va7tmDawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon. http://tinyurl.com/3899qppDechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia. http://tinyurl.com/32w3f4eDidelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling. Statistical Science (to appear).Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In Causality and Probability in the Sciences, ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263–292. College Publications, London.Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series. Lifetime Data Analysis 16 3–32.Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York, London.Geneletti, S. G. (2007). Identifying direct and indirect effects in a non–counterfactual framework. Journal of the Royal Statistical Society: Series B 69 199–215.Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear).Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29 1785–1811.Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281–288. http://tinyurl.com/33lmuj7Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.xHernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions. International Journal of Obesity 32 S8–S14.Holland, P. W. (1986). Statistics and causal inference (with Discussion). Journal of the American Statistical Association 81 945–970.Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149–1154. AAAI Press.Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22 523–539.Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks 20 491–505.Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. Statistica Neerlandica 58 271–295.Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. Biometrics 63 447–455.Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion). Journal of the Royal Statistical Society, Series B 65 331-366.Oliver, R. M. and Smith, J. Q., eds. (1990). Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester, United Kingdom.Pearl, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika 82 669-710.Pearl, J. (2009). Causality: Models, Reasoning and Inference, Second ed. Cambridge University Press, Cambridge.Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357–363. North-Holland, Amsterdam.Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444–453. Morgan Kaufmann Publishers, San Francisco.Raiffa, H. (1968). Decision Analysis. Addison-Wesley, Reading, Massachusetts.Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7 1393–1512.Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect”. Computers & Mathematics with Applications 14 923–945.Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321–324.Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ( M. Berkane, ed.). Lecture Notes in Statistics 120 69–117. Springer-Verlag, New York.Robins, J. M. (1998). Structural nested failure time models. In Survival Analysis, ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372–4389. John Wiley and Sons, Chichester, UK.Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6–10.Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189–326. Springer, New York.Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 94 687–700.Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco. http://tinyurl.com/33ghsasRosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Statistics in Medicine 25 4197–4215.Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437–444. AUAI Press, Corvallis, Oregon. http://tinyurl.com/2um8w47Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, California.Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search, Second ed. Springer-Verlag, New York.Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies. Lancet 373 1352–1363.Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. International Journal of Epidemiology 38 1599–1611.Tian, J. (2008). Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554–561. AUAI Press, Corvallis, Oregon. http://tinyurl.com/36ufx2hVerma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69–76. North-Holland, Amsterdam. Full Article
on Primal and dual model representations in kernel-based learning By projecteuclid.org Published On :: Wed, 25 Aug 2010 10:28 EDT Johan A.K. Suykens, Carlos Alzate, Kristiaan PelckmansSource: Statist. Surv., Volume 4, 148--183.Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization. Full Article
on Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Sophie Achard, Jean-François CoeurjollySource: Statist. Surv., Volume 4, 117--147.Abstract: This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the R package dvfBm. Full Article
on A survey of cross-validation procedures for model selection By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Sylvain Arlot, Alain CelisseSource: Statist. Surv., Volume 4, 40--79.Abstract: Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its (apparent) universality. Many results exist on model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand. Full Article
on Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Michael P. Fay, Michael A. ProschanSource: Statist. Surv., Volume 4, 1--39.Abstract: In a mathematical approach to hypothesis tests, we start with a clearly defined set of hypotheses and choose the test with the best properties for those hypotheses. In practice, we often start with less precise hypotheses. For example, often a researcher wants to know which of two groups generally has the larger responses, and either a t-test or a Wilcoxon-Mann-Whitney (WMW) test could be acceptable. Although both t-tests and WMW tests are usually associated with quite different hypotheses, the decision rule and p-value from either test could be associated with many different sets of assumptions, which we call perspectives. It is useful to have many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value. Here we collect many such perspectives for the two-sample t-test, the WMW test and other related tests. We discuss validity and consistency under each perspective and discuss recommendations between the tests in light of these many different perspectives. Finally, we briefly discuss a decision rule for testing genetic neutrality where knowledge of the many perspectives is vital to the proper interpretation of the decision rule. Full Article
on Was one of your ancestors a whaler? By feedproxy.google.com Published On :: Mon, 31 Jul 2017 06:25:29 +0000 Whaling – along with wool production – was one of the first primary industries after the establishment of New South Wa Full Article
on Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis. (arXiv:2005.02535v1 [econ.EM] CROSS LISTED) By arxiv.org Published On :: Arctic sea ice extent (SIE) in September 2019 ranked second-to-lowest in history and is trending downward. The understanding of how internal variability amplifies the effects of external $ ext{CO}_2$ forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. Hence, the VARCTIC is a parsimonious compromise between fullblown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has SIE hitting 0 in September by the 2060s. Impulse response functions reveal that anthropogenic $ ext{CO}_2$ emission shocks have a permanent effect on SIE - a property shared by no other shock. Further, we find Albedo- and Thickness-based feedbacks to be the main amplification channels through which $ ext{CO}_2$ anomalies impact SIE in the short/medium run. Conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of $ ext{CO}_2$ emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050s. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0. Full Article
on Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED) By arxiv.org Published On :: Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification. Full Article
on Statistical errors in Monte Carlo-based inference for random elements. (arXiv:2005.02532v2 [math.ST] UPDATED) By arxiv.org Published On :: Monte Carlo simulation is useful to compute or estimate expected functionals of random elements if those random samples are possible to be generated from the true distribution. However, when the distribution has some unknown parameters, the samples must be generated from an estimated distribution with the parameters replaced by some estimators, which causes a statistical error in Monte Carlo estimation. This paper considers such a statistical error and investigates the asymptotic distributions of Monte Carlo-based estimators when the random elements are not only the real valued, but also functional valued random variables. We also investigate expected functionals for semimartingales in details. The consideration indicates that the Monte Carlo estimation can get worse when a semimartingale has a jump part with unremovable unknown parameters. Full Article
on Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED) By arxiv.org Published On :: Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets. Full Article
on How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED) By arxiv.org Published On :: We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes. Full Article
on Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. (arXiv:2005.00061v2 [stat.ML] UPDATED) By arxiv.org Published On :: Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems. Full Article
on A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED) By arxiv.org Published On :: In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature. Full Article
on A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED) By arxiv.org Published On :: Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Full Article
on On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED) By arxiv.org Published On :: In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones. Full Article
on Deep transfer learning for improving single-EEG arousal detection. (arXiv:2004.05111v2 [cs.CV] UPDATED) By arxiv.org Published On :: Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases. Full Article
on Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED) By arxiv.org Published On :: A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools. Full Article
on Mnemonics Training: Multi-Class Incremental Learning without Forgetting. (arXiv:2002.10211v3 [cs.CV] UPDATED) By arxiv.org Published On :: Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts. However, there is an inherent trade-off to effectively learning new concepts without catastrophic forgetting of previous ones. To alleviate this issue, it has been proposed to keep around a few examples of the previous concepts but the effectiveness of this approach heavily depends on the representativeness of these examples. This paper proposes a novel and automatic framework we call mnemonics, where we parameterize exemplars and make them optimizable in an end-to-end manner. We train the framework through bilevel optimizations, i.e., model-level and exemplar-level. We conduct extensive experiments on three MCIL benchmarks, CIFAR-100, ImageNet-Subset and ImageNet, and show that using mnemonics exemplars can surpass the state-of-the-art by a large margin. Interestingly and quite intriguingly, the mnemonics exemplars tend to be on the boundaries between different classes. Full Article
on A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED) By arxiv.org Published On :: Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance. Full Article
on On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED) By arxiv.org Published On :: Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods. Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied. Full Article
on Restricting the Flow: Information Bottlenecks for Attribution. (arXiv:2001.00396v3 [stat.ML] UPDATED) By arxiv.org Published On :: Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBA Full Article
on A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED) By arxiv.org Published On :: We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error. Full Article
on Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space. (arXiv:1912.02400v2 [cs.LG] UPDATED) By arxiv.org Published On :: We focus on the challenge of finding a diverse collection of quality solutions on complex continuous domains. While quality diver-sity (QD) algorithms like Novelty Search with Local Competition (NSLC) and MAP-Elites are designed to generate a diverse range of solutions, these algorithms require a large number of evaluations for exploration of continuous spaces. Meanwhile, variants of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are among the best-performing derivative-free optimizers in single-objective continuous domains. This paper proposes a new QD algorithm called Covariance Matrix Adaptation MAP-Elites (CMA-ME). Our new algorithm combines the self-adaptation techniques of CMA-ES with archiving and mapping techniques for maintaining diversity in QD. Results from experiments based on standard continuous optimization benchmarks show that CMA-ME finds better-quality solutions than MAP-Elites; similarly, results on the strategic game Hearthstone show that CMA-ME finds both a higher overall quality and broader diversity of strategies than both CMA-ES and MAP-Elites. Overall, CMA-ME more than doubles the performance of MAP-Elites using standard QD performance metrics. These results suggest that QD algorithms augmented by operators from state-of-the-art optimization algorithms can yield high-performing methods for simultaneously exploring and optimizing continuous search spaces, with significant applications to design, testing, and reinforcement learning among other domains. Full Article
on $V$-statistics and Variance Estimation. (arXiv:1912.01089v2 [stat.ML] UPDATED) By arxiv.org Published On :: This paper develops a general framework for analyzing asymptotics of $V$-statistics. Previous literature on limiting distribution mainly focuses on the cases when $n o infty$ with fixed kernel size $k$. Under some regularity conditions, we demonstrate asymptotic normality when $k$ grows with $n$ by utilizing existing results for $U$-statistics. The key in our approach lies in a mathematical reduction to $U$-statistics by designing an equivalent kernel for $V$-statistics. We also provide a unified treatment on variance estimation for both $U$- and $V$-statistics by observing connections to existing methods and proposing an empirically more accurate estimator. Ensemble methods such as random forests, where multiple base learners are trained and aggregated for prediction purposes, serve as a running example throughout the paper because they are a natural and flexible application of $V$-statistics. Full Article
on Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED) By arxiv.org Published On :: A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels. Full Article
on Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED) By arxiv.org Published On :: Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings. Full Article
on Differentiable Sparsification for Deep Neural Networks. (arXiv:1910.03201v2 [cs.LG] UPDATED) By arxiv.org Published On :: A deep neural network has relieved the burden of feature engineering by human experts, but comparable efforts are instead required to determine an effective architecture. On the other hands, as the size of a network has over-grown, a lot of resources are also invested to reduce its size. These problems can be addressed by sparsification of an over-complete model, which removes redundant parameters or connections by pruning them away after training or encouraging them to become zero during training. In general, however, these approaches are not fully differentiable and interrupt an end-to-end training process with the stochastic gradient descent in that they require either a parameter selection or a soft-thresholding step. In this paper, we propose a fully differentiable sparsification method for deep neural networks, which allows parameters to be exactly zero during training, and thus can learn the sparsified structure and the weights of networks simultaneously using the stochastic gradient descent. We apply the proposed method to various popular models in order to show its effectiveness. Full Article
on DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED) By arxiv.org Published On :: A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain. Full Article
on Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED) By arxiv.org Published On :: Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins. Full Article
on Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED) By arxiv.org Published On :: We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$. Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$. Full Article