f

Tool bar mounting assembly for an agricultural implement

A tool bar mounting assembly for an agricultural implement. One agricultural implement includes a first tool bar assembly having a tool bar and a plurality of row units coupled to the tool bar and configured to deliver flowable agricultural product to a field. The agricultural implement also includes a frame assembly coupled to the first tool bar assembly. The frame assembly includes a mounting assembly having a mechanical linkage. The mechanical linkage is configured to removably couple the first tool bar assembly to the frame assembly via a plurality of fasteners. The frame assembly is configured to provide structural support to the first tool bar assembly. The mechanical linkage of mounting assembly is configured to removably couple a second tool bar assembly having a different configuration than the first tool bar assembly to the frame assembly via the plurality of fasteners.




f

Soil deflector wing for furrow opener with replaceable winged tip body

A paired row opener has a furrowing tip arranged to be selectively supported on a body of the opener. The furrowing tip includes a knife portion and a pair of wing portions extending rearwardly and outwardly therefrom where are separable together from the opener body. A pair of deflector wings are integrally formed on the opener body above inner edges of the respective wing portions which are abutted with the opener body so as to deflect disturbed soil away from a seam between the inner edge of the wing portions and the opener body. An insulated mounting block is fastened onto a rear bracket of the opener body which receives an anhydrous ammonia delivery tube therethrough so permit optional delivery of anhydrous ammonia at a location which is insulated and spaced rearwardly from the opener body.




f

Independent suspension for closing discs of an agricultural row unit closing assembly

One closing assembly of a row unit for an agricultural implement includes a frame configured to support ground-working tools of the row unit. Multiple arms are coupled to the frame, each arm of the multiple arms being independently rotatable about a common axis. Each arm is configured to be coupled to a closing disc configured to direct soil into a trench.




f

Electric arc for aqueous fluid treatment

An aqueous fluid treatment method and system is provided which preferably uses a 3 step electro-chemical oxidation process to remove organic contaminates from water. A high surface area electro-chemical reaction cell can be employed to remove organic particles and precipitate hardness salts from the aqueous solution. Several 3-phase spark arcs generated mixed oxidants and acoustic cavitations to remove dissolved organic compounds and oxidize organic metal compounds in the next step. Finally, a dielectric discharge in aqueous foam is used to eliminate recalcitrant organic compounds such as, but not limited to, polychlorinated aromatics, disinfectants, pesticides, and pharmaceuticals before release to environment or recycled.




f

Apparatus and method for decontaminating and sterilizing chemical and biological agent

Disclosed are apparatus and method for decontaminating and sterilizing chemical and biological agents, which can efficiently decontaminate and sterilize high precision electronic devices, communication devices, computers or inside of vehicles and air planes contaminated with chemical and biological agent by using mixture of non-thermal atmospheric pressure air plasma and oxidizing peroxide vapor. The apparatus according to the present invention comprises a decontamination and sterilization chamber 10; a first fluid supplying line L1 and a second fluid supplying line L2, which are installed in the form of closed circuit between the inlet 11 and outlet 12 of the decontamination and sterilization chamber 10; a peroxide vapor supplier which is installed on the first fluid supplying line; and a non-thermal atmospheric pressure air plasma reactor 70 which is installed on the second fluid supplying line L2.




f

Electro-catalytic honeycomb for exhaust emissions control

An electro-catalytic honeycomb for controlling exhaust emissions, which adopts to purify a lean-burn exhaust, comprises a honeycomb structural body, a solid-oxide layer and a cathode layer. The honeycomb structural body includes an anode, a plurality of gas channels, and a shell. The anode is formed as a backbone, the gas channels are formed inside the backbone for passing the exhaust, and the shell covers an outer surface of the anode. The solid-oxide layer is adhered to an inner surface of the anode and connects the shell so as to encapsulate the anode. The cathode layer is adhered to a tube wall of the solid-oxide layer and has an oxidizing environment. The anode has a reducing environment. The reducing and the oxidizing environment facilitate an electromotive force to occur between the anode and the cathode layer to promote a decomposition of nitrogen oxides of the exhaust into nitrogen and oxygen.




f

Growth tube microchip electrophoresis system for monitoring of aerosol composition

This technology is a method and apparatus for the semi-continuous measurement of the concentration of constituents of airborne particles which couples a laminar flow, water condensation particle collector to a microfluidic device for assay of particle chemical composition by electrophoresis. The technology has been used for the assay of sulfates, nitrates, chlorides, and organic acids contained in fine and submicrometer atmospheric particles. For these compounds the apparatus and method described is capable of one-minute time resolution at concentrations at the level of micrograms of analyte species per cubic meter of air. Extension to other analytes is possible.




f

Fuel cell stack with combined flow patterns in a fuel cell stack or an electrolysis cell stack

A cell stack comprising a plurality of fuel cells or electrolysis cells has a combination of flow patterns between anode gas and cathode gas internally in each of the cells and between the cells relative to each other such that cathode and anode gas internally in a cell flows in either co-flow, counter-flow or cross-flow and further that anode and cathode gas flow in one cell has co-flow, counter-flow or cross-flow relative to the anode and cathode gas flow in adjacent cells.




f

Nanogap device and method of processing signal from the nanogap device

A nanogap device includes a first insulation layer having a nanopore formed therein, a first nanogap electrode which may be formed on the first insulation layer and may be divided into two parts with a nanogap interposed between the two parts, the nanogap facing the nanopore, a second insulation layer formed on the first nanogap electrode, a first graphene layer formed on the second insulation layer, a first semiconductor layer formed on the first graphene layer, a first drain electrode formed on the first semiconductor layer, and a first source electrode formed on the first graphene layer such as to be apart from the first semiconductor layer.




f

Analyte sensors and methods of use

An analyte sensor system including a substrate, a first electrode disposed on a first surface of the substrate, a second electrode disposed on a second surface of the substrate, a third electrode provided in electrical contact with at least one of the first or second electrodes, where at least a portion of the first electrode and the second electrode are subcutaneously positioned in a patient, and where the third electrode is substantially entirely positioned external to the patient, and corresponding methods are provided.




f

Diagnostic testing sensors for resonant detectors

Biosensor apparatus and associated method for detecting a target material using a vibrating resonator having a surface that operably interacts with the target material. A detector is in electrical communication with a sensor, the sensor comprising a first paddle assembly connected to a second paddle assembly, the first paddle assembly having at least one microbalance sensing resonator proximate a proximal end and at least one sensing electrical contact proximate a distal end in electrical communication with the sensing resonator. The at least one sensing resonator has a target coating for operably interacting with the target material, and the second paddle assembly has a microbalance reference resonator proximate the proximal end and at least one reference electrical contact proximate the distal end in electrical communication with the reference resonator.




f

Method for producing electrically-conducting material with modified surface

A method to inexpensively and efficiently produce conductive materials on the surface of which a nano-level fine structure is formed includes surface modification including immersing a stable anode electrode and a workpiece as a cathode electrode, the workpiece including a conductive material with a work surface, in an electrolytic solution, then applying a voltage not less than a first voltage and less than a second voltage between the stable anode electrode and the workpiece as the cathode electrode immersed in the electrolytic solution, thereby modifying the work surface, the first voltage being a voltage corresponding to a current value that is ½ of the sum of a first maximum current value appearing first in a positive voltage region and a first minimum current value appearing first in the positive voltage region with respect to voltage-current characteristics of a surface modification treatment system, the second voltage exhibiting a complete-state plasma.




f

Method for fabricating a high coercivity hard bias structure for magnetoresistive sensor

A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that includes a mildly etched seed layer and a hard bias (HB) layer on the etched seed layer. The HB layer may contain one or more HB sub-layers stacked on a lower sub-layer which contacts the etched seed layer. Each HB sub-layer is mildly etched before depositing another HB sub-layer thereon. The etch may be performed in an IBD chamber and creates a higher concentration of nucleation sites on the etched surface thereby promoting a smaller HB average grain size than would be realized with no etch treatments. A smaller HB average grain size is responsible for increasing Hcr in a CoPt HB layer to as high as 2500 to 3000 Oe. Higher Hcr is achieved without changing the seed layer or HB material and without changing the thickness of the aforementioned layers.




f

Thin film with tuned anisotropy and magnetic moment

An apparatus and associated method are generally described as a thin film exhibiting a tuned anisotropy and magnetic moment. Various embodiments may form a magnetic layer that is tuned to a predetermined anisotropy and magnetic moment through deposition of a material on a substrate cooled to a predetermined substrate temperature.




f

Alignment film forming apparatus and method

An alignment film forming apparatus and a method are provided to form an alignment film for a liquid crystal in a single process of simultaneously executing a film deposition process of ion beam sputtering and an alignment process. The method greatly restricts the size of a substrate. An alignment film forming apparatus includes a target disposed on a top surface side of a substrate and having a sputtering surface defining a sharp angle to the top surface of the substrate, a transfer table that transfers the substrate in a predetermined direction, and an ion source disposed on the top surface side of the substrate in such a way that an ion beam is irradiated on the sputtering surface of the target. An ion beam reflected at the sputtering surface is irradiated on a sputtering film formed on the substrate. The apparatus includes a mask disposed in such a way as to cover a part of the top surface of the substrate on an upstream side of a position where the sputtering film is formed, and a temperature regulator which regulates the temperature of the target.




f

Nonmagnetic material particle dispersed ferromagnetic material sputtering target

Provided is a nonmagnetic material particle dispersed ferromagnetic material sputtering target comprising a material including nonmagnetic material particles dispersed in a ferromagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is characterized in that all particles of the nonmagnetic material with a structure observed on the material in its polished face have a shape and size that are smaller than all imaginary circles having a radius of 2 μm formed around an arbitrary point within the nonmagnetic material particles, or that have at least two contact points or intersection points between the imaginary circles and the interface of the ferromagnetic material and the nonmagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is advantageous in that, in the formation of a film by sputtering, the influence of heating or the like on a substrate can be reduced, high-speed deposition by DC sputtering is possible, the film thickness can be regulated to be thin, the generation of particles (dust) or nodules can be reduced during sputtering, the variation in quality can be reduced to improve the mass productivity, fine crystal grains and high density can be realized, and the nonmagnetic material particle dispersed ferromagnetic material sputtering target is particularly best suited for use as a magnetic recording layer.




f

Sputtering target and process for producing same

A sputtering target with low generation of particles in which oxides, carbides, nitrides, borides, intermetallic compounds, carbonitrides, and other substances without ductility exist in a matrix phase made of a highly ductile substance at a volume ratio of 1 to 50%, wherein a highly ductile and conductive metal coating layer is formed on an outermost surface of the target. Provided are a sputtering target capable of improving the target surface in which numerous substances without ductility exist and preventing or inhibiting the generation of nodules and particles during sputtering, and a method of producing such a sputtering target.




f

Forming oriented film for magnetic recording material

An apparatus and associated method for reorienting the magnetic anisotropy of magnetic recording discs. A pallet that is moveable along a path of travel is also sized to selectively hold either a first magnetic recording disc of a first size or a second magnetic recording disc of a second size different than the first size. A first processing chamber in the path of travel is adapted for forming a soft underlayer (SUL) of magnetic material with non-radially oriented magnetic anisotropy on a substrate corresponding to one of the first and second magnetic recording discs. A second processing chamber in the path of travel downstream of the first processing chamber is adapted for selectively re-orienting the SUL's magnetic anisotropy via a magnetic source emanating a first magnetic field if the substrate corresponds to the first magnetic recording disc and emanating a different second magnetic field if the substrate corresponds to the second magnetic recording disc.




f

Method and apparatus for measuring oxidation-reduction potential

Methods and systems for measuring the oxidation-reduction potential of a fluid sample are provided. The system includes a test strip with a sample chamber adapted to receive a fluid sample. The sample chamber can be associated with a filter membrane. The test strip also includes a reference cell. The oxidation-reduction potential of a fluid sample placed in the sample chamber can be read by a readout device interconnected to a test lead that is in electrical contact with the sample chamber, and a reference lead that is in electrical contact with the reference cell. Electrical contact between a fluid sample placed in the sample chamber and the reference cell can be established by a bridge. The oxidation-reduction potential may be read as an electrical potential between the test lead and the reference lead of the test strip.




f

Microfluidic cell

A microfluidic cell for the dielectrophoretic separation, accumulation, and/or lysis of polarizable bioparticles, including an interdigital electrode system composed of two electrode groups having interdigitated electrodes, and a micromixer having microchannels and microelevations. The interdigital electrode system and the micromixer are situated on the same side of the cell to improve the separation, accumulation, and/or lysis characteristics. Moreover, also described is a microfluidic system which includes such a microfluidic cell, and use thereof, and a method for separating, accumulating, and/or lysing polarizable bioparticles.




f

Electrode for capillary electrophoresis

An electrode assembly for capillary electrophoresis (CE) comprises a manifold (310), a connector (305) a sheath (300), and a seal (325). A capillary tube (100) passes through the manifold, the connector, the sheath, and the seal, stopping just beyond the end of the sheath. The sheath is fillable with water (330) or another fluid that cools the capillary tube in the vicinity of the electrode, thereby preventing degradation of a sample due to heat. The sheath may be metal or plastic with a metal sleeve electrode on its exterior. The sheath is sufficiently strong to penetrate a rubber or other pierceable cap on a vial. The manifold and connector incorporate an air path (605, 312, 307) so that when the electrode is fully inserted into a vial, the contents (650) of the vial are at atmospheric pressure (or another applied pressure or vacuum).




f

Electric-field enhanced performance in catalysis and solid-state devices involving gases

Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.




f

Structures for improving current carrying capability of interconnects and methods of fabricating the same

Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.




f

Method for producing alkaline (meth)acrylamides

The invention relates to a method for producing alkaline amides or imides of ethylenically unsaturated C3 to C6 carboxylic acids by reacting amines that contain at least one primary and/or secondary amino group and at least one tertiary amino group with ethylenically unsaturated C3 to C6 carboxlic acids to form an ammonium salt and said ammonium salt is subsequently converted into the alkaline amide or imide by means of microwave radiation, with the proviso that the primary and/or secondary amino group is devoid of alkoxy groups.




f

Methods and apparatus for applying periodic voltage using direct current

Methods and apparatus for applying pulsed DC power to a plasma processing chamber are disclosed. In some implementations, frequency of the applied power is varied to achieve desired processing effects such as deposition rate, arc rate, and film characteristics. In addition, a method and apparatus are disclosed that utilize a relatively high potential during a reverse-potential portion of a particular cycle to mitigate possible nodule formation on the target. The relative durations of the reverse-potential portion, a sputtering portion, and a recovery portion of the cycle are adjustable to effectuate desired processing effects.




f

Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering

A method for producing a transparent and conductive metal oxide layer on a substrate, includes atomizing at least one component of the metal oxide layer by highly ionized, high power pulsed magnetron sputtering to condense on the substrate. The pulses of the magnetron have a peak power density of more than 1.5 kW/cm2, the pulses of the magnetron have a duration of ≦200 μs, and the average increase in current density during ignition of the plasma within an interval, which is ≦0.025 ms, is at least 106 A/(ms cm2).




f

Manufacturing apparatus

The present invention provides a manufacturing apparatus which can realize so-called sequential substrate transfer and can improve throughput, even when one multi-layered thin film includes plural layers of the same film type. A manufacturing apparatus according to an embodiment of the present invention includes a transfer chamber, three sputtering deposition chambers each including one sputtering cathode, two sputtering deposition chambers each including two or more sputtering cathodes, and a process chamber for performing a process other than sputtering, and the three sputtering deposition chambers, the two sputtering deposition chambers, and the process chamber are arranged around the transfer chamber so that each is able to perform delivery and receipt of the substrate with the transfer chamber.




f

Test strip ejector for medical device

A test strip ejector system for receiving and ejecting a fluid testing medical device test strip includes a mechanism assembly supported by the device whereby user actuation of the mechanism assembly induces displacement of the test strip in at least a test strip ejection direction to eject the test strip. The mechanism assembly includes a power source and an electric motor such as a piezo-electric linear micro motor connected to the power source. The electric motor has an armature displaced when the electric motor is energized. A digital display/user interface is provided. Selection of an ejection function presented on the digital display/user interface initiates operation of the electric motor and displacement of the armature thereby displacing the test strip in the ejection direction. An operating system including a microprocessor is connected to the display/user interface. The microprocessor controls direction of operation and operating speed of the motor.




f

Electrode strip and sensor strip and manufacture method thereof and system thereof

The present disclosure relates to an electrode strip, a sensor strip, a system thereof and a manufacturing method thereof. The sensor strip includes a first reactive film, a second reactive film and a vent hole. The first reactive film includes a substrate, a first electrode layer and a first insulation layer. The first end of the first insulation layer is concaved to a first depth to form a first reactive area. The second reactive film includes a second electrode layer and a second insulation layer. The first end of the second insulation layer is concaved to a second depth to form a second reactive area. The vent hole penetrates the second insulation layer, the second electrode layer and the first insulation layer so as to connect the first reactive area and the second reactive area.




f

Mediator for test sensor

A method of forming a 3-phenylimino-3H-phenothiazine or a 3-phenylimino-3H-phenoxazine mediator includes providing a first reactant including phenothiazine or phenoxazine, providing a first solvent, providing a second reactant and providing a second solvent. The first reactant, first solvent, second reactant and second solvent are combined to form a reactants solution. Sodium persulfate is added to the reactants solution to couple the first and second reactants resulting in a reaction solution including the 3-phenylimino-3H-phenothiazine or the 3-phenylimino-3H-phenoxazine mediator.




f

Gas sensor and method of manufacturing thereof

In a gas sensor sensing a specific gas component contained in gas to be measured, oxygen ion conductive solid electrolyte is used in a sensing element for sensing the specific gas component. A terminal unit is used, which comprises a pair of insulators, each having an inner side surface, disposed to pinch and hold the base end portion of the sensing element on the pair of electrode-mounted surfaces of the sensing element. The terminal unit comprises two pairs of metal terminals and a spring member. The metal terminals electrically contact electrode pads of the sensing element, pair by pair, respectively, and are disposed on the inner side surfaces of the insulators. The spring members press the pair of insulators at one or more positions of electrode-mounted surfaces of the sensing element in a width direction so that the insulators are pressed to be opposed to each other.




f

Device and method for manufacturing the same

The present invention provides a device that decreases deformation during manufacturing of the device, provides a firm joint without use of an adhesive, and allows chemical modification of a channel during manufacturing of the device. The device includes two joined substrates, and a concavity is formed on at least one of the opposing surfaces of the two substrates so as to make a channel, where the two substrates are joined together by a covalent bond via a crosslinking agent (A), and the crosslinking agent (A) is exposed on an inner wall surface of the channel.




f

Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same

The present invention provides a method for fabricating a working electrode. The method comprises the following steps: providing a photoelectrode, which comprises a conductive substrate with a semiconductor material; providing a dye solution, which comprises a dye dissolved in a solvent; and applying a voltage for conducting an electrophoresis to adsorb said dye onto a surface of said semiconductor material. The method of present invention makes the dye adsorbed fast to a surface of a semiconductor material by electrophoresis, and therefore, significantly reduces the time for fabricating a dye-sensitized solar cell.




f

Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same

A metal material is provided with a bismuth coating which enables the subsequent coating to be accomplished at a high throwing power, and has excellent corrosion resistance, coating adhesion and is able to be produced with reduced damage to the environment. The metal material has a surface and a bismuth-containing layer deposited on at least a part of the surface of the metal material, wherein the percentage of bismuth atoms in the number of atoms in the surface layer of the metal material with a bismuth coating is at least 10%.




f

Method and apparatus for manipulating single cells and small aggregates thereof

A well, in particular an open well (14) with an upper end having a vertical axis (101), for containing a liquid and particles contained within said liquid, characterized by comprising at least two manipulation electrodes (1, 2, 3, 31, 32, 36, 17, 40, 41) able to be powered by electrical voltages, in particular alternating electrical voltages, so as to manoeuvre particles within the well by means of the dielectrophoretic effect. A platform comprising a plurality of wells as described above and a method for using said well.




f

Electrolytic systems and methods for making metal halides and refining metals

Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.




f

Filtering film structure

A filtering film structure includes a film, a conductive layer and a dielectric layer. The film includes a plurality of holes. The conductive layer is disposed on the inner surface of the holes, and the dielectric layer is disposed on the conductive layer. When applying a voltage to the conductive layer, an electrical charge layer forms on the surface of the dielectric layer.




f

Implement and method for preparing and maintaining dirt arena footing

An implement is disclosed for smoothing grounds that include at least a compact base having a top surface and a lesser compact footing on top of the base. The implement includes a frame having a front portion, a central portion, a rear portion, and a width. Wheels are mounted for rotation directly to the frame, and tools are carried by the frame for engagement with the ground. The tools include a specially shaped cleaving blade connected to the rear portion of the frame by a tool support, which securely connects the cleaving blade at predetermined heights. The blade has a front shaving edge and a rear compressing edge. The blade extends straight across the width of the frame so as to maximize the drag displaced on the frame during use of the blade. Arrangement of the wheels directly on the frame provides optimal stabilization of the frame during operation of the blade.




f

Tongue pulled spreader and grader with auxiliary electric motor for lowering or raising wheels

A tongue pulled spreader and grader system having a pair of spaced apart sidewalls and cross beams to define a frame portion, a plurality of moveable or fixed blades extending between the sidewalls, each blade positionable along the length of each sidewall and fixed in position at a predetermined angle; a tongue for mounting the frame to the rear of a vehicle; a pair of wheels positioned on an axle on either side of the sidewalls; means for manually or hydraulically extending the wheels to a down position to make contact with a surface in order to transport the spreader and grader and for retracting the wheels to an up position so that the spreader and grader can undertake the grading process. The spreader and grader can attach to and be operated by ATVs, SUVs, light trucks, lawn tractors, sub compact tractors, side by side ATVs and fork trucks.




f

System and method for optimizing a cut location

A system for determining a cut location at a work surface includes a position sensor and a controller. The controller stores a final design plane of the work surface and determines an actual profile of the work surface. A plurality of target profiles extending along a path are determined, each corresponding to a cut location. The target profiles are based at least in part upon the cut location, a loading profile, slot parameters, and the actual profile of the work surface. The controller is further configured to determine a lowest cost target profile and the lowest cost target profile defines an optimized cut location. A method is also provided.




f

Vibratory ripper having pressure sensor for selectively controlling activation of vibration mechanism

A ripping mechanism for a vehicle has a support frame. A ripping member has an engagement head that is configured for plowing a groove in the ground. The ripping member is preferably positionable in a selected working position and working orientation by adjustment of the support frame. The ripping member is preferably movable relative to the support frame to cause reciprocating movement of the engagement head at least partially longitudinally. A tilt adjustment cylinder is preferably operable to orient the ripping member in the selected orientation. A vibrator mechanism is preferably operatively connected to the ripping member and activatable to cause reciprocating movement of the engagement head at least partially longitudinally.




f

Turf aerators and tine assemblies for same

In one embodiment, a turf aerator includes a frame having wheels, a variable displacement pump, an engine for driving at least one of the wheels and driving the pump, a tine assembly supported by the frame and being movable between lowered and raised configurations, and a swash-plate-adjustment linkage extending from the tine assembly to the pump. The tine assembly includes: a base; a hydraulic motor in hydraulic communication with the pump; rotatable cranks powered by the hydraulic motor; a downwardly-extending arm rotatably coupled to each crank; a tine extending downwardly from each downwardly-extending arm; springs operatively anchored to the base; and a guide arm extending between each downwardly-extending arm and a respective spring. The swash-plate-adjustment linkage automatically adjusts the pump with movement of the tine assembly relative to the frame to provide output to the hydraulic motor substantially only when the tine assembly is at the lowered configuration.




f

Agricultural implements with float-restricted hinged wings

A towable soil pulverizer having a center section and foldable wings mounted by hinges on opposite sides of the center section to fold upwardly or downwardly about substantially longitudinal hinge axes. Each hinge has a spaced ball joint and guide roller in roller slot. A wing float axis for each wing extends substantially perpendicular to the longitudinal hinge axis in a transverse direction, each wing also being pivotal about the float axis. The hinge design with the float axis prevents weight transfer between the center section and wing sections when the pulverizer operates over uneven soil, providing uniform soil conditioning over the width of the pulverizer. The center section rollers are positioned ahead of, behind, or co-linear with the wing rollers. Lockout kits are provided for mounting in the roller guide slots for restricting motion.




f

Scraper blade assembly for planter gauge wheels

A scraper assembly for removing mud and moist soil from the gauge wheels of an agricultural planter includes a support rod attached to a hub of a gauge wheel arm, a clamp structure attached to an end portion of the support rod, and a scraper blade attached to the clamp structure. An axis of the end portion of the support rod is approximately perpendicular to and intersects with an axis of rotation of the gauge wheel. The scraper blade is mounted approximately perpendicular to the outer surface of the gauge wheel and is angled approximately 45 degrees from the sides of the gauge wheel. The scraper blade has a curved profile along its length that substantially matches an outer profile of the outer surface of the gauge wheel when the scraper blade is properly adjusted.




f

Method and apparatus to collect cores from golf green

A method to collect soil cores from a green comprises the steps of providing a soil core collector, extracting soil cores from a green, allowing the cores to dry for at least fifteen minutes, and utilizing the core collector to gather the cores from the green.




f

Lateral mount for vehicle mounted implement

A mount assembly is provided that allows for interconnecting an implement (e.g., snow plow, rotary brush etc.) to the front end of a vehicle while permitting that implement to move laterally relative to the front end of the vehicle.




f

Ripper tip for a ripper shank assembly

A ripper tip includes a front end, a rear end, and a mounting cavity extending into the rear end. The ripper tip further includes an upper surface extending between the front end and the rear end, wherein a portion of the upper surface at the rear end of the ripper tip includes an upwardly projecting ridge having ridge sides and a ridge top that extend rearwardly on the ripper tip.




f

Golf hole cup setter

A golf hole cup setter for inserting a cylindrical golf hole cup into a golf hole so that its longitudinal axis is in vertical alignment. The cup setter has a base plate having an upper surface and a lower surface. A cup insertion member extends downwardly from the lower surface of the base plate, and is configured to contact the upper rim of the cup. A level is attached to the base plate and is positioned to allow a user to step on the base plate without interference during cup insertion, and to determine whether the longitudinal axis of the golf hole cup inserted into the golf hole by the cup setter is in vertical alignment.




f

Wrist/arm/hand mounted device for remotely controlling a materials handling vehicle

A supplemental control system for a materials handling vehicle comprises a wearable control device, and a corresponding receiver on the materials handling vehicle. The wearable control device is donned by an operator interacting with the materials handling vehicle, and comprises a wireless transmitter to be worn on the wrist of the operator and a travel control communicably coupled to the wireless transmitter. Actuation of the travel control causes the wireless transmitter to transmit a first type signal designating a request to the vehicle. The receiver is supported by the vehicle for receiving transmissions from the wireless transmitter.




f

Method and system for calculating and displaying work tool orientation and machine using same

A machine includes a plurality of ground engaging elements and an operator control station supported on a frame. A work tool is pivotably attached to the frame using a lift arm assembly and a tilt linkage. At least one device measures a quantity associated with at least one of the lift arm assembly, the tilt linkage, and the work tool. An electronic controller, in communication with an operator display and the at least one device. The electronic controller is configured to store an operator selected orientation of the work tool, calculate a current orientation of the work tool based on the quantity, and calculate a deviation of the current orientation from the operator selected orientation. A visual representation of the deviation is displayed on the operator display.