f

Oscillation frequency adjusting circuit

According to one embodiment, a first oscillator has an oscillation frequency that is changed depending on a temperature. A second oscillator has different temperature characteristics from the first oscillator. An on-chip heater heats the first oscillator and the second oscillator. A counter counts a first oscillation signal of the first oscillator. An ADPLL generates a third oscillation signal on the basis of a second oscillation signal of the second oscillator and corrects the frequency of the third oscillation signal on the basis of a count value of the counter.




f

Single differential-inductor VCO with implicit common-mode resonance

A circuit for a single differential-inductor oscillator with common-mode resonance may include a tank circuit formed by coupling a first inductor with a pair of first capacitors; a cross-coupled transistor pair coupled to the tank circuit; and one or more second capacitors coupled to the tank circuit and the cross-coupled transistors. The single differential-inductor oscillator may be configured such that a common mode (CM) resonance frequency (FCM) associated with the single differential-inductor oscillator is at twice a differential resonance frequency (FD) associated with the single differential-inductor oscillator.




f

Circuit for measuring the resonant frequency of nanoresonators

The present disclosure relates to nanoresonator oscillators or NEMS (nanoelectromechanical system) oscillators. A circuit for measuring the oscillation frequency of a resonator is provided, comprising a first phase-locked feedback loop locking the frequency of a controlled oscillator at the resonant frequency of the resonator, this first loop comprising a first phase comparator. Furthermore, a second feedback loop is provided which searches for and stores the loop phase shift introduced by the resonator and its amplification circuit when they are locked at resonance by the first loop. The first and the second loops operate during a calibration phase. A third self-oscillation loop is set up during an operation phase. It directly links the output of the controllable phase shifter to the input of the resonator. The phase shifter receives the phase-shift control stored by the second loop.




f

Self-feedback random generator and method thereof

A self-feedback random generator comprises a digital-to-analog converter, a digital oscillator, a frequency-modulating unit and a first D-type flip-flop. The digital-to-analog converter receives a digital random-code signal and the digital random-code signal is converted to corresponding analog random signal. The frequency-modulating unit modulates frequency of first digital oscillating signal so as to increase random of frequency of first digital oscillating signal according to voltage value of the analog random signal, and accordingly outputs a second digital oscillating signal. The first D-type flip-flop receives the second digital oscillating signal and a clock signal, and reads the second digital oscillating signal through utilizing the clock signal so as to outputs the digital random-code signal, wherein frequency of the clock signal is smaller than frequency of the first digital oscillating signal, and random of frequency of the second digital oscillating signal corresponds to random of the digital random-code signal.




f

Accumulator-type fractional N-PLL synthesizer and control method thereof

There are provided an accumulator-type fractional N-PLL synthesizer for suppressing the fractional spurious caused by periodically switching a frequency division number of a fractional frequency divider, and a control method thereof. In an accumulator-type fractional N-PLL synthesizer (100), a pulse signal proportional to a fractional phase error occurring between a reference signal and an output signal of a fractional divider (112) for feeding back an output of a VCO (115) of an output stage to a preceding stage is generated using an error signal from an accumulator (120). Through the use of the pulse signal, pulse widths of a UP signal and a DN signal output from a phase detector (140) are controlled so as to reduce a fractional phase error occurring between the UP signal and the DN signal. Thus, the fractional spurious caused by periodically switching the frequency division number of the fractional divider (112) is suppressed.




f

Integrated circuit with an internal RC-oscillator and method for calibrating an RC-oscillator

An integrated circuit (10) has an internal RC-oscillator (20) for providing an internal clock signal (CLI) having an adjustable oscillator frequency. The integrated circuit (10) further comprises terminals (101, 102) for connecting an external LC tank (30) having a resonance frequency and a calibration circuit (40) which is configured to adjust the oscillator frequency based on the resonance frequency of the LC tank (30) connected during operation of the integrated circuit (10). An internal auxiliary oscillator (46) is connected to the terminals (101, 102) in a switchable fashion and is configured to generate an auxiliary clock signal (CLA) based on the resonance frequency. The calibration circuit (40) comprises a frequency comparator (47) which is configured to determine a trimming word (TRW) based on a frequency comparison of the internal clock signal (CLI) and the auxiliary clock signal (CLA). The LC tank (30) to be connected is an antenna for receiving a radio signal.




f

Oscillator for generating a signal comprising a terahertz-order frequency using the beat of two optical waves

The invention concerns an oscillator generating a wave composed of a frequency of on the order of terahertz from a beat of two optical waves generated by a dual-frequency optical source. The oscillator includes a modulator the transfer function of which is non-linear for generating harmonics with a frequency of less than one terahertz for each of the optical waves generated by the dual-frequency optical source, an optical detector able to detect at least one harmonic for each of the optical waves generated by the dual-frequency optical source and transforming the harmonics detected into an electrical signal, a phase comparator for comparing the electrical signal with a reference electrical signal, and a module for controlling at least one element of the dual-frequency optical source with a signal obtained from the signal resulting from the comparison.




f

Oven controlled crystal oscillator and manufacturing method thereof

The present invention discloses an Oven Controlled Crystal Oscillator and a manufacturing method thereof. The Oven Controlled Crystal Oscillator comprises a thermostatic bath, a heating device, a PCB and a signal generating element, where the signal generating element is used for generating a signal of a certain frequency, the heating device, the PCB and the signal generating element are mounted in the thermostatic bath, the signal generating element is mounted in a groove formed on one side of the PCB, while the heating device is mounted against the other side of the PCB that is opposite to the groove. The signal generating element may be a passive crystal resonator or an active crystal oscillator. The Oven Controlled Crystal Oscillator according to the invention is advantageous for a small volume and a high temperature control precision.




f

Quantum interference device, atomic oscillator, and moving object

An atomic oscillator includes: a gas cell which includes two window portions having a light transmissive property and in which metal atoms are sealed; a light emitting portion that emits excitation light to excite the metal atoms in the gas cell; a light detecting portion that detects the excitation light transmitted through the gas cell; a heater that generates heat; and a connection member that thermally connects the heater and each window portion of the gas cell to each other.




f

Circuit and method for generating oscillating signals

An oscillator module includes a first MOS transistor and a capacitor. The capacitor is coupled between a gate and source of the first MOS transistor. The drain of the first MOS transistor receives a first bias current and generates an oscillating output signal. A switching circuit operates in response to the oscillating output signal to selective charge and discharge the capacitor. A current sourcing circuit is configured to generate the bias current. The current sourcing circuit includes a second MOS transistor which has an identical layout to the first MOS transistor and receives a second bias current. A resistor is coupled between a gate and source of the second MOS transistor. The current sourcing circuit further includes a current mirror having an input configured to receive a reference current passing through the resistor and generate the first and second bias currents.




f

Integrated epitaxial structure for compound semiconductor devices

An integrated structure of compound semiconductor devices is disclosed. The integrated structure comprises from bottom to top a substrate, a first epitaxial layer, an etching-stop layer, a second epitaxial layer, a sub-collector layer, a collector layer, a base layer, and an emitter layer, in which the first epitaxial layer is a p-type doped layer, the second epitaxial layer is an n-type graded doping layer with a gradually increased or decreased doping concentration, and the sub-collector layer is an n-type doped layer. The integrated structure can be used to form an HBT, a varactor, or an MESFET.




f

Systems and methods for impedance switching

Systems and methods for switching impedance are provided. In some aspects, a system includes first and second impedance elements and an impedance switch module, which includes a third impedance element coupled between the first and second impedance elements and a switch parallel to the third impedance element. The switch is coupled between the first and second impedance elements, and is configured to switch between an open configuration and a closed configuration. An electrical path is completed between the first impedance element and the second impedance element via the first switch in the closed configuration. The electrical path is not completed in the open configuration. A total impedance of the first impedance element, the second impedance element, and the impedance switch module is varied based on the switching between the open configuration and the closed configuration.




f

Digital system and method of estimating quasi-harmonic signal non-energy parameters using a digital Phase Locked Loop

The present invention proposes a digital system and method of measuring (estimating) non-energy parameters of the signal (phase, frequency and frequency rate) received in additive mixture with Gaussian noise. The first embodiment of the measuring system consists of a PLL system tracking variable signal frequency, a block of NCO full phase computation (OFPC), a block of signal phase primary estimation (SPPE) and a first type adaptive filter filtering the signal from the output of SPPE. The second embodiment of the invention has no block SPPE, and NCO full phase is fed to the input of a second type adaptive filter. The present invention can be used in receivers of various navigation systems, such as GPS, GLONASS and GALILEO, which provide precise measurements of signal phase at different rates of frequency change, as well as systems using digital PLLs for speed measurements.




f

Voltage controlled oscillator band-select fast searching using predictive searching

A method, an apparatus, and a computer program product are provided. The apparatus tunes a frequency provided by a VCO. The apparatus determines a relative capacitance change associated with a first frequency and a desired frequency from a look-up table. The apparatus adjusts a capacitor circuit in the VCO based on the determined relative capacitance change determined from the look-up table in order to tune from the first frequency to the desired frequency. The apparatus determines that the frequency provided by the VCO is a second frequency different than the desired frequency after adjusting the capacitor circuit. The apparatus performs an iterative search to further adjust the capacitor circuit when a difference between the second frequency and the desired frequency is greater than a threshold.




f

Crystal-less clock generator and operation method thereof

A crystal-less clock generator (CLCG) and an operation method thereof are provided. The CLCG includes a first oscillation circuit, a second oscillation circuit, and a control circuit. The first oscillation circuit is controlled by a control signal for generating an output clock signal of the CLCG. The second oscillation circuit generates a reference clock signal. The control circuit is coupled to the first oscillation circuit for receiving the output clock signal and coupled to the second oscillation circuit for receiving the reference clock signal. The control circuit is used to generate the control signal for the first oscillation circuit according to the relationship between the output clock signal and the reference clock signal.




f

Voltage controlled oscillator with a large frequency range and a low gain

A system is disclosed for a voltage controlled oscillator (“VCO”) having a large frequency range and a low gain. Passive or active circuitry is introduced between at least one VCO cell in the voltage controlled oscillator and the voltage source for the VCO cell which reduces a gain value for the VCO to maintain stability of the system.




f

Method for operating control equipment of a resonance circuit and control equipment

The invention relates to a method for operating control equipment (1) of a resonance circuit (2), wherein the control equipment (1) comprises at least two circuit elements (8, 9) connected in series, in particular each comprising a recovery diode (13, 14) connected in parallel, between which a connection (6) of the resonance circuit (2) is connected. According to the invention, the circuit elements (8, 9) are actuated as a function of the voltage detected at the connection (6). The invention further relates to control equipment (1) of a resonance circuit (2).




f

Digital phase locked loop having insensitive jitter characteristic for operating circumstances

Disclosed are a phase locked loop (PLL) of a digital scheme and a method thereof. More specifically, disclosed are a digital phase locked loop having a time-to-digital converter (TDC), a digital loop filter (DLF), and a digitally controlled oscillator (DCO), and that is designed to have a constant jitter characteristic at all times even though an operating condition of a circuit varies according to a process, voltage, temperature (PVT) change, and a method thereof.




f

Current output control device, current output control method, digitally controlled oscillator, digital PLL, frequency synthesizer, digital FLL, and semiconductor device

A current output control device is provided that includes: a current cell array section including plural current cell circuits that are each connected in parallel between a first terminal (power source) and a second terminal (ground) that connect between the first terminal and the second terminal in by operation ON so as to increase control current flowing between the first terminal and the second terminal; and a code conversion section (decoder) that generates signals (row codes, column codes) to ON/OFF control current cells so as to change the number of current cells that connect the first terminal and the second terminal according to change in an externally input code and that inputs the generated signals to the current cell array section.




f

Variability and aging sensor for integrated circuits

A ring-oscillator-based on-chip sensor (OCS) includes a substrate having a semiconductor surface upon which the OCS is formed. The OCS includes an odd number of digital logic stages formed in and on the semiconductor surface including a first stage and a last stage each including at least one NOR gate including a first gate stack and/or a NAND gate including a second gate stack. A feedback connection is from an output of the last stage to an input of the first stage. At least one discharge path including at least a first p-channel metal-oxide semiconductor (PMOS) device is coupled between the first gate stack and a ground pad, and/or at least one charge path including at least a first n-channel metal-oxide semiconductor (NMOS) device is coupled between the second gate stack a power supply pad.




f

Method for varying oscillation frequency of high frequency oscillator

The switching element is provided in a state of being electromagnetically coupled to the cavity resonator of the high frequency oscillator; the bias voltage applying terminal is connected to one electrode of the switching element; another electrode of the switching element is electrically connected to the cavity resonator (the anode shell in FIG. 1); the metal plate having a size enough for reflecting an electric wave to be transmitted before and after the switching element in a high-frequency manner is provided at any one end of the switching element; and by applying a bias voltage to the switching element and varying that, a reactance of the switching element is changed and a resonance frequency of the cavity resonator is varied. By this method, an oscillation frequency can be varied greatly relative to a small change in a bias voltage.




f

Thickness shear mode resonator sensors and methods of forming a plurality of resonator sensors

Arrays of resonator sensors include an active wafer array comprising a plurality of active wafers, a first end cap array coupled to a first side of the active wafer array, and a second end cap array coupled to a second side of the active wafer array. Thickness shear mode resonator sensors may include an active wafer coupled to a first end cap and a second end cap. Methods of forming a plurality of resonator sensors include forming a plurality of active wafer locations and separating the active wafer locations to form a plurality of discrete resonator sensors. Thickness shear mode resonator sensors may be produced by such methods.




f

Dual carrier amplifier circuits and methods

A circuit includes first and second transconductance stages that generate first and second currents, respectively, in response to an input signal. A current combiner circuit selectively couples the first current to a first output, selectively couples the second current to the first output, selectively couples the first current to a second output, and selectively couples the second current to the second output. In response to the first current being coupled to both the first and second outputs, the current combiner circuit couples the second current to both the first and second outputs. In response to the first current being decoupled from the second output, the current combiner circuit decouples the second current from both the first and second outputs. In response to the first current being decoupled from the first output, the current combiner circuit decouples the second current from both the first and second outputs.




f

Triple offset butterfly valve and rotary for severe services

This invention relates to a novel rotary control valve with new joint methods and flow control mechanisms, inline-reparability and fully metal seals more particularly to a triple offset butterfly valve or ball valve with those features used for on-off and flow controlling under multiple extreme conditions or in severe services; such as the integrated gasification combined cycle under high temperature and pressure, Fluid Catalytic Cracking under high temperature over 1200 F with hard diamond like catalytic particles, shale fracking process under extreme high pressure and high velocity fluid with solid particles and corrosive additives and other critical applications for products life lasting 5 to 30 years like deepsea flow control systems and nuclear power plants and for the applications of millions cycles like jet or rocket turbine engine fuel delivery systems with high velocity fuel fluid mixed with highly oxidative gas under temperature 1365 F.




f

Assembly structure of electronic control unit and coil assembly of solenoid valve for electronic brake system

An assembly structure of an electronic control unit and a coil assembly of a solenoid valve for an electronic brake system connected to the electronic control unit having a printed circuit board and applying power to the solenoid valve. The coil assembly is penetrated to allow an upper portion of the solenoid valve to be fitted thereinto, and includes a cylindrical bobbin provided with a coil and a coil case. The electronic control unit is provided with a housing having an insertion groove and joined to the hydraulic control unit, the printed circuit board being disposed spaced apart from the coil assembly, and the housing is provided with an elastic member having one end contacting the printed circuit board and the other end contacting the coil case. The elastic member is configured with a coil spring to produce different elastic forces.




f

Butterfly valve

A butterfly valve (100) is provided. The butterfly valve (100) includes a valve body (103) including a valve bore (109) passing through the valve body (103), with the valve bore (109) including an upstream valve bore portion (109U) and a downstream valve bore portion (109D), a shaft bore (112), a valve shaft (121) located in the shaft bore (112) and extending substantially across the valve bore (109), and a valve flap (107) affixed to the valve shaft (121) and configured to be rotated by the valve shaft (121). The valve flap (107) is configured to rotate between a closed orientation blocking the valve bore (109) and an open orientation. The valve flap (107) is affixed on an upstream valve bore portion side of the valve shaft (121), wherein incoming fluid presses the valve flap (107) against the valve shaft (121).




f

Outlet valve for an airplane

An outflow valve (10) for an aircraft has a frame (12) for arrangement in an opening (14) of an outer shell (16) of the aircraft, a first flap (18) pivotably arranged in the frame (12) for controlling a flow cross-section of at least one first inflow opening (24) and at least one outflow opening (15). To achieve a simplified construction of the ventilation system of the aircraft, the outflow valve (10) has a second inflow opening (26) configured to be closable by means of a drivable adjustable member (28).




f

Flush adaptor for use with a valve fitment assembly for cleaning of the assembly

A flush adaptor for use with a valve fitment assembly for dispensing liquids from a container; wherein the flush adaptor comprises an outer ring-collar; a flange with an edge molded to the bottom of the outer ring-collar; an interior ring-collar adjacent to the outer ring-collar; a ridge molded in the interior ring-collar; a seat molded onto the interior ring-collar and a pin molded into the interior ring-collar which keeps the valve in an open position; and a hollow tube molded into the adaptor to allow the flow of liquid through the adaptor and into the fitment assembly; whereby the flush adaptor allows for cleaning of the assembly and any tubes connected thereto.




f

Method for operating a fluid valve via an oscillating valve motion

In a method for operating a fluid valve for controlling or regulating a fluid, having at least one movable valve component is displaceable with the aid of at least one electrical actuating signal which contains at least one first actuating signal portion which causes an oscillating valve motion of the valve component. Pressure oscillations generated in the fluid due to the oscillating valve motion are detected, and are used for regulation of the oscillating valve motion caused by the first actuating signal portion.




f

Fuel system valve assembly

A fuel system valve assembly may include a housing, a spring, and a body. The housing may have a fuel passage defined in part or more by a fuel passage wall. The fuel passage wall may have a seat and a cylindrical section. The cylindrical section may have a constant diameter and may be located downstream of the seat. In use, the body may reciprocate linearly in the housing between an open position and a closed position. The body may be biased to the closed position by the spring. The body may abut the seat when the body is in the closed position.




f

Pressure relief/drain valve for concrete pumpers

Pressure relief/drainage valve for a concrete pumper having a valve body with an axially extending passageway through which concrete flowing in a pumping line passes, an outlet port in a side wall of the passageway, and a valve member which prevents concrete from passing through the port when the valve is a closed position and permits concrete to discharge through the outlet port when the valve is in an open position.




f

Power-efficient actuator assemblies and methods of manufacture

Power-efficient actuator apparatus and methods. In one exemplary embodiment, the actuator assembly utilizes a shape memory alloy (SMA) filament driven by an electronic power source to induce movement in the underlying assembly to actuate a load (e.g., water valve). In addition, a circuit board is included which allows the actuator assembly to be readily incorporated or retrofit into a wide range of systems such that the signal characteristics of the supply line can, among other applications, be conditioned in order to protect the SMA filament. Furthermore, the circuit board can also readily be adapted for use with “green” power sources such as photovoltaic systems and the like. Methods for manufacturing and utilizing the aforementioned actuator assembly are also disclosed.




f

Fluid control valve

A fluid control valve includes an inflow channel for introducing fluid, an outflow channel for discharging the fluid, a valve seat, a valve body for blocking/allowing communication between the inflow channel and the outflow channel in association with a movement thereof into contact with or away from the valve seat, and a solenoid configured to apply a magnetic force to the valve body, the magnetic force being generated in response to supply of electric power to the solenoid. The inflow channel is formed through the core of the solenoid so that the core and the fluid comes into contact with each other in the inflow channel.




f

Filler assembly for a valve

A filler assembly is mounted in an axial hole of a cap of a valve. The filler assembly includes at least one first filler and at least one second filler stacked in a longitudinal direction. A valve rod received in the axial hole extends through the at least one first filler and the at least one second filler. At least one of two mutually abutting faces respectively of the at least one first filler and the at least one second filler is at a non-parallel angle to a radial direction perpendicular to the longitudinal direction. If one of the at least one first filler and the at least one second filler is subjected to a pressing force in the longitudinal direction, at least one of the at least one first filler and the at least one second filler is moved in the radial direction to press against the valve rod.




f

Low torque, high flow and tight sealing tube butterfly valve

A butterfly valve including a valve body having a passage, a valve shaft assembly, a valve plate, and a tube that is friction fit inside the passage is provided. The valve shaft assembly includes a first shaft portion and a second shaft portion. The first and second shaft portions are in opposing spaced relation with the valve plate disposed therebetween. The valve plate has a flange such that when the butterfly valve is in the closed position a seal is formed with the tube, which is disposed within the fluid flow passage. The valve plate has lip extending from a portion of the valve plate that is radially outward from the circumference of the tube. The lip acts to reduce flow induced torque experienced while the valve plate is actuated from the closed to the open position.




f

Methods, devices, and mediums associated with optical lift mechanism

An apparatus includes a light foil device configured to move based on radiation pressure associated with light received by the light foil device. The apparatus includes a mechanism configured to transition between operational states in response to the movement of the light foil device, or includes a valve configured to control a flow of material through a conduit based, at least in part, on the movement of the light foil device.




f

Water valve with supported opening function

Water valves and methods of regulating fluid flow for low ambient pressure water sources that reduce the amount of filtration needed for valve mechanisms operating in the water source.




f

Active drain plug for high voltage battery applications

A drain plug assembly that has particular application for sealing a drain hole in a high voltage battery compartment on a vehicle. The plug assembly includes a plug that inserted into the drain hole. The plug assembly further includes a return spring coupled to the plug and causing the plug to be biased into the drain hole. The plug assembly also includes at least one shape memory alloy device coupled to the plug and a support structure. The SMA device receives an electrical current that causes the device to contract and move the plug out of the drain hole against the bias of the return spring.




f

Solenoid valve, in particular for slip-controlled motor vehicle braking systems

A solenoid valve, the magnet armature of which is designed to be movable relative to a first valve-closing element, for which purpose the first valve-closing element is accommodated telescopically in a coupling element attached to the magnet armature, wherein the coupling element is guided along the inner wall of a guide sleeve inserted in the valve housing in order to align the magnet armature precisely with the first valve-closing element in the direction of a second valve-closing element which is likewise accommodated in the guide sleeve.




f

Flow shut-off valve device

A valve assembly having a valve-seal on a valve member that moves between an open and a closed position within a valve support housing for controlling fluid flow, particularly for use as a shut-off valve. In many embodiments, advancing the valve member sealingly engages the valve-seal with a valve seating area of the housing to close the valve and shut-off fluid flow through the housing, while retracting the valve member moves the valve-seal away from the seating area to allow fluid flow around the valve-seal and through the valve-seating area. In many embodiments, the valve member includes a proximal handle and angled ramp that engage with a helical ramp of the housing to translate rotation of the handle into axial movement of the member between open and closed positions.




f

Flap assembly, in particular exhaust gas flap assembly

For a flap assembly, in particular an exhaust gas flap assembly, with the flap mounted on both sides via bearing devices in the housing, the disclosure describes a design in which a bearing body is supported radially against an annular collar of the bearing device and, by way of the annular collar, is held braced in a radially spring-loaded manner in a predefined radial position.




f

Valve having reduced operating force and enhanced throttling capability

A flow control valve element has a generally spherical ball. An inlet is formed in the ball. An outlet is also formed in the ball, the outlet opposing the inlet. A hollowed-out portion extends between the inlet and the outlet. A pair of opposing flats are formed in the ball, the flats each having a first flat portion formed in an external portion of the ball and an opposing second flat portion formed in the hollowed-out portion of the ball.




f

System, method, and apparatus for utilizing a pumping cassette

The present invention involves, in some embodiments, systems and methods involving fluid handling apparatus for pumping fluid to and from a patient, which may include a reusable component and a disposable pumping cartridge. The reusable component may comprise a control chamber and a pressure transducer configured to measure a gas pressure associated with the control chamber, as well as a processor. The processor may be configured to supply the control chamber with a gas at a predetermined pressure, monitor the gas pressure associated within the control chamber with the pressure transducer over a predetermined period of time, and determine if the change in gas pressure associated within the control chamber exceeds a maximum allowable predetermined limit.




f

Method for operating a collection means for printed products

A method for operating a collection system for printed products includes drawing off the printed products from discharge device(s) disposed at corresponding discharge point(s) in the collection system. The printed products are deposited on a collection section during a cycle period of the discharge device(s) so as to form a bundle of printed products. The bundle is transferred to a subsequent conveying mechanism having receiving pockets. It is determined whether at least one missing printed product exists due to an incorrect drawing off from the discharge point(s). A repair process is initiated and controlled in which the at least one missing printed product is drawn off from the corresponding discharge point(s) at a time corresponding to a subsequent recurrent pocket-related cycle of the subsequent conveying mechanism in a subsequent cycle period of the discharge device(s). The at least one missing printed product is inserted in the relevant receiving pocket.




f

Sheet finishing apparatus and sheet finishing method

According to one embodiment, a sheet finishing apparatus includes a finishing section configured to apply finishing to a sheet placed on a processing tray, a sheet discharging section configured to discharge the sheet subjected to the finishing to a stack tray via a discharge port, a roller attached to a shaft provided in parallel to the discharge port and which rotate in a first direction for guiding the sheet in the direction of the finishing section and a second direction for discharging the sheet, and an arm attached to the shaft to extend in the centrifuging direction from the shaft, rotate with the torque of the shaft, and idly rotate when force for regulating the torque acts. The arm flaps down the trailing end of the sheet on the stack tray onto the stack tray.




f

Method and device for removing at least one book block from and/or supplying at least one book block to a conveying section of a book production line

A method and device for the production of books, including: moving book blocks successively along a conveying section of a book production line; supplying a stack of book cases to the book production line; identifying a marking on each of the book blocks and the book cases; transmitting an identified marking on at least one book case to a machine control of the book production line; assigning a dataset stored in the machine control for a sequence of book cases to the supplied stack; determining a sequence in the machine control for book blocks positioned on the conveying section; comparing the dataset for the sequence of the book cases to the sequence of the book blocks; and removing and/or supplying at least one book block from or to the conveying section if the sequence of the book blocks deviates from the sequence of the book cases using the machine control.




f

Bundle of printed products and method for producing same

A method for producing a bundle composed of book blocks includes gathering a plurality of printed sheets to form respective book blocks. The plurality of the book blocks are positioned with the same orientation and respectively positioned on lower edges of the printed sheets. Respectively two adjacent book blocks are offset from one another parallel to the lower edges of the printed sheets and transverse to a height of the bundle to be formed, such that a side edge of one of the two book block projects relative to a side edge of the adjacent book block. Thereafter the offset book blocks are combined to form the bundle and the bundle is compressed to fix the offset position of the book blocks.




f

Method for operating a processing system, in which product units having different product characteristics are processed

A method for operating a processing system, in which product units of different formats are processed. The processing system contains a plurality of processing devices that are arranged one after the other in a processing line. In the event of a format changeover, certain component arrangements arranged in the processing system must be adapted to the new product format. In the event of an upcoming format change, a gap in the conveyed goods is generated while the conveying operation is maintained, wherein the gap in the conveyed goods runs through the processing system along the processing devices. As soon as the gap in the conveyed goods runs through a component arrangement to be adapted to the new format, the format is changed over at the component arrangement while the gap in the conveyed goods runs through the component arrangement.




f

Sheet folding device having inclined stacking surface

A sheet handling apparatus includes a sheet folding unit configured to perform folding on a sheet; and a sheet stacking unit configured to stack the folded sheet on a sheet stacking surface having an inclined surface and a horizontal surface in order from upstream to downstream in a sheet conveying direction. A downstream end of the inclined surface is higher than an upstream end of the inclined surface with respect to a horizontal plane. The sheet handling apparatus also includes a discharging unit configured to discharge the folded sheet to the sheet stacking unit; a sheet conveying unit configured to convey the discharged sheet from the inclined surface to the horizontal surface; and a conveying force applying unit configured to apply a conveying force to the sheet in contact with an upper surface of the sheet from above the inclined surface.




f

Post-processing device and image forming apparatus

The post-processing device includes: a binding unit that forms a cut in a sheet stack and cuts a part of the sheet stack into a predetermined shape to form a tongue portion in the sheet stack, the tongue portion having a part where one end part of the tongue portion is not separated from the sheet stack, and binds the sheet stack by bending the tongue portion and inserting the other end part of the tongue portion into the cut; and a sheet stack transport unit that transports the sheet stack in an orientation such that the one end part of the tongue portion in the sheet stack bound by the binding unit is on a downstream side of the other end part of the tongue portion in the sheet stack transport direction.