the

NOTICE OF RETRACTION: THE IMPACT OF KNOWLEDGE MANAGEMENT ON FIRM INNOVATIVENESS VIA MEDIATING ROLE OF INNOVATIVE CULTURE – THE CASE OF MNES IN MALAYSIA

Aim/Purpose: ******************************************************************************************** After its investigation, the Research Ethics, Integrity, and Governance team at RMIT University found that the primary author of this paper breached the Australian Code and/or RMIT Policy and requested that the article be retracted. ********************************************************************************************* This paper aimed to examine the impact of knowledge management on firm innovativeness of multinational enterprises (MNEs) via the mediating role of innovative culture in Malaysia. Background: Inadequate management practices and growing competition among MNEs operating in developing nations, notably in Malaysia, have hindered their organizational success. Although several studies have shown that knowledge management has a substantial impact on MNEs’ success, it is not apparent if innovation at the company level has a direct impact on their performance. Thus, there is no definitive evidence between knowledge management with business innovativeness and organizational success. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. A convenient sampling approach was used to select 296 respondents from Malaysia-dependent MNEs of different industries. One of the advantages of this study methodology is that the sample targeted many fields. Afterward, SPSS AMOS 24.0 software package analysis was performed to test the hypotheses. Contribution: The study contributes to knowledge management and firm innovativeness literature through advancing innovative culture as a mediating factor that accounts for the link between these two constructs, especially from an emerging economy perspective. The research findings also offer managerial implications for organizations in their quest to improve firm innovativeness. Findings: The results support that innovative culture significantly affects MNEs’ performance. Innovative culture enhances the capability of MNEs to be innovative that finally leads to the superior performance of firm innovativeness. Recommendations for Practitioners: According to this research, companies that exhibit an innovative culture, the acquisition of new information, the conversion of tacit knowledge into explicit knowledge, the application of knowledge, and the safeguarding of knowledge, all have a positive effect on their innovativeness. This means that for organizations to run an innovative MNE in Malaysia, a creative culture must be fostered since the current study has shown how it is seen as a catalyst that facilitates learning, transformation, and implementation of relevant knowledge. Recommendation for Researchers: Future studies should be carried out in other sectors aside from the manufacturing sector using the same scales used to measure knowledge management. Furthermore, a comparative analysis of knowledge management and firm innovativeness using innovative culture as a mediator should be researched in other developing economies. Impact on Society: While the main aim of this study was to better understand how and why MNEs operate the way they do, it had an indirect impact on the business and political tactics taken by CEOs and managers working in MNEs in developing countries, as this research has shown. Future Research: Future research should employ the methodology presented in this study and pursue this in other sectors, such as emerging and developed nations’ major businesses, to validate the results and further generalize the conclusions. Other methods should also be incorporated to investigate the other dimensions of MNEs’ performance, including market orientation, technology orientation, and entrepreneurial orientation.




the

China’s Halal Food Industry: The Link Between Knowledge Management Capacity, Supply Chain Practices, and Company Performance

Aim/Purpose: The study attempts to analyse the influences of knowledge management capacity on company performance and supply chain practices. It also examines whether supply chain practices significantly and positively impact company performance. Background: Knowledge management capacity is an essential tactical resource that enables the integration and coordination among supply chain stakeholders, but research examining the link between knowledge management capacity and supply chain practices and their impacts on company performance remains scarce. Methodology: The study uses correlation analysis and factor analysis to confirm the theoretical framework’s validity and structural equation modelling to test hypotheses. The data are obtained from 115 halal food firms in China (with a response rate of 82.7%). Contribution: This study’s findings contribute to the Social Capital Theory by presenting the impacts of different supply chain practices on company performance. The findings also suggest the impact of intangible resources on enhancing company performance, contributing to the Resource-based View Theory. These results are a crucial contribution to both academicians and corporate managers working in the Halal food industry. Managers can apply these findings to discover and adopt knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Findings: This study is an initial effort that provides empirical evidence regarding the relationships among supply chain, knowledge management, and company performance from the perspective of China’s halal food industry. The results prove that knowledge management capacity is the supply chains’ primary success determinant and influencer. Besides, knowledge management capacity positively influences company performance, and supply chain practices directly influence company performance. Recommendations for Practitioners: Managers can apply these study findings to determine and increase knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Recommendation for Researchers: The study presents a new theoretical framework and empirical evidence for surveying halal food businesses in China. Impact on Society: These results are a significant contribution to the research field and industry focusing on halal foods. Future Research: First, this research focuses only on halal food businesses in China; thus, it is essential to re-examine the hypothesized relations between the constructs in other Chinese business segments and regions. Next, the effect of variables and practices on the theorized framework should be taken into account and examined in other industries and nations.




the

The Influence of Soft Skills on Employability: A Case Study on Technology Industry Sector in Malaysia

Aim/Purpose: This research investigates the influence of soft skills on graduates’ employability in the technology industry, using the technology industry sector in Malaysia as a case. Background: Organizations are looking for appropriate mechanisms to hire qualified employees with strong soft skills and hard skills. This requires that job candidates possess a set of qualifications and skills which impact their employability. Methodology: Fuzzy Delphi analysis was conducted as preliminary study to identify the critical soft skills required by technology industry sector. The preliminary study produced ten critical soft skills to form a conceptual model of their influence on employability. Then, an online questionnaire survey was distributed in two industry companies in Malaysia to collect research data, and regression analysis was conducted to validate the conceptual model. Contribution: This research focuses on the influence of soft skills on graduate employability in the technology industry sector, since the selection of the best candidate in the industry will improve employee performance and lead to business success. Findings: The results of regression analysis confirmed that Communication skills, Attitude, Integrity, Learnability, Motivation, and Teamwork are significantly correlated with employability, which means that these soft skills are the critical factors for employability in Malaysian technology companies. Recommendations for Practitioners: The model proposed in this article can be used by employers to give better assessment of candidates’ compatibility with the jobs available. Impact on Society: This research highlights the critical soft skills required by technology industry sector, which will reduce the unemployment percentages among graduates. Future Research: More studies are required to examine the soft skills found in the literature and to define the most important skills from a general perspective of the industry. Future research should assess the moderating role of other variables, such as skills gap, employee performance, and employee knowledge. Furthermore, it is recommended to conduct similar studies of soft skills for employability in other countries.




the

Understanding the Determinants of Wearable Payment Adoption: An Empirical Study

Aim/Purpose: The aim of this study is to determine the variables which affect the intention to use Near Field Communication (NFC)-enabled smart wearables (e.g., smartwatches, rings, wristbands) payments. Background: Despite the enormous potential of wearable payments, studies investigating the adoption of this technology are scarce. Methodology: This study extends the Technology Acceptance Model (TAM) with four additional variables (Perceived Security, Trust, Perceived Cost, and Attractiveness of Alternatives) to investigate behavioral intentions to adopt wearable payments. The moderating role of gender was also examined. Data collected from 311 Kuwaiti respondents were analyzed using Structural Equation Modeling (SEM) and multi-group analysis (MGA). Contribution: The research model provided in this study may be useful for academics and scholars conducting further research into m-payments adoption, specifically in the case of wearable payments where studies are scarce and still in the nascent stage; hence, addressing the gap in existing literature. Further, this study is the first to have specifically investigated wearable payments in the State of Kuwait; therefore, enriching Kuwaiti context literature. Findings: This study empirically demonstrated that behavioral intention to adopt wearable payments is mainly predicted by attractiveness of alternatives, perceived usefulness, perceived ease of use, perceived security and trust, while the role of perceived cost was found to be insignificant. Recommendations for Practitioners: This study draws attention to the importance of cognitive factors, such as perceived usefulness and ease of use, in inducing users’ behavioral intention to adopt wearable payments. As such, in the case of perceived usefulness, smart wearable devices manufacturers and banks enhance the functionalities and features of these devices, expand on the financial services provided through them, and maintain the availability, performance, effectiveness, and efficiency of these tools. In relation to ease of use, smart wearable devices should be designed with an easy to use, high quality and customizable user interface. The findings of this study demonstrated the influence of trust and perceived security in motivating users to adopt wearable payments, Hence, banks are advised to focus on a relationship based on trust, especially during the early stages of acceptance and adoption of wearable payments. Recommendation for Researchers: The current study validated the role of attractiveness of alternatives, which was never examined in the context of wearable payments. This, in turn, provides a new dimension about a determinant factor considered by customers in predicting their behavioral intention to adopt wearable payments. Impact on Society: This study could be used in other countries to compare and verify the results. Additionally, the research model of this study could also be used to investigate other m-payments methods, such as m-wallets and P2P payments. Future Research: Future studies should investigate the proposed model in a cross-country and cross-cultural perspective with additional economic, environmental, and technological factors. Also, future research may conduct a longitudinal study to explain how temporal changes and usage experience affect users’ behavioral intentions to adopt wearable payments. Finally, while this study included both influencing factors and inhibiting factors, other factors such as social influence, perceived compatibility, personal innovativeness, mobility, and customization could be considered in future research.




the

The Nexus Between Learning Orientation, TQM Practices, Innovation Culture, and Organizational Performance of SMEs in Kuwait

Aim/Purpose: This paper aimed to examine the impact of learning orientation on organizational performance of small and medium enterprises (SMEs) via the mediating role of total quality management (TQM) practices and the moderating role of innovation culture. Background: SMEs’ organizational performance in developing countries, particularly in Kuwait, remains below expectation due to increasing competition and inadequate managerial practices that negatively impact their performance. Although several studies had revealed a significant effect of learning orientation on SMEs’ performance, the direct impact of learning orientation on their performance is still unclear. Thus, the link between learning orientation and organizational performance remains inconclusive and requires further examination. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. The data were collected by distributing a survey questionnaire to the owners and Chief Executive Officers (CEOs) of Kuwaiti SMEs using online and on-hand instruments with 384 useable data obtained. Furthermore, the partial least square-structural equation modeling (PLS-SEM) analysis was performed to test the hypotheses. Contribution: This study bridged the significant gap in the role of learning orientation on SMEs’ performance in developing countries, specifically Kuwait. In this sense, a conceptual model was introduced, comprising a learning orientation, TQM practices, innovation culture, and organizational performance. In addition, this study confirmed the significant influence of TQM practices and innovation culture as intermediate variables in strengthening the relationship between learning orientation and organizational performance, which has not yet been verified in Kuwait. Findings: The results in this study revealed that learning orientation had a significant impact on organizational performance of SMEs in Kuwait. It could be observed that TQM practices play an important role in mediating the relationship between learning orientation and performance of SMEs, as well as that innovation culture plays an important moderating role in the same relation. Recommendations for Practitioners: This study provided a framework for the decision-makers of SMEs on the significant impact of the antecedents that enhanced the level of organizational performance. Hence, owners/CEOs of SMEs should improve their awareness and knowledge of the importance of learning orientation, TQM practices, and innovation culture since it could significantly influence their performance to achieve success and sustainability when adopted and managed systematically. The CEOs should also consider building an innovation culture in the internal environment, which enables them to transform new knowledge and ideas into innovative methods and practices. Recommendation for Researchers: The results in this study highlighted the mediating effect of TQM practices on the relationship between learning orientation (the independent variable) and organizational performance (the dependent variable) of SMEs and the moderating effect of innovation culture in the same nexus. These relationships were not extensively addressed in SMEs and thus required further validation. Impact on Society: This study also influenced the management strategies and practices adopted by entrepreneurs and policymakers working in SMEs in developing countries, which is reflected in their development and the national economy. Future Research: Future studies should apply the conceptual framework of this study and assess it further in other sectors, including large firms in developing and developed countries, to generalize the results. Additionally, other mechanisms should be introduced as significant antecedents of SMEs’ performance, such as market orientation, technological orientation, and entrepreneurial orientation, which could function with learning orientation to influence organizational performance effectively.




the

The Roles of Knowledge Management and Cooperation in Determining Company Innovation Capability: A Literature Review

Aim/Purpose: The aim of this study is to develop a research model derived from relevant literature to guide empirical efforts. Background: Companies struggle to innovate, which is essential for improving their performance, surviving in competition, and growing. A number of studies have discussed company innovation capability, stating that innovation capability is influenced by several variables such as cooperation and knowledge management. Therefore, further research is necessary to identify factors playing a role in enhancing innovation capability. Methodology: This study is based on systematic literature review. The stages are: (1) research scope review, (2) comprehensive online research, (3) journal quality assessment, (4) data extraction from journals, (5) journal synthesis, and (6) comprehensive report. The online research used Google Scholar database, by browsing titles, abstracts, and keywords to locate empirical research studies in peer-reviewed journals published in 2010-2020. Furthermore, 62 related articles were found, of which 38 articles were excluded from further analysis and 24 articles were selected because they were more related to the topic. Contribution: The results of this study enrich the research in the field of knowledge management, cooperation, and innovation capability by developing a conceptual framework of innovation capability. The proposed theoretical model may be fundamental in addressing the need of a research model to guide further empirical efforts. Findings: This study provides a research model derived from systematically reviewing relevant literature. The proposed theoretical model was done by incorporating the aspects of knowledge management, cooperation, and innovation capability. The model shows that knowledge management and cooperation are essential aspects of innovation capability. Furthermore, this study also provides the dimensions and sub dimensions of each variable that was established after synthesizing the literature review. Recommendations for Practitioners: Business practitioners can use the identified predictors of innovation capability and the dimensions of each variable to explore their company’s innovation capability. They can also take the relevant variables into consideration when making policies regarding innovation. Recommendation for Researchers: The theoretical model proposed in this study needs validation with further empirical investigation. Impact on Society: Readers of this paper can obtain an understanding that knowledge management and cooperation are essential aspects to consider in enhancing innovation capability. Future Research: Future studies should explore other dimensions of knowledge management and cooperation through alternative approaches and perspectives.




the

The Effect of Visual Appeal, Social Interaction, Enjoyment, and Competition on Mobile Esports Acceptance by Urban Citizens

Aim/Purpose: This study investigated a model of mobile esports acceptance among urban citizens based on an extended Technology Acceptance Model (TAM). Background: Currently, esports are increasingly popular and in demand by the public. Supported by the widespread development of mobile devices, it has become an interactive market trend to play games in a new model, mobile esports. Methodology: This study collected data from 400 respondents and analyzed it using partial least squares-structural equation modeling (PLS-SEM). Contribution: This study addresses two research gaps. The first gap is limited esports information systems studies, particularly in mobile esports acceptance studies. The second gap is limited exploration of external variables in online gaming acceptance studies. Thus, this study proposed a TAM extended model by integrating the TAM native variables with other external variables such as visual appeal, enjoyment, social interaction, and competition to explore mobile esports acceptance by urban citizens. Findings: Nine hypotheses were accepted, and four were rejected. The visual appeal did not affect the acceptance. Meanwhile, social interaction and enjoyment significantly affected both perceived ease of use and usefulness. However, perceived ease of use surprisingly had an insignificant effect on attitude toward using mobile esports. Moreover, competition significantly affected the acceptance, particularly on perceived usefulness. Recommendations for Practitioners: Fresh and innovative features, such as new game items or themes, should be frequently introduced to enhance players’ continued enjoyment. Moreover, mobile esports providers should offer a solid platform to excite players’ interactions to increase the likelihood that users feel content. On the other hand, the national sports ministry/agency or responsible authorities should organize many esports competitions, big or small, to search for new talents. Recommendation for Researchers: Visual appeal in this study did not influence the perceived ease of use or usefulness. However, it could affect enjoyment. Thus, it would be worth revisiting the relationship between visual appeal and enjoyment. At the same time, perceived ease of use is a strong driver for the continued use of most online games, but not in this study. It could indicate significant differences between mobile esports and typical online games, one of which is the different purposes. Users might play online games for recreational intention, but players would use mobile esports to compete, win, or even get monetary rewards. Therefore, although users might find mobile esports challenging and hard to use, they tend to keep playing it. Thus, monetary rewards could be considered a determinant of the continuation of use. Impact on Society: Nowadays, users are being paid for playing games. It also would be an excel-lent job if they become professional esports athletes. This study investigated factors that could affect the continued use of mobile esports. Like other jobs, playing games professionally in the long term could make the players tedious and tired. Therefore, responsible parties, like mobile esports providers or governments, could use the recommendations of this study to promote positive behavior among the players. They will not feel like working and still con-sider playing mobile esports a hobby if they happily do the job. In the long run, the players could also make a nation’s society proud if they can be a champion in prestigious competitions. Future Research: A larger sample size will be needed to generalize the results, such as for a nation. It is also preferable if the sample is randomized systematically. Future works should also investigate whether the same results are acquired in other mobile esports. Furthermore, to extend our knowledge and deepen our understanding of the variables that influence mobile esports adoption, the subsequent research could look at other mobile esports acceptability based on characteristics of system functionality and moderator effects. Finally, longitudinal data-collecting approaches are suggested for future studies since behavior can change over time.




the

The View of IT-Consuming Firms on the Key Digital Service Capabilities of IT-Producing Firms

Aim/Purpose: This study focuses on the connection between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms, especially online shop operators. Background: The acquisition and integration of knowledge regarding digital service capabilities and performance can increase the level at which employees assimilate information, organize with IT-consuming firms, and cooperate with them to develop the delivery of services and customize services to fill their needs. Exploring capabilities that may enable this process is a prerequisite for all businesses offering digital services and, thus, an engrossing and ongoing interest of practitioners and scholars. However, there is a lack of research on the relationship between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms in the business-to-business (B2B) context. Methodology: The study builds on a survey conducted among small firms that have an online shop in use and are located in Finland. Contribution: The study offers empirical evidence for the capabilities valued by IT-consuming firms, providing a model for IT-producing firms to use when deciding on a future focus. The study was executed in a B2B setting from the viewpoint of online shop operators, presenting a novel understanding of influential digital service capabilities. Findings: Adaptability, determined by capabilities related to utilizing information gained via the integration of a digital product into other digital tools (e.g., marketing, personalization, and analytics), statistically significantly affects all three aspects of an IT-consuming firm’s digital service performance (financial, operational, and sales). Another product capability, availability, which includes aspects such as security, different aspects of functioning, and mobile adaptation, affects one aspect of digital performance, namely operational. The results also suggest that the role of service process-related capabilities in determining service comprehensiveness significantly influences two aspects of IT-consuming firms’ digital service performance: financial (negative effect) and operational (positive effect). The results show that the capabilities associated with the relationship between the producing firm and the consuming firm do not affect IT-consuming firms’ performance to the same extent. Recommendations for Practitioners: The study results suggest that IT-producing firms should concentrate on leveraging service comprehensiveness, as there has been a shift in the B2B context from merely selling a digital product and associated services. It seems that usability-related issues are now taken for granted, and the emphasis is on features that support the use of information to create value. Recommendation for Researchers: The results contribute to the capabilities literature by showing that the shift in focus from technical product-related capabilities to relationship-related capabilities is not yet evident among small online store operators. Impact on Society: In addition to offering tools with different integration possibilities, supporting IT-consuming firms in making the most of the possibilities would be very helpful. Future Research: The comprehension of the relationship between digital service capabilities and digital service performance would benefit from future research that takes into account additional control variables. The theoretical model of this study can be further studied by using other performance measures, such as market performance, as dependent variables.




the

The Relationship Between Critical Success Factors, Perceived Benefits, and Usage Intention of Mobile Knowledge Management Systems in the Malaysian Semiconductor Industry

Aim/Purpose: This study examined the relationship between critical success factors (CSFs), perceived benefits, and usage intention of Mobile Knowledge Management Systems (MKMS) via an integrated Technology Acceptance Model (TAM) and Information Systems Success Model (ISSM). Background: This study investigates the CSFs (i.e., Strategic Leadership, Employee Training, System Quality, and Information Quality) that impact the usage intention of KMS in mobile contexts which have been neglected. Since users normally consider the usefulness belief in a system before usage, this study examines the role of perceived benefits as a mediator between the CSFs and usage intention. Methodology: A survey-based research approach in the Malaysian semiconductor industry was employed via an integrated model of TAM and ISSM. At a response rate of 59.52%, the findings of this study were based on 375 usable responses. The data collected was analyzed using the Partial Least Squares with SmartPLS 3.0. Contribution: This study contributes to the body of knowledge in the areas of mobile technology acceptance and knowledge management. Specifically, it helps to validate the integrated model of TAM and ISSM with the CSFs from knowledge management and information system. In addition, it provides the would-be adopters of MKMS with valuable guidelines and insights to consider before embarking on the adoption stage. Findings: The findings suggest that Employee Training and Information Quality have a positive significant relationship with Perceived MKMS Benefits. On the contrary, Strategic Leadership, System Quality, and Perceived User-friendliness showed an insignificant relationship with Perceived MKMS Benefits. Additionally, Employee Training and Information Quality have an indirect relationship with MKMS Usage Intention which is mediated by Perceived MKMS Benefits. Recommendations for Practitioners: The findings are valuable for managers, engineers, KM practitioners, KM consultants, MKMS developers, and mobile device producers to enhance MKMS usage intention. Recommendation for Researchers: Researchers would be able to conduct more inter-disciplinary studies to better understand the relevant issues concerning both fields – knowledge management and mobile computing disciplines. Additionally, the mediation effect of TAM via Perceived Usefulness (i.e., perceived MKMS benefits) on usage intention of MKMS should be further investigated with other CSFs. Future Research: Future studies could perhaps include other critical factors from both KM and IS as part of the external variables. Furthermore, Perceived Ease of Use (i.e., Perceived User-friendly) should be tested as a mediator in the future, together with Perceived Usefulness (i.e., perceived MKMS Benefits) to compare which would be a more powerful predictor of usage intention. Moreover, it may prove interesting to find out how the research framework would fit into other industries to verify the findings of this study for better accuracy and generalizability.




the

Adoption of Telecommuting in the Banking Industry: A Technology Acceptance Model Approach

Aim/Purpose: Currently, the world faces unprecedented challenges due to COVID-19, particularly concerning individuals’ health and livelihood and organizations and industrial performance. Indeed, the pandemic has caused rapid intensifying socio-economic effects. For instance, organizations are shifting from traditional working patterns toward telecommuting. By adopting remote working, organizations might mitigate the impact of COVID-19 on their workforce, explicitly concerning their safety, wellbeing, mobility, work-life balance, and self-efficiency. From this perceptive, this study examines the factors that influence employees’ behavioral intention to adopt telecommuting in the banking industry. Background: The study’s relevance stems from the fact that telecommuting and its benefits have been assumed rather than demonstrated in the banking sector. However, the pandemic has driven the implementation of remote working, thereby revealing possible advantages of working from home in the banking industry. The study investigated the effect of COVID-19 in driving organizations to shift from traditional working patterns toward telecommuting. Thereby, the study investigates the banking sector employees’ behavioral intention to adopt telecommuting. Methodology: The study employed a survey-based questionnaire, which entails gathering data from employees of twelve banks in Jordan, as the banking sector in Jordan was the first to transform from traditional working to telecommuting. The sample for this research was 675 respondents; convenience sampling was employed as a sampling technique. Subsequently, the data were analyzed with the partial least square structural equation modeling (PLS-SEM) to statistically test the research model. Contribution: Firstly, this study provides a deep examination and understanding of facilitators of telecommuting in a single comprehensive model. Secondly, the study pro-vides a deeper insight into the factors affecting behavioral intention towards telecommuting from the employees’ perspective in the banking sector. Finally, this study is the first to examine telecommuting in the emerging market of Jordan. Thereby, this study provides critical recommendations for managers to facilitate the implementation of telecommuting. Findings: Using the Technology Acceptance Model (TAM), this study highlights significant relationships between telecommuting systems, quality, organizational support, and the perceived usefulness and ease of use in telecommuting. Employees who perceive telecommuting systems to be easy and receive supervision and training for using these systems are likely to adopt this work scheme. The results present critical theoretical and managerial implications regarding employees’ behavioral intentions toward telecommuting. Recommendations for Practitioners: This study suggests the importance of work-life balance for employees when telecommuting. Working from home while managing household duties can create complications for employees, particularly parents. Therefore, flexibility in terms of working hours is needed to increase employees’ acceptance of telecommuting as they will have more control over their life. These increase employees’ perceived self-efficacy with telecommuting, which smooths the transition toward remote working in the future. In addition, training will allow employees to solve technical issues that can arise from using online systems. Recommendation for Researchers: This study focused on the context of the banking sector. The sensitivity of data and transactions in this sector may influence employers’ and employees’ willingness to work remotely. In addition, the job descriptions of employees in banks moderate specific factors outlined in this model, including work-life balance. For instance, executive managers may have a higher overload in banks in contrast to front-line employees. Thus, future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Impact on Society: The COVID-19 pandemic created a sudden shift towards telecommuting, which made employees struggle to adopt new work schemes. Therefore, managers had to provide training for their employees to be well prepared and increase their acceptance of telecommuting. Furthermore, telecommuting has a positive effect on work-life balance, it provides employees with the flexibility to organize their daily schedule into more activities. Along the same line, the study highlighted the correlation between work-life balance and telecommuting. Such a relationship provides further evidence for the need to understand employees’ lifestyles in facilitating the adoption of telecommuting. Moreover, the study extends the stream of literature by outlining critical factors affecting employees’ acceptance of telecommuting. Future Research: Future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Furthermore, the research team conducted the study by surveying 12 banks. Future research recommends surveying the whole banking industry to add more validation to the model.




the

The Influence of Crisis Management, Risk-Taking, and Innovation in Sustainability Practices: Empirical Evidence From Iraq

Aim/Purpose: This study examines the impact of decision-making, crisis management, and decision-making on sustainability through the mediation of open innovation in the energy sector. Background: Public companies study high-performance practices, requiring overcoming basic obstacles such as financial crises that prevent the adoption and development of sustainability programs. Methodology: Due to the COVID-19 pandemic, which has led to the closure of businesses in Iraq, a survey was distributed. To facilitate responses, free consultations were offered to help complete the questionnaire quickly. Of the 435 questionnaires answered, 397 were used for further analysis. Contribution: The impact of crises that impede the energy sector from adopting sustainable environmental regulations is investigated in this study. Its identification of specific constraints to open innovation leads to the effectiveness of adopting environmentally friendly policies and reaching high levels of sustainable performance. Findings: The impacts of risk-taking, crisis management, and decision-making on sustainability have been explored. Results show that open innovation fully mediates the relationship between the factors of risk-taking, crisis management, decision-making, and sustainability. Recommendations for Practitioners: The proposed model can be used by practitioners to develop and improve sustainable innovation practices and achieve superior performance. Recommendation for Researchers: Researchers are recommended to conduct in-depth studies of the phenomenon based on theoretical and empirical foundations, especially in light of the relationship between crisis management, decision-making, and risk-taking and their impact on sustainability based on linear and non-compensatory relationships. Impact on Society: This study provides a reference for organizations with similar cultural backgrounds in adopting sustainable practices to minimize pollution in the Iraqi context. Future Research: A more in-depth study can be performed using a larger sample, which not only includes the energy industry but also other industries.




the

Towards a Framework on the Use of Infomediaries in Maternal mHealth in Rural Malawi

Aim/Purpose: The aim of the study is to explore factors that affect how healthcare clients in rural areas use infomediaries in maternal mHealth interventions. The study focuses on maternal healthcare clients who do not own mobile phones but use the mHealth intervention. Background: Maternal mHealth interventions in poor-resource settings are bedevilled by inequalities in mobile phone ownership. Clients who do not own mobile phones risk being excluded from benefiting from the interventions. Some maternal mHealth providers facilitate the access of mobile phones for those who do not own them using “infomediaries”. Infomediaries, in this case, refer to individuals who have custody of mobile phones that other potential beneficiaries may use. However, the use of infomediaries to offer access to the “have nots” may be influenced by a number of factors. Methodology: The study uses a case of a maternal mHealth intervention project in Malawi, as well as a qualitative research method and interpretive paradigm. Data was collected using secondary data from the implementing agency, semi-structured interviews, and focus group discussions. Empirical data was collected from maternal healthcare clients who do not own mobile phones and infomediaries. Data were analysed inductively using thematic analysis. Contribution: The study proposed a theoretical framework for studying infomediaries in ICT4D. The study may inform mHealth designers, implementers, and policymakers on how infomediaries could be implemented in a rural setting. Consequently, understanding the factors that affect the use of infomediaries may inform mHealth intervention implementers on how they could overcome the challenges by implementing mHealth interventions that reduce the challenges on the mHealth infomediaries side, and the maternal healthcare clients’ side. Findings: Characteristics of the maternal healthcare client, characteristics of the mHealth infomediary, perceived value of mHealth intervention, and socio-environmental factors affect maternal healthcare clients’ use of mHealth infomediaries. Recommendations for Practitioners: Implementers of interventions ought to manage the use of infomediaries to avoid volunteer fatigue and infomediaries who may not be compatible with the potential users of the intervention. Implementers could leverage traditional systems of identifying and using infomediaries instead of reinventing the wheel. Recommendation for Researchers: This research adopted a single case study to develop the theoretical framework for mHealth infomediary use. We recommend future studies are conducted in order to test and develop this framework further, not only in ICT4D, but also in other areas of application. Impact on Society: People still lack access. The lack of ownership of technology may still exclude them from participating in an information society. The use of infomediaries may help to provide access to technologies to those who do not have them thereby bridging the digital divide gap. Future Research: We propose herein that traditional systems may offer a good starting point for designing a system that would work for communities. We, therefore, recommend that future research may explore these possibilities.




the

Traits Contributing to the Promotion of the Individual’s Continuance Usage Intention and Perceived Value of M-University Services

Aim/Purpose: This study aims to examine the roles of key traits of m-university services and their users in promoting two crucial post-adoption outcomes of these services; namely, continuance usage intention and perceived value. Background: M-university (i.e., a university providing services via mobile technologies) has gained a great interest in the higher education sector as a driver of new business models and innovative service offerings. However, its assessment has been greatly overlooked, especially in evaluating the factors that drive the stakeholders’ continuance intention to use it and the determinants of its post-adoption perceived value. Consequently, research efforts undertaking such assessment facets empirically are highly required. Methodology: An integrated research model that enables such assessment was developed and evaluated using a quantitative research methodology. Accordingly, data were collected using a formulated closed-ended survey questionnaire. The target population consisted of the academic staff of a Saudi public university that has witnessed an extensive adoption of m-university services. The obtained data (i.e., 207 fully completed responses) were evaluated using the structural equation modeling approach. Contribution: To the best of our knowledge, this is the first study that gains the chance to provide the research community and m-service providers with new knowledge and understanding about the predictors that drive the continuance usage intention and value of m-university services. Findings: The findings showed that all of the examined traits of m-university services and their users (i.e., reliability, usability, customization, self-efficacy, and involvement) are having positive roles in promoting the continuance intention to use these services, while only two traits (i.e., reliability and involvement) contribute significantly to augmenting the perceived value. Recommendations for Practitioners: The study recommends developing effective design and implementation specifications that strengthen the contributions of the examined traits in the post-adoption stage of m-university services. Recommendation for Researchers: Further studies should be devoted to addressing the notable need to assess the factors influencing the adoption of m-university services, as well as to explore which ones are having significant roles in the attainment of post-adoption outcomes. Impact on Society: The empirical insights provided by the present study are essential for both university stakeholders and mobile service providers in their endeavors to improve the key aspects of the anticipated post-adoption outcomes of the provided services. Future Research: Further empirical investigations are needed to examine the roles of more m-university services and user traits in achieving a broad range of post-adoption outcomes of such services.




the

Drivers of the Consumers Adoption of Fintech Services

Aim/Purpose: This study aimed to explore the impact of environmental drivers and trust on consumers’ adoption of Fintech services in the Jordanian context. It had also evaluated the mediating role of trust on the relation between environmental drivers and consumers adoption of Fintech services. Background: The reviewed studies on Fintech adoption demonstrated a lack of focus on the role of external or environmental drivers on consumers’ intentions to use and continue to use of Fintech services. Amongst the analyzed studies, the majority had examined the role of consumers perception of services usefulness and ease of use while few had included some environmental variables within the investigated variables such as social influence and government support. Furthermore, shortage of Fintech adoption related research in the developing countries, especially the Jordanian context was noted. Methodology: The study conceptual model was derived from Social Cognitive Theory (SCT) and Technological Personal Environmental (TPE) framework. This study was a quantitative one that employed survey method to empirically address its research questions and test the proposed hypotheses. Jordanian residents over the age of 18 who are familiar with Fintech were targeted, and convenience sampling was applied to get representative sample. Data was assembled from 323 respondents using an online questionnaire. Partial Least Squares Structure Equation Modeling (PLS-SEM) was applied to analyze the gathered data through SMART-PLS software. Contribution: This article adds to the existing literature on multiple stands, as it adds to literature related to Fintech adoption, as well as the interaction between consumer environment and their level of adoption. It also enriches the limited literature on the influence of COVID-19 to drive consumer usage of innovative services. Moreover, it supplements the scarce literature on Fintech adoption in the Jordanian settings. Findings: The main findings revealed the positive influence of both environmental drivers and trust as predictors of consumer intention to use Fintech services. It had also asserted the positive mediating effect of trust on the relationship amongst environmental drivers and consumer usage intent. Recommendations for Practitioners: By understanding the importance of consumer environment and trust on encouraging consumer to adopt Fintech services, governments, policy makers and practitioners can utilize this knowledge to adopt their offered services. They need to work on enhancing the technological infrastructure, as well as establishing general technological knowledge. They also need to highlight the role of Fintech service in fighting Covid-19, by adhering to the social distancing rules. Moreover, they need to guarantee the security and reliability of the developed services to increase their level of trust in the offered services. Recommendation for Researchers: This research has confirmed the positive influence of consumer environment represented by social influence, government support, technological readiness, and COVID-19 on their adoption of Fintech services. It has also established the mediating influence of consumer trust on the relation between environmental drivers and consumer intent to use Fintech services. This area is unexplored and needs more validation. Impact on Society: By understanding the factors affecting the Jordanian society in adopting Fintech services, this research provides set of recommendation to the Jordanian government and policy makers that can lead for more adoption of the developed Fintech services, which in turn would lead to better services provided to the society as well as increasing the financial inclusion level in the Jordanian society. Future Research: Future research can explore other environmental variables that were not included in the current research. Future research can also investigate the moderating effect of personal attributes such as consumer’s demographics, or more personal attributes such as self-efficacy, inherit innovativeness or risk aversion. It can also examine the moderating effect of financial literacy and/ or technological background.




the

The Effect of Perceived Support on Repatriate Knowledge Transfer in MNCs: The Mediating Role of Repatriate Adjustment

Aim/Purpose: The present study examines the effect of perceived organisational and co-worker support on the adjustment of repatriates and its impact on their intention to transfer knowledge in multinational companies (MNCs). It also examines the relationship between perceived organisational support, co-worker support, and knowledge transfer through the mediating role of repatriate adjustment. Background: The ability of acquiring and utilising international knowledge is one of the core competitive advantages of MNCs. This knowledge is transferred by MNCs across their subsidiaries efficiently through repatriates, which will result in superior performance when compared to their local competitors. But in MNCs the expatriation process has been given more emphasis than the repatriation process; therefore, there is limited knowledge about repatriation knowledge transfer. Practically, the knowledge transferred by repatriates is not managed properly by the MNCs. Methodology: The proposed model was supported by Uncertainty Reduction Theory, Organisational Socialisation Theory, Organisational Support Theory, and Socialisation Resource Theory. The data were gathered from 246 repatriates working in Indian MNCs in the manufacturing and information technology sectors who had been on an international assignment for at least one year. The data obtained were analysed using Structural Equation Modeling (SEM) using AMOS 21 software. Contribution: The present study expands prior research on repatriate knowledge transfer by empirically investigating the mediating role of repatriate adjustment between perceived support and repatriate knowledge transfer in MNCs. The present study also highlights that organisational and co-worker support during repatriation is beneficial for repatriate knowledge transfer. It is important that MNCs initiate support practices during repatriation to motivate repatriates to transfer international knowledge. Findings: The results revealed that both perceived organisational and co-worker support had a significant role in predicting repatriate adjustment in MNCs. Furthermore, the results also revealed that perceived organisational and co-worker support increases repatriate knowledge transfer through repatriate adjustment in MNCs. Recommendations for Practitioners: This study indicates the role of management in motivating repatriates to transfer their knowledge to the organisation. The management of MNCs develop HR policies and strategies leading to high perceived organisational support, co-worker support, and repatriate adjustment. They need to pay particular attention to the factors that affect the repatriates’ intention to share knowledge with others in the organisation. Recommendation for Researchers: Researchers can use the validated measurement instrument which could be essential for the advancement of future empirical research on repatriate knowledge transfer. Impact on Society: The present study will assist MNCs in managing their repatriates during the repatriation process by developing an appropriate repatriation support system. This will help the repatriates to better adjust to their repatriation process which will motivate them to transfer the acquired knowledge. Future Research: Future research can adopt a longitudinal style to test the different levels of the adjustment process which will help in better understanding the repatriate adjustment process. Additionally, this model can be tested with the repatriates of other countries and in diverse cultures to confirm its external validity. Furthermore, future research can be done with the repatriates who go on an international assignment through their own initiative (self-initiated expatriates).




the

The International Case for Micro-Credentials for Life-Wide And Life-Long Learning: A Systematic Literature Review

Aim/Purpose: Systematic literature reviews seek to locate all studies that contain material of relevance to a research question and to synthesize the relevant outcomes of those studies. The primary aim of this paper was to synthesize both research and practice reports on micro-credentials (MCRs). Background: There has been an increase in reports and research on the plausibility of MCRs to support dynamic human skills development for an increasingly impatient and rapidly changing digital world. The integration of fast-paced emerging technologies and digitalization necessitate alternative learning paradigms. MCRs offer time, financial, and space flexibility and can be stacked into a larger qualification, thereby allowing for a broader range of transdisciplinary competencies within a qualification. However, MCRs often lack the academic rigor required for accreditation within existing disciplines. Methodology: The study followed the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta Analyses), which offers a rigorous method to enhance reporting quality. The study used both academic research and practice reports. Contribution: The paper makes a theoretical contribution to the discourse about the need for innovation within existing educational paradigms for continued relevance in a changing world. It also contributes to the debate on the role of MCRs in bridging the gap between practice and academia despite the growing difference between their interests, and the role that MCRs play in the social-economic plans of countries. Findings: The key findings are that investments in MCRs are mainly in the Science, Technology, Engineering and Mathematics (STEM) and Education sectors, and have taken place mainly in high-income countries and regions – contexts that particularly value practice-accredited MCRs. Low-income countries, by contrast, remain traditional and insist on MCRs that are formally accredited by a recognized academic institution. This contributes to a widening skills gap between low- and high-income countries or regions, which results in greater global disparities. There is also a growing divide between academia and practice concerning their interest in MCRs (a reflection of the rigor versus relevance debate), which partially explains why many global and larger organizations have gone on to create their own learning institutions. Recommendations for Practitioners: We recommend that educational mechanisms consider the critical importance of MCRs as part of innovative efforts for life-wide (different sectors) and life-long (same sector) learning, especially in low-income countries. MCRs provide dynamic mechanisms to fill skills gaps in an increasing ruthless international battle for talent. Recommendation for Researchers: We recommend focused research into skills and career pathways using MCRs while at the same time remaining responsive to transdisciplinary efforts and sensitive to global and local changes within any sector. Impact on Society: Work and society have transformed over time, and more so in the new digital age, yet academia has been slow in adapting to the changes, forcing organizations to create their own learning institutions or to use MCRs to fill the skills gap. The purpose of education goes beyond preparing individuals for work, extending further to creating an environment where individuals and governments seek their own social and economic outcomes. MCRs provide a flexible means for co-creation between individuals, education, organizations, and government that could stem global rising unemployment, social exclusion, and redundancy. Future Research: Future research should focus on the co-creation of MCRs between practitioners and academia.




the

The Extended TRA Model for the Assessment of Factors Driving Individuals’ Behavioral Intention to Use Cryptocurrency

Aim/Purpose: The aim of this study was to explore the factors driving individuals’ behavioral intention to use cryptocurrency in Saudi Arabia using the extended TRA model. Background: Despite the great potential of cryptocurrencies and the exponential growth of cryptocurrency use throughout the world, scholarly research on this topic remained scarce. Whereas prior studies are mostly done in developed countries or specific cultural contexts, limiting the generalizability of their results, they mainly used technology adoption models that cannot fully explain the acceptance of new technology involved with financial transactions such as cryptocurrency and provided contradictory evidence. Entire regions have been excluded from the research on this topic, including Saudi Arabia which has a high potential to increase the volume of cryptocurrency use. Methodology: This study extends the theory of reasoned action (TRA) with the factors from technology adoption models that proved relevant for this topic, namely perceived usefulness, perceived enjoyment, perceived innovativeness, and perceived risk with three sub-factors: security, financial, and privacy risk. Data are collected using a quantitative research methodology from 181 respondents residing in Saudi Arabia and then analyzed by several methods, including exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and structural equation modeling (SEM). Contribution: This study contributes to the scientific knowledge by extending the TRA model with a range of factors from the technology adoption field, thus enabling the analysis of this topic from human, financial, and technology perspectives and providing additional empirical evidence on the factors that previously either provided contradictory evidence or were not explored in this field. This research also provides the first empirical data on this topic in Saudi Arabia and enables further research on the topic and a comparison of the results. The study also contributes to practice by enhancing the actual understanding of the phenomena and providing valuable information and recommendations for governments, investors, merchants, developers, and the general population. Findings: The study found attitude, subjective norm, perceived usefulness, perceived enjoyment, personal innovativeness, privacy risk, and financial risk as significant predictors of the intention to use cryptocurrencies, whereas the influence of security risk was not found to be significant in Saudi Arabia. Recommendations for Practitioners: Using this study’s results, governments can create appropriate legal frameworks, developers can design fewer complex platforms, and merchants may create appropriate campaigns that emphasize the benefits of cryptocurrency use and transpire trust in cryptocurrency transactions by enhancing the factors with a positive impact, such as usefulness, enjoyment, and personal innovativeness while reducing concerns of potential users regarding the risky factors. By promoting a positive user experience, they can also improve attitudes and social norms towards cryptocurrencies, thus further stimulating the interest in their use. Recommendation for Researchers: As this study validated the influence of factors from technology, financial, and human-related fields, researchers may follow this approach to ensure a comprehensive analysis of this complex topic, especially as privacy risk was never examined in this context, while personal innovativeness, perceived enjoyment, financial, and security risk were explored in just a few studies. It is also recommended that researchers explore the impact of each part of subjective norms: social media, friends, and family, as well as how information on the benefits of cryptocurrencies affects the perception of the factors included. Impact on Society: Understanding the factors affecting cryptocurrency use can help utilize the full potential of cryptocurrencies, especially their benefits for developing countries reflected in safe, speedy, and low-cost financial transactions with no need for an intermediary. The research model of this study could also be used to investigate this topic in other contexts to discover similarities and differences, as well as to investigate other information systems. Future Research: Future studies should test this research model in similar and different contexts to determine whether its validity and study results depend on cultural and contextual factors. They can also include different or additional variables, or use mixed methods, as interviews would augment the comprehension of this topic. Future studies may also explore whether the impact of variables would remain the same if circumstances changed or use cases expanded, and how the preferences of the target population would change within a longitudinal time frame.




the

The Impacts of KM-Centred Strategies and Practices on Innovation: A Survey Study of R&D Firms in Malaysia

Aim/Purpose: The aim of this paper is to examine the influences of KM-centred strategies on innovation capability among Malaysian R&D firms. It also deepens understanding of the pathways and conditions to improve the innovation capability by assessing the mediating role of both KM practices, i.e., knowledge exploration practices, and knowledge exploitation practices. Background: Knowledge is the main organisational resource that is able to generate a competitive advantage through innovation. It is a critical success driver for both knowledge exploration and exploitation for firms to achieve sustainable competitive advantages. Methodology: A total of 320 questionnaires were disseminated to Malaysian R&D firms and the response rate was 47 percent. The paper utilised structural equation modelling and cross-sectional design to test hypotheses in the proposed research model. Contribution: This paper provides useful information and valuable initiatives in exploring the mediating role of knowledge exploration and knowledge exploitation in influencing innovation in Malaysian R&D firms. It helps R&D firms to frame their KM activities to drive the capability of creating and retaining a greater value onto their core business competencies. Findings: The findings indicate that all three KM-centred strategies (leadership, HR practices, and culture) have a direct effect on innovation. In addition, KM exploration practices mediate HR practices on innovation while KM exploitation mediates both leadership and HR practices on innovation. Recommendations for Practitioners: This paper serves as a guide for R&D managers to determine the gaps and appropriate actions to collectively achieve the desired R&D results and national innovation. It helps R&D firms frame their KM activities to enhance the capability of creating and retaining a greater value to their core business competencies. Recommendation for Researchers: This paper contributes significantly to knowledge management and innovation research by establishing new associations among KM-centred strategies, i.e., leadership, HR practices, and culture, both KM practices (knowledge exploration and knowledge exploitation), and innovation. Impact on Society: This paper highlights the important role of knowledge leaders and the practice of effective HR practices to help R&D firms to create a positive environment that facilitates both knowledge exploration and knowledge exploitation in enhancing innovation capabilities. Future Research: Further research could use a longitudinal sample to examine relationships of causality, offering a more comprehensive view of the effect of KM factors on innovation over the long term. Future research should also try to incorporate information from new external sources, such as customers or suppliers.




the

Modeling the Impact of Covid-19 on the Farm Produce Availability and Pricing in India

Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India.




the

NOTICE OF RETRACTION: The Influence of Ethical and Transformational Leadership on Employee Creativity in Malaysia's Private Higher Education Institutions: The Mediating Role of Organizational Citizenship Behaviour

Aim/Purpose: ************************************************************************ After its investigation, the Research Ethics, Integrity, and Governance team at RMIT University found that the primary author of this paper breached the Australian Code and/or RMIT Policy and requested that the article be retracted. ************************************************************************** This paper aimed to examine the influence of ethical and transformational leadership on employee creativity in Malaysia’s private higher education institutions (PHEIs) and the mediating role of organizational citizenship behavior. Background: To ensure their survival and success in today’s market, organizations need people who are creative and driven. Previous studies have demonstrated the importance of ethical leadership in fostering employee innovation and good corporate responsibility. Research on ethical leadership and transformational leadership, in particular, has played a significant role in elucidating the role of leadership in relation to organizational citizenship behavior (OCB). In this study, we have focused on ethical and transformational leadership as an antecedent for enhancing employee creativity. Despite an increase in leadership research, little is known about the underlying mechanisms that link ethical leadership and transformational leadership to OCB. Because it sheds light on factors other than ethical leadership and transformational leadership that influence employees’ extra-role activity, this research is relevant theoretically. OCB may have a mediating function between ethical leadership and transformational leadership style and employee creativity because it is associated with the greatest outcomes, but empirical research has yet to prove this. So, one of the study’s goals is to add to the hypotheses about how ethical leadership style and transformational leadership affect employee creativity by using an important mediating variable – OCB. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. A convenient sampling approach was used to gauge 275 employees from Malaysia’s PHEIs. To test the hypotheses and obtain a conclusion, the acquired data was analyzed using the partial least square technique (PLS-SEM). Contribution: The study contributes to leadership literature by advancing OCB as a mediating factor that accounts for the link between ethical and transformational leadership and employee creativity in the higher education sector. Findings: According to the research, OCB has a substantial influence on the creativity of employees. Furthermore, ethical leadership boosted OCB and boosted employee creativity, according to the research. OCB and employee creativity have both been demonstrated to benefit greatly from transformational leadership. Further research revealed that OCB is a mediating factor in the link between leadership styles and creative thinking among employees. Recommendations for Practitioners: Higher education institutions should focus on developing leaders who value transparency and self-awareness in their interactions with followers and who demonstrate an inner moral perspective in addition to balanced information processing to ensure positive outcomes at the individual and organizational levels. Higher education institutions should place a priority on hiring leaders that exhibit ethical and transformational traits to raise awareness of these leadership styles among employees. Recommendation for Researchers: The new study also adds significantly to the body of knowledge by examining the relationship between ethical and transformational leadership and the creativity of the workforce. It aimed to identify the relationship between transformational leadership style and individual creativity in higher education by examining the mediating influence of OCB. Impact on Society: Higher education institutions should devise strategies for developing ethical and transformative leaders who will assist boost OCB and creativity within their workforce. Students and faculty in higher education can benefit from these leadership methods by learning to think in more diverse ways and by developing thought processes that lead to a larger pool of innovative ideas and solutions. As a consequence, employees who show creative behavior may be effectively managed by leaders who utilize ethical and transformational leadership styles and motivate them to show OCB that allow them to solve creative problems creatively. Future Research: A mixed-methods approach should be used in future research, and this should be done in public institutions in developing and developed nations to put the findings to use and generalize them even further. Future research will be able to examine other mediators to learn more about how and why ethical and transformational leadership styles affect PHEI employees’ creativity.




the

Dark Side of Mobile Phone Technology: Assessing the Impact of Self-Phubbing and Partner-Phubbing on Life Satisfaction

Aim/Purpose: The study aims to explore the attributes of self-phubbing and partner-phubbing, as well as their impact on marital relationship satisfaction and the quality of communication. Furthermore, it aims to comprehend how these characteristics could impact an individual’s total level of life satisfaction. Background: The study aims to establish a clear association between specific mobile phone usage behaviors and their subsequent impact on relationship satisfaction and the quality of communication. This study investigates the effects of two types of behaviors on interpersonal relationships: self-phubbing, which refers to an individual being deeply absorbed in their own mobile phone use, and partner-phubbing, which refers to witnessing one’s partner being deeply absorbed in a mobile device. Methodology: This study utilizes a quantitative approach. The poll involved 150 smartphone users in Malaysia who are in relationships, and they participated by completing a questionnaire. The data analysis was performed using the Partial Least Squares-based Structural Equation Modeling method. Contribution: This research addresses the gap and gives insight into the consequences of self and partner phubbing and its impact on the relationship and life satisfaction among partners by providing a research model that was validated with primary data. Findings: The results of this survey show that smartphone conflicts harm relationship satisfaction but not communication quality. It was revealed that communication quality does not directly bring a negative impact on life satisfaction, but it directly affects relationship satisfaction, which, in turn, harms life satisfaction. Recommendations for Practitioners: The findings of this study can be used by practitioners to improve relationship counseling and therapy. Through the integration of the notion of phubbing and its impact on relationship happiness, couples can receive guidance on how to reduce the tension that arises from using smartphones. Recommendation for Researchers: Previous research was conducted exclusively on only an individual’s phubbing behavior, but limited work was done on the partner’s phubbing behavior. Future researchers can enhance this model by identifying more factors. Impact on Society: This study addresses broader societal ramifications in addition to the dynamics of particular relationships. This study promotes a more mindful use of smartphones by exposing the complex relationships between technology use, relationship happiness, and general life contentment. This will ultimately lead to healthier relationships and improved societal well-being. Future Research: In the future, we are going to implement an artificial neural network approach to test this data to predict the most important factors that influence phubbing.




the

Maternal Recommender System Systematic Literature Review: State of the Art and Future Studies

Aim/Purpose: This paper illustrates the potential of health recommender systems (HRS) to support and enhance maternal care. The study aims to explore the recent implementations of maternal HRS and to discover the challenges of the implementations. Background: The sustainable development goals (SDG) aim to reduce maternal mortality to less than 70 per 100,000 live births by 2030. However, progress is uneven between countries, with primary causes being severe bleeding, infections, high blood pressure, and failed abortions. Regular antenatal care (ANC) visits are crucial for detecting and managing complications, such as hypertensive illnesses, anemia, and gestational diabetes mellitus. Utilizing maternal evaluations during ANC visits can help identify and treat problems early, lowering morbidity and death rates for both mothers and fetuses. Technology-enabled daily health recording can help monitor pregnancy by providing actionable guides to patients and health workers based on patient status. Methodology: A systematic literature review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify maternal HRS reported in studies between November 2022 and December 2022. Information was subsequently extracted to understand the potential benefits of maternal HRS. Titles and abstracts of 1,851 studies were screened for the full-text screening, in which two reviewers independently selected articles and systematically extracted data using a predefined extraction form. Contribution: This study adds to the explorations of the challenges of implementing HRS for maternal care. This study also emphasizes the significance of explainability, data-driven methodologies, automation, and the necessity for integration and interoperability in the creation and deployment of health recommendation systems for maternity care. Findings: The majority of maternal HRS use a knowledge-based (constraint-based) ap-proach with more than half of the studies generating recommendations based on rules defined by experts or available guidelines. We also derived four types of interfaces that can be used for delivering recommendations. Moreover, patient health records as data sources can hold data from patients’ or health workers’ input or directly from the measurement devices. Finally, the number of studies in the pilot or demonstration stage is twice that in the sustained stages. We also discovered crucial challenges where the explainability of the methods was needed to ensure trustworthiness, comprehensibility, and effective enhancement of the decision-making process. Automatic data collection was also required to avoid complexity and reduce workload. Other obstacles were also identified where data integration between systems should be established and decent connectivity must be provided so that complete services can be admin-istered. Lastly, sustainable operations would depend on the availability of standards for integration and interoperability as well as sufficient financial sup-port. Recommendations for Practitioners: Developers of maternal HRS should consider including the system in the main healthcare system, providing connectivity, and automation to deliver better service and prevent maternal risks. Regulations should also be established to support the scale-up. Recommendation for Researchers: Further research is needed to do a thorough comparison of the recommendation techniques used in maternal HRS. Researchers are also recommended to explore more on this topic by adding more research questions. Impact on Society: This study highlights the lack of sustainability studies, the potential for scaling up, and the necessity for a comprehensive strategy to integrate the maternal recommender system into the larger maternal healthcare system. Researchers can enhance and improve health recommendation systems for maternity care by focusing on these areas, which will ultimately increase their efficacy and facilitate clinical practice integration. Future Research: Additional research can concentrate on creating and assessing methods to increase the explainability and interpretability of data-driven health recommender systems and integrating automatic measurement into the traditional health recommender system to enhance the anticipated outcome of antenatal care. Comparative research can also be done to assess how well various models or algorithms utilized in these systems function. Future research can also examine creative solutions to address resource, infrastructure, and technological constraints, such as connectivity and automation to help address the shortage of medical personnel in remote areas, as well as define tactics for long-term sustainability and integration into current healthcare systems.




the

Epidemic Intelligence Models in Air Traffic Networks for Understanding the Dynamics in Disease Spread - A Case Study

Aim/Purpose: The understanding of disease spread dynamics in the context of air travel is crucial for effective disease detection and epidemic intelligence. The Susceptible-Exposed-Infectious-Recovered-Hospitalized-Critical-Deaths (SEIR-HCD) model proposed in this research work is identified as a valuable tool for capturing the complex dynamics of disease transmission, healthcare demands, and mortality rates during epidemics. Background: The spread of viral diseases is a major problem for public health services all over the world. Understanding how diseases spread is important in order to take the right steps to stop them. In epidemiology, the SIS, SIR, and SEIR models have been used to mimic and study how diseases spread in groups of people. Methodology: This research focuses on the integration of air traffic network data into the SEIR-HCD model to enhance the understanding of disease spread in air travel settings. By incorporating air traffic data, the model considers the role of travel patterns and connectivity in disease dissemination, enabling the identification of high-risk routes, airports, and regions. Contribution: This research contributes to the field of epidemiology by enhancing our understanding of disease spread dynamics through the application of the SIS, SIR, and SEIR-HCD models. The findings provide insights into the factors influencing disease transmission, allowing for the development of effective strategies for disease control and prevention. Findings: The interplay between local outbreaks and global disease dissemination through air travel is empirically explored. The model can be further used for the evaluation of the effectiveness of surveillance and early detection measures at airports and transportation hubs. The proposed research contributes to proactive and evidence-based strategies for disease prevention and control, offering insights into the impact of air travel on disease transmission and supporting public health interventions in air traffic networks. Recommendations for Practitioners: Government intervention can be studied during difficult times which plays as a moderating variable that can enhance or hinder the efficacy of epidemic intelligence efforts within air traffic networks. Expert collaboration from various fields, including epidemiology, aviation, data science, and public health with an interdisciplinary approach can provide a more comprehensive understanding of the disease spread dynamics in air traffic networks. Recommendation for Researchers: Researchers can collaborate with international health organizations and authorities to share their research findings and contribute to a global understanding of disease spread in air traffic networks. Impact on Society: This research has significant implications for society. By providing a deeper understanding of disease spread dynamics, it enables policymakers, public health officials, and practitioners to make informed decisions to mitigate disease outbreaks. The recommendations derived from this research can aid in the development of effective strategies to control and prevent the spread of infectious diseases, ultimately leading to improved public health outcomes and reduced societal disruptions. Future Research: Practitioners of the research can contribute more effectively to disease outbreaks within the context of air traffic networks, ultimately helping to protect public health and global travel. By considering air traffic patterns, the SEIR-HCD model contributes to more accurate modeling and prediction of disease outbreaks, aiding in the development of proactive and evidence-based strategies to manage and mitigate the impact of infectious diseases in the context of air travel.




the

Multiple Models in Predicting Acquisitions in the Indian Manufacturing Sector: A Performance Comparison

Aim/Purpose: Acquisitions play a pivotal role in the growth strategy of a firm. Extensive resources and time are dedicated by a firm toward the identification of prospective acquisition candidates. The Indian manufacturing sector is currently experiencing significant growth, organically and inorganically, through acquisitions. The principal aim of this study is to explore models that can predict acquisitions and compare their performance in the Indian manufacturing sector. Background: Mergers and Acquisitions (M&A) have been integral to a firm’s growth strategy. Over the years, academic research has investigated multiple models for predicting acquisitions. In the context of the Indian manufacturing industry, the research is limited to prediction models. This research paper explores three models, namely Logistic Regression, Decision Tree, and Multilayer Perceptron, to predict acquisitions. Methodology: The methodology includes defining the accounting variables to be used in the model which have been selected based on strong theoretical foundations. The Indian manufacturing industry was selected as the focus, specifically, data for firms listed in the Bombay Stock Exchange (BSE) between 2010 and 2022 from the Prowess database. There were multiple techniques, such as data transformation and data scrubbing, that were used to mitigate bias and enhance the data reliability. The dataset was split into 70% training and 30% test data. The performance of the three models was compared using standard metrics. Contribution: The research contributes to the existing body of knowledge in multiple dimensions. First, a prediction model customized to the Indian manufacturing sector has been developed. Second, there are accounting variables identified specific to the Indian manufacturing sector. Third, the paper contributes to prediction modeling in the Indian manufacturing sector where there is limited research. Findings: The study found significant supporting evidence for four of the proposed hypotheses indicating that accounting variables can be used to predict acquisitions. It has been ascertained that statistically significant variables influence acquisition likelihood: Quick Ratio, Equity Turnover, Pretax Margin, and Total Sales. These variables are intrinsically linked with the theories of liquidity, growth-resource mismatch, profitability, and firm size. Furthermore, comparing performance metrics reveals that the Decision Tree model exhibits the highest accuracy rate of 62.3%, specificity rate of 66.4%, and the lowest false positive ratio of 33.6%. In contrast, the Multilayer Perceptron model exhibits the highest precision rate of 61.4% and recall rate of 64.3%. Recommendations for Practitioners: The study findings can help practitioners build custom prediction models for their firms. The model can be developed as a live reference model, which is continually updated based on a firm’s results. In addition, there is an opportunity for industry practitioners to establish a benchmark score that provides a reference for acquisitions. Recommendation for Researchers: Researchers can expand the scope of research by including additional classification modeling techniques. The data quality can be enhanced by cross-validation with other databases. Textual commentary about the target firms, including management and analyst quotes, provides additional insight that can enhance the predictive power of the models. Impact on Society: The research provides insights into leveraging emerging technologies to predict acquisitions. The theoretical basis and modeling attributes provide a foundation that can be further expanded to suit specific industries and firms. Future Research: There are opportunities to expand the scope of research in various dimensions by comparing acquisition prediction models across industries and cross-border and domestic acquisitions. Additionally, it is plausible to explore further research by incorporating non-financial data, such as management commentary, to augment the acquisition prediction model.




the

Investigating Factors Affecting the Intention to Use Mobile Health from a Holistic Perspective: The Case of Small Cities in China

Aim/Purpose: This study aims to develop a comprehensive conceptual framework that incorporates personal characteristics, social context, and technological features as significant factors that influence the intention of small-city users in China to use mobile health. Background: Mobile health has become an integral part of China’s health management system innovation, the transformation of the health service model, and a necessary government measure for promoting health service parity. However, mobile health has not yet been widely adopted in small cities in China. Methodology: The study utilized a quantitative approach whereby web-based questionnaires were used to collect data from 319 potential users in China using China’s health management system. The data was analyzed using the PLS-SEM (the partial least squares-structural equation modeling) approach. Contribution: This study integrates the protection motivation theory (PMT), which compensates for the limitations of the unified theory of acceptance and use of technology theory (UTAUT) and is a re-examination of PMT and UTAUT in a small city context in China. Findings: The findings indicate that attitude and perceived vulnerability in the personal characteristic factors, social influence and facilitating conditions in the social context factors, and performance expectancy in the technological feature factors influence users’ intention to use mobile health in small cities in China. Recommendations for Practitioners: This study provides feasible recommendations for mobile health service providers, medical institutions, and government agencies based on the empirical results. Recommendation for Researchers: As for health behavior, researchers should fully explain the intention of mobile health use in terms of holism and health behavior theory. Impact on Society: This study aims to increase users’ intention to use mobile health in small cities in China and to maximize the social value of mobile health. Future Research: Future research should concentrate on the actual usage behavior of users and simultaneously conduct a series of longitudinal studies, including studies on continued usage behavior, abandonment behavior, and abandoned-and-used behavior.




the

Determinants of the Intention to Use Big Data Analytics in Banks and Insurance Companies: The Moderating Role of Managerial Support

Aim/Purpose: The aim of this research paper is to suggest a comprehensive model that incorporates the technology acceptance model with the task-technology fit model, information quality, security, trust, and managerial support to investigate the intended usage of big data analytics (BDA) in banks and insurance companies. Background: The emergence of the concept of “big data,” prompted by the widespread use of connected devices and social media, has been pointed out by many professionals and financial institutions in particular, which makes it necessary to assess the determinants that have an impact on behavioral intention to use big data analytics in banks and insurance companies. Methodology: The integrated model was empirically assessed using self-administered questionnaires from 181 prospective big data analytics users in Moroccan banks and insurance firms and examined using partial least square (PLS) structural equation modeling. The results cover sample characteristics, an analysis of the validity and reliability of measurement models’ variables, an evaluation of the proposed hypotheses, and a discussion of the findings. Contribution: The paper makes a noteworthy contribution to the BDA adoption literature within the finance sector. It stands out by ingeniously amalgamating the Technology Acceptance Model (TAM) with Task-Technology Fit (TTF) while underscoring the critical significance of information quality, trust, and managerial support, due to their profound relevance and importance in the finance domain. Thus showing BDA has potential applications beyond the finance sector. Findings: The findings showed that TTF and trust’s impact on the intention to use is considerable. Information quality positively impacted perceived usefulness and ease of use, which in turn affected the intention to use. Moreover, managerial support moderates the correlation between perceived usefulness and the intention to use, whereas security did not affect the intention to use and managerial support did not moderate the influence of perceived ease of use. Recommendations for Practitioners: The results suggest that financial institutions can improve their adoption decisions for big data analytics (BDA) by understanding how users perceive it. Users are predisposed to use BDA if they presume it fits well with their tasks and is easy to use. The research also emphasizes the importance of relevant information quality, managerial support, and collaboration across departments to fully leverage the potential of BDA. Recommendation for Researchers: Further study may be done on other business sectors to confirm its generalizability and the same research design can be employed to assess BDA adoption in organizations that are in the advanced stage of big data utilization. Impact on Society: The study’s findings can enable stakeholders of financial institutions that are at the primary stage of big data exploitation to understand how users perceive BDA technologies and the way their perception can influence their intention toward their use. Future Research: Future research is expected to conduct a comparison of the moderating effect of managerial support on users with technical expertise versus those without; in addition, international studies across developed countries are required to build a solid understanding of users’ perceptions towards BDA.




the

The Segmentation of Mobile Application Users in The Hotel Booking Journey

Aim/Purpose: This study aims to create customer segmentation who use Online Travel Agent (OTA) mobile applications in Indonesia throughout their hotel booking journey. Background: In the context of mobile hotel booking applications, research analyzing the customer experience at each customer journey stage is scarce. However, literature increasingly acknowledges the significance of this stage in comprehending customer behavior and revenue streams. Methodology: This study employs a mixed-method and exploratory approach by doing in-depth interviews with 20 participants and questionnaires from 207 participants. Interview data are analyzed using thematic analysis, while the questionnaires are analyzed using descriptive statistics. Contribution: This study enriches knowledge in understanding customer behavior that considers the usage of mobile apps as a segmentation criterion in the hotel booking journey. Findings: We developed four user personas (no sweat player, spotless seeker, social squad, and bargain hunter) that show customer segmentation based on the purpose, motivation, and actions in each journey stage (inspiration, consideration, reservation, and experience). Recommendations for Practitioners: The resulting customer segmentation enables hospitality firms to improve their current services by adapting to the needs of various segments and avoiding unanticipated customer pain points, such as incomplete information, price changes, no social proof, and limited payment options. Recommendation for Researchers: The quality and robustness of the customer segment produced in this study can be further tested based on the criteria of homogeneity, size, potential benefits, segment stability, segment accessibility, segment compatibility, and segment actionability. Impact on Society: This study has enriched the existing literature by establishing a correlation between user characteristics and how they use smartphones for tourism planning, focusing on hotel booking in mobile applications. Future Research: For future research, each customer segment’s demographic and behavioral factors can be explored further.




the

Antecedents of Business Analytics Adoption and Impacts on Banks’ Performance: The Perspective of the TOE Framework and Resource-Based View

Aim/Purpose: This study utilized a comprehensive framework to investigate the adoption of Business Analytics (BA) and its effects on performance in commercial banks in Jordan. The framework integrated the Technological-Organizational-Environmental (TOE) model, the Diffusion of Innovation (DOI) theory, and the Resource-Based View (RBV). Background: The recent trend of utilizing data for business operations and decision-making has positively impacted organizations. Business analytics (BA) is a leading technique that generates valuable insights from data. It has gained considerable attention from scholars and practitioners across various industries. However, guidance is lacking for organizations to implement BA effectively specific to their business contexts. This research aims to evaluate factors influencing BA adoption by Jordanian commercial banks and examine how its implementation impacts bank performance. The goal is to provide needed empirical evidence surrounding BA adoption and outcomes in the Jordanian banking sector. Methodology: The study gathered empirical data by conducting an online questionnaire survey with senior and middle managers from 13 commercial banks in Jordan. The participants were purposefully selected, and the questionnaire was designed based on relevant and well-established literature. A total of 307 valid questionnaires were collected and considered for data analysis. Contribution: This study makes a dual contribution to the BA domain. Firstly, it introduces a research model that comprehensively examines the factors that influence the adoption of BA. The proposed model integrates the TOE framework, DOI theory, and RBV theory. Combining these frameworks allows for a comprehensive examination of BA adoption in the banking industry. By analyzing the technological, organizational, and environmental factors through the TOE framework, understanding the diffusion process through the DOI theory, and assessing the role of resources and capabilities through the RBV theory, researchers and practitioners can better understand the complex dynamics involved. This integrated approach enables a more nuanced assessment of the factors that shape BA adoption and its subsequent impact on business performance within the banking industry. Secondly, it uncovers the effects of BA adoption on business performance. These noteworthy findings stem from a rigorous analysis of primary data collected from commercial banks in Jordan. By presenting a holistic model and delving into the implications for business performance, this research offers valuable insights to researchers and practitioners alike in the field of BA. Findings: The findings revealed that various technological (data quality, complexity, compatibility, relative advantage), organizational (top management support, organizational readiness), and environmental (external support) factors are crucial in shaping the decision to adopt BA. Furthermore, the study findings demonstrated a positive relationship between BA adoption and performance outcomes in Jordanian commercial banks. Recommendations for Practitioners: The findings suggest that Jordanian commercial banks should enforce data quality practices, provide clear standards, invest in data quality tools and technologies, and conduct regular data audits. Top management support is crucial for fostering a data-driven decision-making culture. Organizational readiness involves having the necessary resources and skilled personnel, as well as promoting continuous learning and improvement. Highlighting the benefits of BA helps overcome resistance to technological innovation and encourages adoption by demonstrating improved decision-making processes and operational efficiency. Furthermore, external support is crucial for banks to adopt Business Analytics (BA). Banks should partner with experienced vendors to gain expertise and incorporate best practices. Vendors also provide training and technical support to overcome technological barriers. Compatibility is essential for optimal performance, requiring managers to modify workflows and IT infrastructure. Complexity, including data, organizational, and technical complexities, is a major obstacle to BA adoption. Banks should take a holistic approach, focusing on people, processes, and technology, and prioritize data quality and governance. Building a skilled team, fostering a data-driven culture, and investing in technology and infrastructure are essential. Recommendation for Researchers: The integration of the TOE framework, the DOI theory, and the RBV theory can prove to be a powerful approach for comprehensively analyzing the various factors that influence BA adoption within the dynamic banking industry. Furthermore, this combined framework enables us to gain deeper insights into the subsequent impact of BA adoption on overall business performance. Impact on Society: Examining the factors influencing BA adoption in the banking industry and its subsequent impact on business performance can have wide-ranging societal implications. It can promote data-driven decision-making, enhance customer experiences, strengthen fraud detection, foster financial inclusion, contribute to economic growth, and trigger discussions on ethical considerations. Future Research: To further advance future research, there are several avenues to consider. One option is to broaden the scope by including a larger sample size, allowing for a more comprehensive analysis. Another possibility is to investigate the impact of BA adoption on various performance indicators beyond the ones already examined. Additionally, incorporating qualitative research methods would provide a more holistic understanding of the organizational dynamics and challenges associated with the adoption of BA in Jordanian commercial banks.




the

How Information Security Management Systems Influence the Healthcare Professionals’ Security Behavior in a Public Hospital in Indonesia

Aim/Purpose: This study analyzes health professionals’ information security behavior (ISB) as health information system (HIS) users concerning associated information security controls and risks established in a public hospital. This work measures ISB using a complete measuring scale and explains the relevant influential factors from the perspectives of Protection Motivation Theory (PMT) and General Deterrence Theory (GDT) Background: Internal users are the primary source of security concerns in hospitals, with malware and social engineering becoming common attack vectors in the health industry. This study focuses on HIS user behavior in developing countries with limited information security policies and resources. Methodology: The research was carried out in three stages. First, a semi-structured interview was conducted with three hospital administrators in charge of HIS implementation to investigate information security controls and threats. Second, a survey of 144 HIS users to determine ISB based on hospital security risk. Third, a semi-structured interview was conducted with 11 HIS users to discuss the elements influencing behavior and current information security implementation. Contribution: This study contributes to ISB practices in hospitals. It discusses how HIS managers could build information security programs to enhance health professionals’ behavior by considering PMT and GDT elements. Findings: According to the findings of this study, the hospital has implemented particular information security management system (ISMS) controls based on international standards, but there is still room for improvement. Insiders are the most prevalent information security dangers discovered, with certain working practices requiring HIS users to disclose passwords with others. The top three most common ISBs HIS users practice include appropriately disposing of printouts, validating link sources, and using a password to unlock the device. Meanwhile, the top three least commonly seen ISBs include transferring sensitive information online, leaving a password in an unsupervised area, and revealing sensitive information via social media. Recommendations for Practitioners: Hospital managers should create work practices that align with information security requirements. HIS managers should provide incentives to improve workers’ perceptions of the benefit of robust information security measures. Recommendation for Researchers: This study suggests more research into the components that influence ISB utilizing diverse theoretical foundations such as Regulatory Focus Theory to compare preventive and promotion motivation to enhance ISB. Impact on Society: This study can potentially improve information security in the healthcare industry, which has substantial risks to human life but still lags behind other vital sector implementations. Future Research: Future research could look into the best content and format for an information security education and training program to promote the behaviors of healthcare professionals that need to be improved based on this ISB measurement and other influential factors.




the

The Implications of Knowledge-Based HRM Practices on Open Innovations for SMEs in the Manufacturing Sector

Aim/Purpose: The main aim of this study was to investigate the impact of knowledge-based Human Resources Management (HRM) practices on inbound and outbound open innovation in Jordanian small and medium enterprises (SMEs). Background: SMEs in Jordan lack tangible resources. This insufficiency can be remedied by using knowledge as a resource. According to the Knowledge-Based View (KBV) theory, which posits knowledge as the most valuable resource, SMEs can achieve open innovation by implementing knowledge-based HRM practices that enhance the utilization of knowledge and yield competitiveness. Methodology: This study adopted the quantitative method employing descriptive and exploratory approaches. A total of 500 Jordanian manufacturing SMEs were selected from 2,310 manufacturing SMEs registered lists, according to the Jordan Social Security, by using random sampling. The study’s instrument was a questionnaire that was applied to these SMEs. There were 335 responses that were deemed useful for analysis after filtering out the replies with missing values; this corresponded to a response rate of 67%. The paper utilized structural equation modeling and cross-sectional design to test hypotheses in the proposed research model. Contribution: This study advocates the assumption of the role of KBV in improving innovation practices. This study contributes to the existing strategic HRM research by extending the understanding of knowledge-based HRM practices in the context of SMEs. Thus, this study contributes to the understanding of innovation management by demonstrating the role of knowledge-based HRM practices in boosting inbound and outbound OI practices, thereby enhancing innovation as an essential component of firm competitiveness. Findings: The findings revealed the positive impact of four knowledge-based HRM practices on inbound and outbound open innovation in Jordanian manufacturing SMEs. These practices were knowledge-based recruitment and selection, knowledge-based training and development, knowledge-based compensation and reward, as well as knowledge-based performance assessment. Recommendations for Practitioners: This study is expected to help the stakeholders of SMEs to re-shape the traditional HRM practices into knowledge-based practices which improve managerial skills, innovation practices, and the level of the firm’s competitiveness. Recommendation for Researchers: This study serves as a significant contribution to the research field of innovation practices by building a new association between knowledge-based HRM practices and inbound and outbound open innovation. Impact on Society: The study emphasizes the vital role of knowledge-based HRM practices in enhancing the knowledge and social skills of the human capital in SMEs in Jordan, thus improving the country’s social and economic development. Future Research: Future research could build on this study to include service SMEs. It could also employ a longitudinal study over the long run which would allow for a deeper analysis of the relationships of causality, offering a more comprehensive view of the effect of knowledge-based HRM on open innovation. Furthermore, future research could examine the sample of investigation before and after implementing the knowledge-based HRM practices to provide stronger evidence of their influence on inbound and outbound innovation.




the

Unraveling the Key Factors of Successful ERP Post Implementation in the Indonesian Construction Context

Aim/Purpose: This study aims to evaluate the success of ERP post-implementation and the factors that affect the overall success of the ERP system by integrating the Task Technology Fit (TTF) model into the Information System Success Model (ISSM). Background: Not all ERP implementations provide the expected benefits, as post-implementation challenges can include inflexible ERP systems and ongoing costs. Therefore, it is necessary to evaluate the success after ERP implementation, and this research integrates the Task Technology Fit (TTF) model into the Information System Success Model (ISSM). Methodology: For data analysis and the proposed model, the authors used SmartPLS 3 by applying the PLS-SEM test and one-tailed bootstrapping. The researchers distributed questionnaires online to 115 ERP users at a construction company in Indonesia and successfully got responses from 95 ERP users. Contribution: The results obtained will be helpful and essential for future researchers and Information System practitioners – considering the high failure rate in the use of ERP in a company, as well as the inability of organizations and companies to exploit the benefits and potential that ERP can provide fully. Findings: The results show that Perceived Usefulness, User Satisfaction, and Task-Technology Fit positively affect the Organizational Impact of ERP implementation. Recommendations for Practitioners: The findings can help policymakers and CEOs of businesses in Indonesia’s construction sector create better business strategies and use limited resources more effectively and efficiently to provide a considerably higher probability of ERP deployment. The findings of this study were also beneficial for ERP vendors and consultants. The construction of the industry has specific characteristics that ERP vendors should consider. Construction is a highly fragmented sector, with specialized segments demanding specialist technologies. Several projects also influence it. They can use them to identify and establish several alternative strategies to deal with challenges and obstacles that can arise during the installation of ERP in a firm. Vendors and consultants can supply solutions, architecture, or customization support by the standard operating criteria, implement the ERP system and train critical users. The ERP system vendors and consultants can also collaborate with experts from the construction sector to develop customized alternatives for construction companies. That would be the most outstanding solution for implementing ERP in this industry. Recommendation for Researchers: Future researchers can use this combined model to study ERP post-implementation success on organizational impact with ERP systems in other company information systems fields, especially the construction sector. Future integration of different models can be used to improve the proposed model. Integration with models that assess the level of Information System acceptance, such as Technology Acceptance Model 3 (TAM3) or Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), can be used in future research to deepen the exploration of factors that influence ERP post-implementation success in an organization. Impact on Society: This study can guide companies, particularly in the construction sector, to maintain ERP performance, conduct training for new users, and regularly survey user satisfaction to ensure the ERP system’s reliability, security, and performance are maintained and measurable. Future Research: It is increasing the sample size with a larger population at other loci (private and state-owned) that use ERP to see the factors influencing ERP post-implementation success and using mixed methods to produce a better understanding. With varied modes, it is possible to get better results by adding unique factors to the research, and future integration of other models can be used to improve the proposed model.




the

Factors Influencing User’s Intention to Adopt AI-Based Cybersecurity Systems in the UAE

Aim/Purpose: The UAE and other Middle Eastern countries suffer from various cybersecurity vulnerabilities that are widespread and go undetected. Still, many UAE government organizations rely on human-centric approaches to combat the growing cybersecurity threats. These approaches are ineffective due to the rapid increase in the amount of data in cyberspace, hence necessitating the employment of intelligent technologies such as AI cybersecurity systems. In this regard, this study investigates factors influencing users’ intention to adopt AI-based cybersecurity systems in the UAE. Background: Even though UAE is ranked among the top countries in embracing emerging technologies such as digital identity, robotic process automation (RPA), intelligent automation, and blockchain technologies, among others, it has experienced sluggish adoption of AI cybersecurity systems. This selectiveness in adopting technology begs the question of what factors could make the UAE embrace or accept new technologies, including AI-based cybersecurity systems. One of the probable reasons for the slow adoption and use of AI in cybersecurity systems in UAE organizations is the employee’s perception and attitudes towards such intelligent technologies. Methodology: The study utilized a quantitative approach whereby web-based questionnaires were used to collect data from 370 participants working in UAE government organizations considering or intending to adopt AI-based cybersecurity systems. The data was analyzed using the PLS-SEM approach. Contribution: The study is based on the Protection Motivation Theory (PMT) framework, widely used in information security research. However, it extends this model by including two more variables, job insecurity and resistance to change, to enhance its predictive/exploratory power. Thus, this research improves PMT and contributes to the body of knowledge on technology acceptance, especially in intelligent cybersecurity technology. Findings: This paper’s findings provide the basis from which further studies can be conducted while at the same time offering critical insights into the measures that can boost the acceptability and use of cybersecurity systems in the UAE. All the hypotheses were accepted. The relationship between the six constructs (perceived vulnerability (PV), perceived severity (PS), perceived response efficacy (PRE), perceived self-efficacy (PSE), job insecurity (JI), and resistance to change (RC)) and the intention to adopt AI cybersecurity systems in the UAE was found to be statistically significant. This paper’s findings provide the basis from which further studies can be conducted while at the same time offering critical insights into the measures that can boost the acceptability and use of cybersecurity systems in the UAE. Recommendations for Practitioners: All practitioners must be able to take steps and strategies that focus on factors that have a significant impact on increasing usage intentions. PSE and PRE were found to be positively related to the intention to adopt AI-based cybersecurity systems, suggesting the need for practitioners to focus on them. The government can enact legislation that emphasizes the simplicity and awareness of the benefits of cybersecurity systems in organizations. Recommendation for Researchers: Further research is needed to include other variables such as facilitating conditions, AI knowledge, social influence, and effort efficacy as well as other frameworks such as UTAUT, to better explain individuals’ behavioral intentions to use cybersecurity systems in the UAE. Impact on Society: This study can help all stakeholders understand what factors can increase users’ interest in investing in the applications that are embedded with security. As a result, they have an impact on economic recovery following the COVID-19 pandemic. Future Research: Future research is expected to investigate additional factors that can influence individuals’ behavioral intention to use cybersecurity systems such as facilitating conditions, AI knowledge, social influence, effort efficacy, as well other variables from UTAUT. International research across nations is also required to build a larger sample size to examine the behavior of users.




the

The Role of Corporate Social Responsibility in Business Performance: The Moderation Influence of Blockchain Technology

Aim/Purpose: The major challenges for firms to initiate corporate social responsibility (CSR) arise from resource constraints, complexity, and uncertainty. Consuming considerable financial and human resources is the main difficulty for smaller firms or those operating in less profitable industries, and the lack of immediate outputs from CSR initiatives poses a challenge for firms in prioritizing and assessing their effectiveness. Background: To better integrate CSR management into overall business strategy and decision-making processes, Blockchain technology (BCT) could potentially offer a feasible and optimal alternative to CSR reports. Methodology: This study uses the fixed effects regression by way of the Least Squares Dummy Variable (LSDV) approach in STATA to analyze the direct effect of CSR management on business performance and the moderating effect of BCT adoption on this relationship with a panel data set of 5810 observations collected from the 874 listed companies in 2015 in Taiwan Stock Exchange through 2021. Contribution: This study contributes to the literature by shedding light on the organizational factors that influence BCT adoption. Findings: The findings show that firms with high levels of CSR management have better business performance. Additionally, the adoption of BCT strengthens the positive relationship between CSR management and business performance, but it cannot replace the fundamental principles of CSR. Finally, firm size does not significantly affect BCT adoption, indicating that companies of all sizes have an equal opportunity to adopt BCT, which can help to level the playing field in terms of resources available to different firms. Recommendations for Practitioners: This study suggests that firms managing CSR practices have better business performance, and the adoption of BCTs further enhances this positive relationship. However, BCT adoption does not have the same positive effect on business performance as CSR practices. Additionally, this research can help to inform public policy related to BCT adoption and diffusion. Recommendation for Researchers: By exploring the factors that influence BCT adoption, future researchers can provide insights into the key challenges and opportunities faced by organizations of different sizes and help to develop strategies for promoting the effective adoption of BCT. Impact on Society: Given the limitations of current CSR reporting, the understanding gained from BCT applications can provide companies with an alternative mechanism to foster progress in CSR implementation. Future Research: Firstly, while the fixed-effects model might have dampened the power of explanation because it only captures within-unit variation and ignores between-unit variation, the explanatory power is further limited due to only integrating two independent variables in this model. Because of limited data availability, this study only utilizes CSR_Report and firm_size as independent variables. Future studies can consider more key factors and may lead to different results. Additionally, panel data is collected from Taiwan and, therefore, may not be representative of the broader population. Future researchers integrating the Stock Exchange of different countries are recommended.




the

The Perspectives of University Academics on Their Intention to Purchase Green Smartphones in Sri Lanka

Aim/Purpose: Most people use their phones for work and communication. Businesses today require sustainable mobile phones to limit the environmental impact of mobile phones. According to the Environmental Protection Agency (EPA), a green product uses less energy. Green smartphones need low radiation emission, are made from recyclable materials, and are designed to last longer than typical smartphones. Further, the manufacturing process needs to have a low environmental impact. The present study aims to identify the influence of variables (such as Green Awareness, Environmental Concern, Altruism, and Willingness to Pay) on green smartphone purchase intention among academics in the Sri Lankan higher education sector. Background: With the swift technological advances, almost everyone has begun to use smartphones. Simultaneously, smartphone manufacturers have begun to release cutting-edge smartphone models to the general public. As a result, it has generated a significant amount of e-waste for the environment. As a result, therefore, the sustainability of green smartphones has become a major societal concern in the developed world, but this is not yet true in the developing world Methodology: The study used a qualitative research method in which the authors attempted to acquire primary data by conducting in-depth interviews with academics from the Sri Lankan higher education sector using a semi-structured interview guide. Eight interviews were conducted, audio recorded, and word-to-word transcribed for content analysis. Researchers used content analysis to determine the presence, meanings, and linkages of specific words, themes, or concepts. Contribution: The findings provide important environmental insights for smartphone makers and society, such as introducing waste reduction programs and energy-saving practices and creating awareness among people to change their consumption patterns. The study will provide valuable insights into the green smartphone phone purchasing intentions of academics in a developing country, especially helping green smartphone producers and marketers construct effective tactics with the insight of the current study based on university faculty members’ viewpoints. Findings: The current study’s findings revealed that academics acknowledge the need for environmental protection with an awareness of the green concept and environmental concerns. According to the interviews, most participants intended to move from their present smartphone to an ecologically friendly phone, as they explained on altruism. This implies that even academics in underdeveloped countries are worried about environmental issues and have shown a more robust understanding of these issues and how environmentally aware individuals’ activities may assist the earth’s sustainability. Further, academics have a willingness to pay for a green smartphone. Recommendations for Practitioners: Academics prioritize environmental conservation when making purchases. This implies that manufacturers and enterprises should focus on developing and in- novating more environmentally friendly products. Recommendation for Researchers: Using only academics as a sample approach is severely limited if the study’s population comprises people with various qualities. Nevertheless, this study presented only four independent variables, and more factors impacting green smartphone purchasing intention may exist. As a result, it is proposed that future research consider other factors. Impact on Society: It was discovered that most participants displayed altruism in their product purchases, implying that policymakers must strengthen the moral practice of concern for the welfare and happiness of other humans, even in developing countries. Future Research: A further in-depth study focusing on many perspectives such as limits and motivations for purchasing green products in various socioeconomic groups with varying moderating factors such as gender, education, rural-urban, and so on would be advantageous. Individual (emotions, habits, perceived behavioral control, trust, values, personal norm, knowledge) and situational (availability, product attributes, subjective norm, brand, eco-labeling) variables should be included in future research.




the

The Influence of COVID-19 on Employees’ Use of Organizational Information Systems

Aim/Purpose. COVID-19 was an unprecedented disruptive event that accelerated the shift to remote work and encouraged widespread adoption of digital tools in organizations. This empirical study was conducted from an organizational-strategic perspective, with the aim of examining how the COVID-19 pandemic outbreak affected employees’ use of organizational information systems (IS) as reflected in frequency. Background. To date, only a limited effort has been made, and a rather narrow perspective has been adopted, regarding the consequences of the adoption of new work environments following COVID-19. It seems that the literature is lacking in information regarding employee use of organizational IS since the outbreak of the pandemic. Specifically, this issue has not yet been examined in relation to employees’ perception about the organization’s digital efforts and technological maturity for remote work. The present study bridges this gap. Methodology. The public sector in Israel, which employs about a third of the Israeli work-force, was chosen as a case study of information-intensive organizations. During the first year of COVID-19, 716 questionnaires were completed by employees and managers belonging to four government ministries operating in Israel. The responses were statistically analyzed using a Chi-Square and Spearman’s Rho tests. Contribution. Given that the global pandemic is an ongoing phenomenon and not a passing episode, the findings provide important theoretical and practical contributions. The period prior to the COVID-19 pandemic and the period of the pandemic are compared with regard to organizational IS use. Specifically, the study sheds new light on the fact that employee perceptions motivated increased IS use during an emergency. The results contribute to the developing body of empirical knowledge in the IS field in the era of digital transformation (DT). Findings. More than half of the respondents who reported that they did not use IS before COVID-19 stated that the pandemic did not change this. We also found a significant positive correlation between the perception of the digital efforts made by organizations to enable connection to the IS for remote work and a change in frequency of IS use. This frequency was also found to have a significant positive correlation with the perception of the organization’s technological maturity to enable effective and continuous remote work. Recommendations for Practitioners. In an era of accelerating DT, this paper provides insights that may support chief information officers and chief digital officers in understanding how to promote the use of IS. The results can be useful for raising awareness of the importance of communicating managerial messages for employees regarding the organizational strategy and the resilience achieved through IS not only in routine, but also in particular in emergency situations. Recommendations for Researchers. Considering that the continual crisis has created challenges in IS research, it is appropriate to continue researching the adaptation and acclimation of organizations to the “new normal”. Impact on Society. The COVID-19 pandemic created a sudden change in employment models, which have become more flexible than ever. The research insights enrich the knowledge about the concrete consequences of this critical change. Future Research. We suggest that researchers investigate this core issue in other sectors and/or other countries, in order to be obtain new and complementary empirical insights on a comparative basis.




the

Analysis of the Scale Types and Measurement Units in Enterprise Architecture (EA) Measurement

Aim/Purpose: This study identifies the scale types and measurement units used in the measurement of enterprise architecture (EA) and analyzes the admissibility of the mathematical operations used. Background: The majority of measurement solutions proposed in the EA literature are based on researchers’ opinions and many with limited empirical validation and weak metrological properties. This means that the results generated by these solutions may not be reliable, trustworthy, or comparable, and may even lead to wrong investment decisions. While the literature proposes a number of EA measurement solutions, the designs of the mathematical operations used to measure EA have not yet been independently analyzed. It is imperative that the EA community works towards developing robust, reliable, and widely accepted measurement solutions. Only then can senior management make informed decisions about the allocation of resources for EA initiatives and ensure that their investment yields optimal results. Methodology: In previous research, we identified, through a systematic literature review, the EA measurement solutions proposed in the literature and classified them by EA entity types. In a subsequent study, we evaluated their metrology coverage from both a theoretical and empirical perspective. The metrology coverage was designed using a combination of the evaluation theory, best practices from the software measurement literature including the measurement context model, and representational theory of measurement to evaluate whether EA measurement solutions satisfy the metrology criteria. The research study reported here presents a more in-depth analysis of the mathematical operations within the proposed EA measurement solutions, and for each EA entity type, each mathematical operation used to measure EA was examined in terms of the scale types and measurement units of the inputs, their transformations through mathematical operations, the impact in terms of scale types, and measurement units of the proposed outputs. Contribution: This study adds to the body of knowledge on EA measurement by offering a metrology-based approach to analyze and design better EA measurement solutions that satisfy the validity of scale type transformations in mathematical operations and the use of explicit measurement units to allow measurement consistency for their usage in decision-making models. Findings: The findings from this study reveal that some important metrology and quantification issues have been overlooked in the design of EA measurement solutions proposed in the literature: a number of proposed EA mathematical operations produce numbers with unknown units and scale types, often the result of an aggregation of undetermined assumptions rather than explicit quantitative knowledge. The significance of such aggregation is uncertain, leading to numbers that have suffered information loss and lack clear meaning. It is also unclear if it is appropriate to add or multiply these numbers together. Such EA numbers are deemed to have low metrological quality and could potentially lead to incorrect decisions with serious and costly consequences. Recommendations for Practitioners: The results of the study provide valuable insights for professionals in the field of EA. Identifying the metrology limitations and weaknesses of existing EA measurement solutions may indicate, for instance, that practitioners should wait before using them until their design has been strengthened. In addition, practitioners can make informed choices and select solutions with a more robust metrology design. This, in turn, will benefit enterprise architects, software engineers, and other EA professionals in decision making, by enabling them to take into consideration factors more adequately such as cost, quality, risk, and value when assessing EA features. The study’s findings thus contribute to the development of more reliable and effective EA measurement solutions. Recommendation for Researchers: Researchers can use with greater confidence the EA measurement solutions with admissible mathematical operations and measurement units to develop new decision-making models. Other researchers can carry on research to address the weaknesses identified in this study and propose improved ones. Impact on Society: Developers, architects, and managers may be making inappropriate decisions based on seriously flawed EA measurement solutions proposed in the literature and providing undue confidence and a waste of resources when based on bad measurement design. Better quantitative tools will ultimately lead to better decision making in the EA domain, as in domains with a long history of rigor in the design of the measurement tools. Such advancements will benefit enterprise architects, software engineers, and other practitioners, by providing them with more meaningful measurements for informed decision making. Future Research: While the analysis described in this study has been explicitly applied to evaluating EA measurement solutions, researchers and practitioners in other domains can also examine measurement solutions proposed in their respective domains and design new ones.




the

Investigating the Impact of Dual Network Embedding and Dual Entrepreneurial Bricolage on Knowledge-Creation Performance: An Empirical Study in Fujian, China

Aim/Purpose: This study investigates the relationship between dual network embedding, dual entrepreneurial bricolage, and knowledge-creation performance. Background: The importance of new ventures for innovation and economic growth has been fully endorsed. Establishing incubation organizations to help new startups overcome constraints and dilemmas has become the consensus of various countries. In particular, the number of Chinese makerspaces has rapidly increased. Startups in the makerspaces form a loosely coupled dual network to cooperate and share resources, especially knowledge. Methodology: By convenience sampling, 400 startups in the makerspaces in Fujian Province, China were selected for the questionnaire survey study. In total, 307 valid responses were collected, yielding a response rate of 76.8%. The survey data were analyzed for hypothesis testing, using the PL-SEM technique with the AMOS20.0 software. Contribution: At the theoretical level, this research supplements the exploration of the influencing factors of the entrepreneurial bricolage of startups at the network level. It deepens the research on the internal mechanism of the dual network embeddedness affecting the knowledge-creation performance. In practice, it provides a theoretical basis and management inspiration for startups in makerspaces to overcome the inherent disadvantage of being too small and weak to explore innovative paths. Findings: First, relational embedding of startups in makerspaces directly affects knowledge-creation performance. Second, dual entrepreneurial bricolage plays a mediating role in diversity. Selective entrepreneurial bricolage plays a partial mediating role between relationship embedding and knowledge-creation performance. Parallel entrepreneurial bricolage plays a complete intermediary role between structural embedding and knowledge-creation performance. Dual entrepreneurial bricolage plays a complete intermediary role between knowledge embedding and knowledge-creation performance. Recommendations for Practitioners: Enterprises in the makerspaces should make dynamic adjustments to the network embedded state and dual entrepreneurial bricolage to improve knowledge-creation performance. When startups conduct selective entrepreneurship bricolage, they should strengthen relational and knowledge embeddedness to improve their relationship strength and tacit knowledge acquisition. When startups conduct parallel entrepreneurship bricolage, structural and knowledge embedding should be strengthened to improve the position of enterprises in the network to acquire diversified knowledge to explore and discover new business opportunities and project resources. Recommendation for Researchers: The heterogeneity of industries and regions may impact the dual network embedding mechanism of startups. Researchers can choose a wider range of regions and industries for sampling. Impact on Society: This study provides a theoretical basis and management inspiration for startups to overcome the inherent disadvantage of being too small and weak to explore innovative paths. It provides a basis to support startups in unleashing innovation vitality and achieving healthy growth. Future Research: Previous studies have shown that network relationships and bricolage behavior have a certain relationship with the enterprise life cycle. Future research can adopt a longitudinal research design across time points, which will increase the explanatory power of research conclusions.




the

Factors Impacting the Behavioral Intention to Use Social Media for Knowledge Sharing: Insights from Disaster Relief Practitioners

Aim/Purpose: The primary purpose of this study is to investigate the factors that impact the behavioral intention to use social media (SM) for knowledge sharing (KS) in the disaster relief (DR) context. Background: With the continuing growth of SM for KS in the DR environment, disaster relief organizations across the globe have started to realize its importance in streamlining their processes in the post-implementation phase. However, SM-based KS depends on the willingness of members to share their knowledge with others, which is affected by several technological, social, and organizational factors. Methodology: A survey was conducted in Somalia to gather primary data from DR practitioners, using purposive sampling as the technique. The survey collected 214 valid responses, which were then analyzed with the PLS-SEM approach. Contribution: The study contributes to an understanding of the real-life hurdles faced by disaster relief organizations by expanding on the C-TAM-TPB model with the inclusion of top management support, organizational rewards, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust factors. Additionally, it provides useful recommendations to managers of disaster relief organizations on the key factors to consider. Findings: The findings recorded that perceived usefulness, ease of use, top management support, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust were critical factors in determining behavioral intention (BI) to use SM-based KS in the DR context. Furthermore, the mediator variables were attitude, subjective norms, and perceived behavioral control. Recommendations for Practitioners: Based on the research findings, it was determined that management should create different discussion forums among the disaster relief teams to ensure the long-term use of SM-based KS within DR organizations. They should also become involved in the discussions for disaster-related knowledge such as food supplies, shelter, or medical relief that disaster victims need. Disaster relief managers should consider effective and adequate training to enhance individual knowledge and self-efficacy since a lack of training may increase barriers and difficulties in using SM for KS during a DR process. Recommendation for Researchers: The conceptual model, further empirically investigated, can be employed by other developing countries in fostering acceptance of SM for KS during disaster relief operations. Impact on Society: Disaster relief operations can be facilitated using social media by considering the challenges DR practitioners face during emergencies. Future Research: In generalizing this study’s findings, other national or global disaster relief organizations should consider, when applying and testing, the research instruments and proposed model. The researchers may extend this study by collecting data from managers or administrators since they are different types of users of the SM-based KS system.




the

Employing Artificial Neural Networks and Multiple Discriminant Analysis to Evaluate the Impact of the COVID-19 Pandemic on the Financial Status of Jordanian Companies

Aim/Purpose: This paper aims to empirically quantify the financial distress caused by the COVID-19 pandemic on companies listed on Amman Stock Exchange (ASE). The paper also aims to identify the most important predictors of financial distress pre- and mid-pandemic. Background: The COVID-19 pandemic has had a huge toll, not only on human lives but also on many businesses. This provided the impetus to assess the impact of the pandemic on the financial status of Jordanian companies. Methodology: The initial sample comprised 165 companies, which was cleansed and reduced to 84 companies as per data availability. Financial data pertaining to the 84 companies were collected over a two-year period, 2019 and 2020, to empirically quantify the impact of the pandemic on companies in the dataset. Two approaches were employed. The first approach involved using Multiple Discriminant Analysis (MDA) based on Altman’s (1968) model to obtain the Z-score of each company over the investigation period. The second approach involved developing models using Artificial Neural Networks (ANNs) with 15 standard financial ratios to find out the most important variables in predicting financial distress and create an accurate Financial Distress Prediction (FDP) model. Contribution: This research contributes by providing a better understanding of how financial distress predictors perform during dynamic and risky times. The research confirmed that in spite of the negative impact of COVID-19 on the financial health of companies, the main predictors of financial distress remained relatively steadfast. This indicates that standard financial distress predictors can be regarded as being impervious to extraneous financial and/or health calamities. Findings: Results using MDA indicated that more than 63% of companies in the dataset have a lower Z-score in 2020 when compared to 2019. There was also an 8% increase in distressed companies in 2020, and around 6% of companies came to be no longer healthy. As for the models built using ANNs, results show that the most important variable in predicting financial distress is the Return on Capital. The predictive accuracy for the 2019 and 2020 models measured using the area under the Receiver Operating Characteristic (ROC) graph was 87.5% and 97.6%, respectively. Recommendations for Practitioners: Decision makers and top management are encouraged to focus on the identified highly liquid ratios to make thoughtful decisions and initiate preemptive actions to avoid organizational failure. Recommendation for Researchers: This research can be considered a stepping stone to investigating the impact of COVID-19 on the financial status of companies. Researchers are recommended to replicate the methods used in this research across various business sectors to understand the financial dynamics of companies during uncertain times. Impact on Society: Stakeholders in Jordanian-listed companies should concentrate on the list of most important predictors of financial distress as presented in this study. Future Research: Future research may focus on expanding the scope of this study by including other geographical locations to check for the generalisability of the results. Future research may also include post-COVID-19 data to check for changes in results.




the

A New Model for Collecting, Storing, and Analyzing Big Data on Customer Feedback in the Tourism Industry

Aim/Purpose: In this study, the research proposes and experiments with a new model of collecting, storing, and analyzing big data on customer feedback in the tourism industry. The research focused on the Vietnam market. Background: Big Data describes large databases that have been “silently” built by businesses, which include product information, customer information, customer feedback, etc. This information is valuable, and the volume increases rapidly over time, but businesses often pay little attention or store it discretely, not centrally, thereby wasting an extremely large resource and partly causing limitations for business analysis as well as data. Methodology: The study conducted an experiment by collecting customer feedback data in the field of tourism, especially tourism in Vietnam, from 2007 to 2022. After that, the research proceeded to store and mine latent topics based on the data collected using the Topic Model. The study applied cloud computing technology to build a collection and storage model to solve difficulties, including scalability, system stability, and system cost optimization, as well as ease of access to technology. Contribution: The research has four main contributions: (1) Building a model for Big Data collection, storage, and analysis; (2) Experimenting with the solution by collecting customer feedback data from huge platforms such as Booking.com, Agoda.com, and Phuot.vn based on cloud computing, focusing mainly on tourism Vietnam; (3) A Data Lake that stores customer feedback and discussion in the field of tourism was built, supporting researchers in the field of natural language processing; (4) Experimental research on the latent topic mining model from the collected Big Data based on the topic model. Findings: Experimental results show that the Data Lake has helped users easily extract information, thereby supporting administrators in making quick and timely decisions. Next, PySpark big data processing technology and cloud computing help speed up processing, save costs, and make model building easier when moving to SaaS. Finally, the topic model helps identify customer discussion trends and identify latent topics that customers are interested in so business owners have a better picture of their potential customers and business. Recommendations for Practitioners: Empirical results show that facilities are the factor that customers in the Vietnamese market complain about the most in the tourism/hospitality sector. This information also recommends that practitioners reduce their expectations about facilities because the overall level of physical facilities in the Vietnamese market is still weak and cannot be compared with other countries in the world. However, this is also information to support administrators in planning to upgrade facilities in the long term. Recommendation for Researchers: The value of Data Lake has been proven by research. The study also formed a model for big data collection, storage, and analysis. Researchers can use the same model for other fields or use the model and algorithm proposed by this study to collect and store big data in other platforms and areas. Impact on Society: Collecting, storing, and analyzing big data in the tourism sector helps government strategists to identify tourism trends and communication crises. Based on that information, government managers will be able to make decisions and strategies to develop regional tourism, propose price levels, and support innovative programs. That is the great social value that this research brings. Future Research: With each different platform or website, the study had to build a query scenario and choose a different technology approach, which limits the ability of the solution’s scalability to multiple platforms. Research will continue to build and standardize query scenarios and processing technologies to make scalability to other platforms easier.




the

Determinants of Radical and Incremental Innovation: The Roles of Human Resource Management Practices, Knowledge Sharing, and Market Turbulence

Aim/Purpose: Given the increasingly important role of knowledge and human resources for firms in developing and emerging countries to pursue innovation, this paper aims to study and explore the potential intermediating roles of knowledge donation and collection in linking high-involvement human resource management (HRM) practice and innovation capability. The paper also explores possible moderators of market turbulence in fostering the influences of knowledge-sharing (KS) behaviors on innovation competence in terms of incremental and radical innovation. Background: The fitness of HRM practice is critical for organizations to foster knowledge capital and internal resources for improving innovation and sustaining competitive advantage. Methodology: The study sample is 309 respondents and Structural Equation Model (SEM) was used for the analysis of the data obtained through a questionnaire survey with the aid of AMOS version 22. Contribution: This paper increases the understanding of the precursor role of high-involvement HRM practices, intermediating mechanism of KS activities, and the regulating influence of market turbulence in predicting and fostering innovation capability, thereby pushing forward the theory of HRM and innovation management. Findings: The empirical findings support the proposed hypotheses relating to the intermediating role of KS in the HRM practices-innovation relationship. It spotlights the crucial character of market turbulence in driving the domination of knowledge-sharing behaviors on incremental innovation. Recommendations for Practitioners: The proposed research model can be applied by leaders and directors to foster their organizational innovation competence. Recommendation for Researchers: Researchers are recommended to explore the influence of different models of HRM practices on innovation to identify the most effective pathway leading to innovation for firms in developing and emerging nations. Impact on Society: This paper provides valuable initiatives for firms in developing and emerging markets on how to leverage the strategic and internal resources of an organization for enhancing innovation. Future Research: Future studies should investigate the influence of HRM practices and knowledge resources to promote frugal innovation models for dealing with resource scarcity.




the

Ecommerce Fraud Incident Response: A Grounded Theory Study

Aim/Purpose: This research study aimed to explore ecommerce fraud practitioners’ experiences and develop a grounded theory framework to help define an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and types of incidents. Background: With a surge in global ecommerce, online transactions have become increasingly fraudulent, complex, and borderless. There are undefined ecommerce fraud roles, responsibilities, processes, and systems that limit and hinder cyber incident response to fraudulent activities. Methodology: A constructivist grounded theory approach was used to investigate and develop a theoretical foundation of ecommerce fraud incident response based on fraud practitioners’ experiences and job descriptions. The study sample consisted of 8 interviews with ecommerce fraud experts. Contribution: This research contributes to the body of knowledge by helping define a novel framework that outlines an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and incident types. Findings: An ecommerce fraud incident response framework was developed from fraud experts’ perspectives. The framework helps define processes, roles, responsibilities, systems, incidents, and stakeholders. The first finding defined the ecommerce fraud incident response process. The process includes planning, identification, analysis, response, and improvement. The second finding was that the fraud incident response model did not include the containment phase. The next finding was that common roles and responsibilities included fraud prevention analysis, tool development, reporting, leadership, and collaboration. The fourth finding described practitioners utilizing hybrid tools and systems for fraud prevention and detection. The fifth finding was the identification of internal and external stakeholders for communication, collaboration, and information sharing. The sixth finding is that research participants experienced different organizational alignments. The seventh key finding was stakeholders do not have a holistic view of the data and information to make some connections about fraudulent behavior. The last finding was participants experienced complex fraud incidents. Recommendations for Practitioners: It is recommended to adopt the ecommerce fraud response framework to help ecommerce fraud and security professionals develop an awareness of cyber fraud activities and/or help mitigate cyber fraud activities. Future Research: Future research could entail conducting a quantitative analysis by surveying the industry on the different components such as processes, systems, and responsibilities of the ecommerce fraud incident response framework. Other areas to explore and evaluate are maturity models and organizational alignment, collaboration, information sharing, and stakeholders. Lastly, further research can be pursued on the nuances of ecommerce fraud incidents using frameworks such as attack graph generation, crime scripts, and attack trees to develop ecommerce fraud response playbooks, plans, and metrics.




the

Agile Practices and Their Impact on Agile Maturity Level of Software Companies in Nepal

Aim/Purpose: Using the Agile Adoption Framework (AAF), this study aims to examine the agile potential of software development companies in Nepal based on their agile maturity level. In addition, this study also examines the impact of various basic agile practices in determining the maturity level of the agile processes being implemented in the software industry of Nepal. Background: Even if most organizations in the software sector utilize agile development strategies, it is essential to evaluate their performance. Nepal’s software industry did not adopt agile techniques till 2014. The Nepalese industry must always adapt to new developments and discover ways to make software development more efficient and beneficial. The population of the study consists of 1,500 and 2,000 employees of software companies in Nepal implementing agile techniques. Methodology: The sample size considered was 150 employees working in software companies in Nepal. However, only 106 respondents responded after three follow-ups. The sample was collected with purposive sampling. A questionnaire was developed to gain information on Customer Adaptive, Customer Collaboration, Continuous Delivery, Human Centric, and Technical Excellence related to agile practices along with the Agile Maturity Level. Contribution: This research contributes to the understanding of agile practices adopted in software companies in developing countries like Nepal. It also reveals the determinants of the agility of software companies in developing countries. Findings: The results suggest that some of the basic principles of agile have a very significant role in Agile Maturity Level in the Nepali context. In the context of Nepal, human-centered practices have a very high level of correlation, which plays a vital role as a major predictor of the agile maturity level. In addition, Technical Excellence is the variable that has the highest level of association with the Agile Maturity Level, making it the most significant predictor of this quality. Recommendations for Practitioners: As Nepali software companies are mostly offshore or serve outsourcing companies, there is a very thin probability of Nepali developers being able to interact with actual clients and this might be one of the reasons for the Nepali industry not relying on Customer Adaptation and Collaboration as major factors of the Agile methodologies. Continuous Delivery, on the other hand, has a significant degree of correlation with Agile Maturity Level. Human-centric practices have a very high level of correlation as well as being a major predictor in determining the Agile Maturity Level in the context of Nepal. Technical Excellence is the most significant predictor and the variable which has the highest level of correlation with Agile Maturity Level. Practitioners should mainly focus on technical excellence as well as human-centric practices to achieve a higher level of Agile Maturity. Recommendation for Researchers: There has not been any such research in the Nepali context that anyone could rely on, to deep dive into their organizational concerns regarding agile strategies and plans. Researchers will need to focus on a more statistical approach with data-driven solutions to the issues related to people and processes. Researchers will need to cover freelancers as well as academics to get a different perspective on what can be the better practices to achieve a higher level of agile maturity. Impact on Society: This study on Agile work is accessible not only to the software industry but also to the general public. The Agile technique has had a huge impact on society’s project management. It has revolutionized how teams approach project planning, development, and execution. The paper’s findings will further information regarding the Agile methodology, which emphasizes collaboration and communication, fosters teamwork and higher quality work, and promotes the exchange of knowledge, ideas, and the pursuit of common goals. Future Research: Owing to the limitations of this study, it is necessary to analyze agile practices in the Nepalese software sector using additional factors that influence agile maturity. The conclusion that years of agile experience do not serve as a balancing factor for both agile practices and the Agile Maturity Level requires additional research. Whether a software outsourcing firm or not, the organization type had no bearing on the degree of maturity of agile methods; this leaves space for further research.




the

Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models

Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.




the

The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality

Aim/Purpose: The use of digital technology, such as an electronic records management system (ERMS), has prompted widespread changes across organizations. The organization needs to support its operations with an automation system to improve production performance. This study investigates ERMS’s potentiality to enhance organizational performance in the oil and gas industry. Background: Oil and gas organizations generate enormous electronic records that lead to difficulties in managing them without any system or digitalization procedure. The need to use a system to manage big data and records affects information security and creates several problems. This study supports decision-makers in oil and gas organizations to use ERMS to enhance organizational performance. Methodology: We used a quantitative method by integrating the typical partial least squares (SEM-PLS) approach, including measurement items, respondents’ demographics, sampling and collection of data, and data analysis. The SEM-PLS approach uses a measurement and structural model assessment to analyze data. Contribution: This study contributes significantly to theory and practice by providing advancements in identity theory in the context of big data management and electronic records management. This study is a foundation for further research on the role of ERMS in operations performance and Big Data Management (BDM). This research makes a theoretical contribution by studying a theory-driven framework that may serve as an essential lens to evaluate the role of ERMS in performance and increase its potentiality in the future. This research also evaluated the combined impacts of general technology acceptance theory elements and identity theory in the context of ERMS to support data management. Findings: This study provides an empirically tested model that helps organizations to adopt ERMS based on the influence of big data management. The current study’s findings looked at the concerns of oil and gas organizations about integrating new technologies to support organizational performance. The results demonstrated that individual characteristics of users in oil and gas organizations, in conjunction with administrative features, are robust predictors of ERMS. The results show that ERMS potentiality significantly influences the organizational performance of oil and gas organizations. The research results fit the big ideas about how big data management and ERMS affect respondents to adopt new technologies. Recommendations for Practitioners: This study contributes significantly to the theory and practice of ERMS potentiality and BDM by developing and validating a new framework for adopting ERMS to support the performance and production of oil and gas organizations. The current study adds a new framework to identity theory in the context of ERMS and BDM. It increases the perceived benefits of using ERMS in protecting the credibility and authenticity of electronic records in oil and gas organizations. Recommendation for Researchers: This study serves as a foundation for future research into the function and influence of big data management on ERMS that support the organizational performance. Researchers can examine the framework of this study in other nations in the future, and they will be able to analyze this research framework to compare various results in other countries and expand ERMS generalizability and efficacy. Impact on Society: ERMS and its impact on BDM is still a developing field, and readers of this article can assist in gaining a better understanding of the literature’s dissemination of ERMS adoption in the oil and gas industry. This study presents an experimentally validated model of ERMS adoption with the effect of BDM in the oil and gas industry. Future Research: In the future, researchers may be able to examine the impact of BDM and user technology fit as critical factors in adopting ERMS by using different theories or locations. Furthermore, researchers may include the moderating impact of demographical parameters such as age, gender, wealth, and experience into this study model to make it even more robust and comprehensive. In addition, future research may examine the significant direct correlations between human traits, organizational features, and individual perceptions of BDM that are directly related to ERMS potentiality and operational performance in the future.




the

Investigating the Adoption of Social Commerce: A Case Study of SMEs in Jordan

Aim/Purpose: Social commerce is an emergent topic widely used for product and service sourcing. It helps companies to have frequent interaction with their customers and strive to achieve a competitive advantage. Yet there is only little empirical evidence focusing on social commerce and its adoption in SMEs to date. This study investigates the key factors affecting social commerce adoption in SMEs. This research designed a theoretical model using the Technology, Organization, and Environment (TOE) Model Background: Despite its rapid growth and usage, social commerce is still in its evolution phase and its current conception is vague and restricted. Therefore, considering the benefits of social commerce for consumers and businesses, it is important to explore the concept of social commerce. Methodology: The research floated a self-administered questionnaire and surveyed 218 Jordanian SME businesses. The data was analyzed using smart PLS and the results were drawn that covers the detail of the characteristics of respondents, study descriptive, results of regressions assumptions, e.g., data normality, reliability, validity, common method biases, and description of the measurement model, followed by the findings of hypothesis analysis. Contribution: This study has many significant contributions to the existing studies on firms’ adoption of social commerce. It indicates that organizational readiness from the organizational perspective and consumer pressure from the environmental dimension of the TOE model are significant influential elements in the adoption of social commerce in business, followed by high-level management support and trading partner pressure, respectively. This shows that organizational readiness to adopt social commerce and consumer pressure has a vital role in Jordanian SMEs’ adopting social commerce. Findings: The results were drawn from a survey of 218 Jordanian SMEs, indicating that organizational readiness from an organizational dimension and consumer pressure environmental perspective, followed by top management’s support and trading partner pressure, significantly predicts the adoption intentions of social commerce. However, perceived usefulness and security concerns from a technological context do not significantly impact behavioral intentions to utilize social commerce. Recommendations for Practitioners: Lack of awareness about new technology and its potential benefits are not well diffused in the Jordanian context. In short, both organizational and environmental dimensions of the TOE framework significantly influence the behavioral intentions for social commerce adoption in the Jordanian context whereas the third-dimension technological factors do not affect the behavioral intentions of SMEs to adopt social commerce. In the technological context, SMEs need to invest in technology and must spread awareness among Jordanian consumers about the potential benefits of technology and must encourage them to use social commerce platforms to interact because of the high significance of social commerce for businesses as it facilitates the quick completion of tasks, enhances the productivity, and improves the chances of high profitability. Recommendation for Researchers: First, the study is limited in scope as it discusses the direct links between the TOE framework, behavioral intentions to use social commerce, and the actual usage of social commerce in the Jordanian context rather than testing the mediation, and moderation. Future research may examine the mediators and moderators in the conceptual model. Second, the research examined the behavioral intentions of SMEs rather than consumers to adopt social commerce. Further research might consider the consumer perspective on social commerce. Impact on Society: This research aims to identify the key factor that impact the behavioral intentions of SME businesses to practice social commerce. The theoretical underpinning of the study lies in the TOE model, as using its basic assumptions the conceptual grounds and hypothesis of the study are developed. Future Research: The study findings are not generalizable in different contexts as it was specifically conducted by gathering data from the Jordanian population. However future studies may consider different contexts, sectors, cultures, or countries to examine the model. Lastly, the research collected data using convenience sampling from 218 SMEs in Jordan, which may create difficulty in the generalizability of the research, so needs to examine a larger sample in future studies.




the

Investigating the Determinants of Online Shopping Repurchase Intention in Generation Z Customers in India: An Exploratory Study

Aim/Purpose: This study investigates the factors that affect the repurchase intentions of Generation Z consumers in India’s online shopping industry, focusing on combining the Expectation-Confirmation Model (ECM) and Extended Technology Acceptance Model (E-TAM). The aim is to understand the intricate behaviors that shape technology adoption and sustained usage, which are essential for retaining customers in e-commerce. Background: Social media and other online platforms have significantly influenced daily life and become essential communication tools owing to technological advancements. Online shopping is no exception, offering a range of product choices, information, and convenience compared with traditional commerce. Indian retailers recognize this trend as an opportunity to promote their brands through e-shopping platforms, leading to increased competition. Generation Z comprises 32% of the world’s population and is a significant emerging customer base in India. Numerous studies have been conducted to study customers’ repurchase intention in the online shopping domain, but few studies have explicitly focused on Generation Z as a customer base. This study aims to comprehensively understand the topic and investigate the variables that impact consumers’ online repurchase intention by examining their post-adoption behavioral processes. Methodology: The study employed a quantitative research design with structural equation modeling using AMOS to analyze responses from 410 participants. This method thoroughly examined hypotheses regarding factors affecting repurchase intention (security, ease of use, privacy, and internet self-efficacy) and the mediating role of e-satisfaction. Contribution: This study makes a unique contribution to the field of e-commerce by focusing on Generation Z in India, a rapidly growing demographic in the e-commerce industry. The results on the mediating role of e-satisfaction have significant implications for e-retailers seeking to enhance customer retention strategies and gain a competitive edge in the market. Findings: The research findings underscore the significant influence of security, ease of use, and internet self-efficacy on repurchase intentions, with e-satisfaction playing a pivotal role as a mediating factor. Notably, while privacy concerns did not directly impact repurchase intentions, they displayed considerable influence when mediated by e-satisfaction, highlighting the intricate interplay between these variables in the context of online shopping, which is the unique finding of this study. Recommendations for Practitioners: This study has several significant implications for practitioners. Effectively addressing computer-related individual differences, such as computer self-efficacy, is crucial for boosting online customers’ repurchase intention. For instance, if an e-retailer intends to target Generation Z customers, they should collaborate with IT professionals and develop various computer literacy programs on online streaming platforms, such as YouTube. These programs will enhance target customers’ confidence in online shopping portals and increase their online repeat purchases. Additionally, practitioners should strive to improve the online shopping experience by making the portal user-friendly. Generation Z is accustomed to a fast Internet experience, so they prefer that the process of completing online transactions is swift with fewer clicks. The search for products, payments, and redress should not be tedious. Furthermore, the primary objective of the e-retailer should be to satisfy customers, as satisfied customers repeat their purchases and increase overall profitability. Recommendation for Researchers: The current study was conducted in the Delhi-NCR region of India, and its findings could serve as a basis for future research. For instance, the scale devised in this study could be utilized to examine the impact of cash-on-delivery as a payment method on purchase intention across the country. Alternatively, a comparative analysis could be conducted to compare cash-on-delivery effects in various countries. Impact on Society: The study’s findings enable stakeholders in the online shopping industry to comprehend the post-adoption behavior of Generation Z users and augment existing literature by establishing a correlation between determinants that impact repurchase intention and e-satisfaction, which serves as a mediator. Future Research: This study examines the factors that impact the propensity of Generation Z shoppers to engage in repeat online purchases. This study focuses on India, where the Generation Y (millennial) customer base is also substantial within the online shopping market. Future research could compare the shopping habits of Generation Z and Generation Y customers, as the latter may place greater importance on privacy and security. Additional studies could broaden the scope of this research and explore the comparative viewpoints of both generations. Also, it would be advantageous to conduct in-depth interviews and longitudinal studies to acquire a more in-depth comprehension of the evolving digitalization of shopping.




the

Improving the Accuracy of Facial Micro-Expression Recognition: Spatio-Temporal Deep Learning with Enhanced Data Augmentation and Class Balancing

Aim/Purpose: This study presents a novel deep learning-based framework designed to enhance spontaneous micro-expression recognition by effectively increasing the amount and variety of data and balancing the class distribution to improve recognition accuracy. Background: Micro-expression recognition using deep learning requires large amounts of data. Micro-expression datasets are relatively small, and their class distribution is not balanced. Methodology: This study developed a framework using a deep learning-based model to recognize spontaneous micro-expressions on a person’s face. The framework also includes several technical stages, including image and data preprocessing. In data preprocessing, data augmentation is carried out to increase the amount and variety of data and class balancing to balance the distribution of sample classes in the dataset. Contribution: This study’s essential contribution lies in enhancing the accuracy of micro-expression recognition and overcoming the limited amount of data and imbalanced class distribution that typically leads to overfitting. Findings: The results indicate that the proposed framework, with its data preprocessing stages and deep learning model, significantly increases the accuracy of micro-expression recognition by overcoming dataset limitations and producing a balanced class distribution. This leads to improved micro-expression recognition accuracy using deep learning techniques. Recommendations for Practitioners: Practitioners can utilize the model produced by the proposed framework, which was developed to recognize spontaneous micro-expressions on a person’s face, by implementing it as an emotional analysis application based on facial micro-expressions. Recommendation for Researchers: Researchers involved in the development of a spontaneous micro-expression recognition framework for analyzing hidden emotions from a person’s face are playing an essential role in advancing this field and continue to search for more innovative deep learning-based solutions that continue to explore techniques to increase the amount and variety of data and find solutions to balancing the number of sample classes in various micro-expression datasets. They can further improvise to develop deep learning model architectures that are more suitable and relevant according to the needs of recognition tasks and the various characteristics of different datasets. Impact on Society: The proposed framework could significantly impact society by providing a reliable model for recognizing spontaneous micro-expressions in real-world applications, ranging from security systems and criminal investigations to healthcare and emotional analysis. Future Research: Developing a spontaneous micro-expression recognition framework based on spatial and temporal flow requires the learning model to classify optimal features. Our future work will focus more on exploring micro-expression features by developing various alternative learning models and increasing the weights of spatial and temporal features.




the

Modeling the Predictors of M-Payments Adoption for Indian Rural Transformation

Aim/Purpose: The last decade has witnessed a tremendous progression in mobile penetration across the world and, most importantly, in developing countries like India. This research aims to investigate and analyze the factors influencing the adoption of mobile payments (M-payments) in the Indian rural population. This, in turn, would bring about positive changes in the lives of people in these countries. Background: A conceptual framework was worked upon using UTAUT as a foundation, which included constructs, namely, facilitating conditions, social influences, performance expectancy, and effort expectancy. The model was further extended by incorporating the awareness construct of m-payments to make it more comprehensive and to understand behavioral intentions and usage behavior for m-payments in rural India. Methodology: A questionnaire-based study was conducted to collect primary data from 410 respondents residing in rural areas in the state of Punjab. Convenience sampling was conducted to collect the data. Structural equation modeling was used to conduct statistical analysis, including exploratory and confirmatory factor analyses. Contribution: A new conceptual model for M-payments adoption in rural India was developed based on the study’s findings. Using the findings of the study, marketers, policymakers, and academicians can gain insight into the factors that motivate the rural population to use M-payments. Findings: The study has found that M-payment Awareness (AW) is the strongest factor within the proposed model for deeper diffusion of M-payments in rural areas in the state of Punjab. Performance expectancy (PE), effort expectancy (EE), social influences (SI), and facilitating conditions (FC) are also positively and significantly related to behavioral intentions for using M-payments among the Indian rural population in the state of Punjab. Recommendations for Practitioners: M-payments are emerging as a new mode of transactions among the Indian masses. The government needs to play a pivotal role in advocating the benefits linked with the usage of M-payments by planning financial literacy and awareness campaigns, promoting transparency and accountability of the intermediaries, and reducing transaction costs of using M-payments. Mobile manufacturing companies should come up with devices that are easy to use and incorporate multilanguage mobile applications, especially for rural areas, as India is a multi-lingual country. A robust regulatory framework will not only shape consumer trust but also prevent privacy breaches. Recommendation for Researchers: It is recommended that a comparative study among different M-payment platforms be conducted by exploring constructs such as usefulness and ease of use. However, the vulnerability of data leakage may result in insecurity and skepticism about its adoption. Impact on Society: India’s rural areas have immense potential for adoption of M-payments. Appropriate policies, awareness drives, and necessary infrastructure will boost faster and smoother adoption of M-payments in rural India to thrive in the digital economy. Future Research: The adapted model can be further tested with moderating factors like age, gender, occupation, and education to understand better the complexities of M-payments, especially in rural areas of India. Additionally, cross-sectional studies could be conducted to evaluate the behavioral intentions of different sections of society.




the

Investigating Intention to Invest in Online Peer-to-Peer Lending Platforms Among the Bottom 40 Group in Malaysia

Aim/Purpose: This study investigates the intention to invest in online peer-to-peer (P2P) lending platforms among the bottom 40% (B40) Malaysian households by income. Background: The B40 group citizens earn less than USD 1,096.00 (i.e., RM 4,850.00) in monthly household income, thereby possessing relatively small capital investments suitable for online P2P lending. Methodology: Drawing on the technology acceptance model (TAM), this research developed and tested the relevant hypotheses with data collected from 216 respondents. The partial least square structural equation modelling (PLS-SEM) technique was employed to analyse the collected data. Contribution: This study contributes to the body of knowledge on financial inclusion by demonstrating the relevance of modified TAM in explaining the intention to invest in online P2P lending platforms among investors with lower disposable income (i.e., the B40 group in Malaysia). Findings: The findings revealed that information quality, perceived risk, and perceived ease of use are relevant to B40 investment intention in P2P online lending platforms. However, contrary to expectations, trust and financial literacy are insignificant predictors of B40 investment intention. Recommendations for Practitioners: The P2P lending platform operators could enhance financial inclusion among the B40 group by ensuring borrowers provide sufficient, relevant, and reliable information with adequate security measures to minimise risk exposure. The financial regulators should also conduct periodic audits to ensure that the operators commit to enhancing information quality, platform security, and usability. Recommendation for Researchers: The intention to invest in online P2P lending platforms among the B40 group could be enhanced by improving information quality and user experience, addressing perceived risks, reassessing trust-building strategies and financial literacy initiatives, and adopting holistic, interdisciplinary approaches. These findings suggest targeted strategies to enhance financial inclusion and investment participation among B40 investors. Impact on Society: The study’s findings hold significant implications for financial regulators and institutions, such as the Securities Commission Malaysia, Bank Negara Malaysia, commercial and investment banks, and insurance companies. By focusing on these key determinants, policymakers can design targeted interventions to improve the accessibility and attractiveness of P2P lending platforms for B40 investors. Enhanced information quality and ease of use can be mandated through regulatory frameworks, while effective risk communication and mitigation strategies can be developed to build investor confidence. These measures can collectively promote financial growth and inclusion, supporting broader economic development goals. Future Research: Future research could expand the sample size to consider older B40 individuals across different countries and use a longitudinal survey to assess the actual investment decision of the B40 investors.