imag

Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice

Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as PET tracer for T-cell imaging. However, production is complex and time-consuming. Therefore, we developed two radiolabeled interleukin-2 (IL-2) variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL-2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL-2 (68Ga-Ga-NODAGA-IL2) and compared their in-vitro and in-vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex-vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60 and 90 min after tracer injection. In-vivo binding characteristics were studied in severe combined immune-deficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMCs inoculation and a 60-min dynamic PET scan was acquired, followed by ex-vivo biodistribution studies. Specific uptake was determined by co-injection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results: 68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity >95% and radiochemical yield of 13.1±4.7% and 2.4±1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with >90% being intact tracer after 1h. In-vitro, both tracers displayed preferential binding to activated hPBMCs. Ex-vivo biodistribution studies in BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than 18F-FB-IL2 in liver, kidney, spleen, bone and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In-vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 or in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded highest contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than 18F-FB-IL2. Both tracers showed good in-vitro and in-vivo characteristics with high uptake in lymphoid tissue and hPBMC xenografts.




imag

Kinetic modeling and test-retest reproducibility of 11C-EKAP and 11C-FEKAP, novel agonist radiotracers for PET imaging of the kappa opioid receptor in humans

The kappa opioid receptor (KOR) is implicated in various neuropsychiatric disorders. We previously evaluated an agonist tracer, 11C-GR103545, for PET imaging of KOR in humans. Although 11C-GR103545 showed high brain uptake, good binding specificity, and selectivity to KOR, it displayed slow kinetics and relatively large test-retest variability (TRV) of distribution volume (VT) estimates (15%). Therefore we set out to develop two novel KOR agonist radiotracers, 11C-EKAP and 11C-FEKAP, and in nonhuman primates, both tracers exhibited faster kinetics and comparable binding parameters to 11C-GR103545. The aim of this study was to assess their kinetic and binding properties in humans. Methods: Six healthy subjects underwent 120-min test-retest PET scans with both 11C-EKAP and 11C-FEKAP. Metabolite-corrected arterial input functions were measured. Regional time-activity curves (TACs) were generated for 14 regions of interest. One- and two-tissue compartment models (1TC, 2TC) and the multilinear analysis-1 (MA1) method were applied to the regional TACs to calculate VT. Time-stability of VT values and test-retest reproducibility were evaluated. Levels of specific binding, as measured by the non-displaceable binding potential (BPND) for the three tracers (11C-EKAP, 11C-FEKAP and 11C-GR103545), were compared using a graphical method. Results: For both tracers, regional TACs were fitted well with the 2TC model and MA1 method (t*=20min), but not with the 1TC model. Given unreliably estimated parameters in several fits with the 2TC model and a good match between VT values from MA1 and 2TC, MA1 was chosen as the appropriate model for both tracers. Mean MA1 VT values were highest for 11C-GR103545, followed by 11C-EKAP, then 11C-FEKAP. Minimum scan time for stable VT measurement was 90 and 110min for 11C-EKAP and 11C-FEKAP, respectively, compared with 140min for 11C-GR103545. The mean absolute TRV in MA1 VT estimates was 7% and 18% for 11C-EKAP and 11C-FEKAP, respectively. BPND levels were similar for 11C-FEKAP and 11C-GR103545, but ~25% lower for 11C-EKAP. Conclusion: The two novel KOR agonist tracers showed faster tissue kinetics than 11C-GR103545. Even with slightly lower BPND, 11C-EKAP is judged to be a better tracer for imaging and quantification of KOR in humans, based on the shorter minimum scan time and excellent test-retest.




imag

Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy.

The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future.




imag

The optimal imaging window for dysplastic colorectal polyp detection using c-Met targeted fluorescence molecular endoscopy

Rationale: Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met targeted fluorescent peptide, in a population at high-risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multi-diameter single-fiber reflectance, single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13mg/kg) at a one-, two- or three-hour dose-to-imaging interval (N = 3 patients per cohort). Two cohorts were expanded to six patients based on target-to-background ratios (TBR). Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly increased fluorescence in the colorectal lesions compared to surrounding tissue, with a TBR of 1.53, 1.66 and 1.74 respectively (mean intrinsic fluorescence (Q·μfa,x) = 0.035 vs. 0.023mm-1, P<0.0003; 0.034 vs. 0.021mm-1, P<0.0001; 0.033 vs. 0.019mm-1, P<0.0001). Fluorescence correlated to histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a one-to-three hour dose-to-imaging interval. No clinically significant differences were observed between the cohorts, although a one-hour dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies.




imag

11C-PABA as a Novel PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Studies

para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-hour urine sampling. Therefore, we hypothesized that radiolabeled PABA with 11C could allow high-quality dynamic PET of the kidneys while reducing the radiation exposure due to its short biological and physical half-lives. We evaluated if 11C-PABA could visualize renal anatomy and quantify function in healthy rats, rabbits, and first-in-human studies in healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, a dynamic PET was performed, followed by post-mortem tissue biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-MAG3 in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then renal pelvis with high spatiotemporal resolution. Conclusion: 11C-PABA demonstrated fast renal excretion with very low background signal in animals and humans. These results suggest that 11C-PABA could be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure.




imag

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




imag

A Prospective, Comparative Study of Planar and Single-photon Emission Computed Tomography Ventilation/Perfusion Imaging for Chronic Thromboembolic Pulmonary Hypertension

Objectives: The study compared the diagnostic performance of Planar Ventilation/perfusion (V/Q) and V/Q Single-photon computed tomography (SPECT), and determined whether combining perfusion scanning with low-dose computed tomography (Q-LDCT) may be equally effective in a prospective study of patients with chronic thromboembolic pulmonary hypertension (CTEPH) patients. Background: V/Q scanning is recommended for excluding CTEPH during the diagnosis of pulmonary hypertension (PH). However, Planar V/Q and V/Q SPECT techniques have yet to be compared in patients with CTEPH. Methods: Patients with suspected PH were eligible for the study. PH attributable to left heart disease or lung disease was excluded, and patients whose PH was confirmed by right heart catheterization and who completed Planar V/Q, V/Q-SPECT, Q-LDCT, and pulmonary angiography were included. V/Q images were interpreted and patients were diagnosed as instructed by the 2009 EANM guidelines, and pulmonary angiography analyses were used as a reference standard. Results: A total of 208 patients completed the study, including 69 with CTEPH confirmed by pulmonary angiography. Planar V/Q, V/Q-SPECT, and Q-LDCT were all highly effective for diagnosing CTEPH, with no significant differences in sensitivity or specificity observed among the three techniques (Planar V/Q [sensitivity/specificity]: 94.20%/92.81%; V/Q-SPECT: 97.10%/91.37%, Q-LCDT: 95.65%/90.65%). However, V/Q-SPECT was significantly more sensitive (V/Q-SPECT: 79.21%; Planar V/Q: 75.84%, P = 0.012; Q-LDCT: 74.91%, p<0.001), and Planar V/Q was significantly more specific (Planar V/Q: 54.14%; V/Q-SPECT 46.05%, p<0.001; Q-LDCT: 46.05%, P = 0.001) than the other two techniques for identifying perfusion defects in individual lung segments. Conclusion: Both Planar V/Q and V/Q-SPECT were highly effective for diagnosing CTEPH, and Q-LDCT may be a reliable alternative method for patients who are unsuitable for ventilation imaging.




imag

Molecular imaging of bone metastases and their response to therapy

Bone metastases are common, especially in more prevalent malignancies such as breast and prostate cancer. They cause significant morbidity and draw on healthcare resources. Molecular and hybrid imaging techniques, including single photon emission computed tomography with computed tomography (SPECT/CT), positron emission tomography / CT and whole-body MRI with diffusion-weighted imaging (WB-MRI), have improved diagnostic accuracy in staging the skeleton compared to previous standard imaging methods, allowing earlier tailored treatment. With the introduction of several effective treatment options, it is now even more important to detect and monitor response in bone metastases accurately. Conventional imaging, including radiographs, CT, MRI and bone scintigraphy, are recognized as being insensitive and non-specific for response monitoring in a clinically relevant time frame. Early reports of molecular and hybrid imaging techniques, as well as WB-MRI, promise earlier and more accurate prediction of response vs non-response but have yet to be adopted routinely in clinical practice. We summarize the role of new molecular and hybrid imaging methods including SPECT/CT, PET/CT and WB-MRI. These modalities are associated with improvements in diagnostic accuracy for staging and response assessment of skeletal metastases over standard imaging methods, being able to quantify biological processes related to the bone microenvironment as well as tumor cells. The described improvements in the imaging of bone metastases and their response to therapy have led to some being adopted into routine clinical practice in some centers and at the same time provide better methods to assess treatment response of bone metastases in clinical trials.




imag

3D-Printable Platform for High-Throughput Small-Animal Imaging




imag

Folate Receptor {beta} Targeted PET Imaging of Macrophages in Autoimmune Myocarditis

Rationale: Currently available imaging techniques have limited specificity for the detection of active myocardial inflammation. Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-N,N',N''-triacetic acid conjugated folate (18F-FOL) is a positron emission tomography (PET) tracer targeting folate receptor β (FR-β) that is expressed on activated macrophages at sites of inflammation. We evaluated 18F-FOL PET for the detection of myocardial inflammation in rats with autoimmune myocarditis and studied expression of FR-β in human cardiac sarcoidosis specimens. Methods: Myocarditis was induced by immunizing rats (n = 18) with porcine cardiac myosin in complete Freund’s adjuvant. Control rats (n = 6) were injected with Freund’s adjuvant alone. 18F-FOL was intravenously injected followed by imaging with a small animal PET/computed tomography (CT) scanner and autoradiography. Contrast-enhanced high-resolution CT or 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) PET images were used for co-registration. Rat tissue sections and myocardial autopsy samples of 6 patients with cardiac sarcoidosis were studied for macrophages and FR-β. Results: The myocardium of 10 out of 18 immunized rats showed focal macrophage-rich inflammatory lesions with FR-β expression occurring mainly in M1-polarized macrophages. PET images showed focal myocardial 18F-FOL uptake co-localizing with inflammatory lesions (SUVmean, 2.1 ± 1.1), whereas uptake in the remote myocardium of immunized rats and controls was low (SUVmean, 0.4 ± 0.2 and 0.4 ± 0.1, respectively; P < 0.01). Ex vivo autoradiography of tissue sections confirmed uptake of 18F-FOL in myocardial inflammatory lesions. Uptake of 18F-FOL to inflamed myocardium was efficiently blocked by a non-labeled FR-β ligand folate glucosamine in vivo. The myocardium of patients with cardiac sarcoidosis showed many FR-β-positive macrophages in inflammatory lesions. Conclusion: In a rat model of autoimmune myocarditis, 18F-FOL shows specific uptake in inflamed myocardium containing macrophages expressing FR-β, which were also present in human cardiac sarcoid lesions. Imaging of FR-β expression is a potential approach for the detection of active myocardial inflammation.




imag

PET imaging of phosphodiesterase-4 identifies affected dysplastic bone in McCune-Albright syndrome, a genetic mosaic disorder

McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the GNAS gene, which encodes the 3', 5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gsα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the GNAS mutation during embryogenesis, the tissues involved, and the role of Gsα in the affected tissues. The Gsα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP. Increased cAMP levels have been found in vitro in both animal models of fibrous dysplasia and in cultured cells from individuals with MAS, but not in humans with fibrous dysplasia. Positron emission tomography (PET) imaging of PDE4 with 11C-(R)-rolipram has been used successfully to study the in vivo activity of the cAMP cascade. To date, it remains unknown whether fibrous dysplasia and other symptoms of MAS, including neuropsychiatric impairments, are associated with increased PDE4 activity in humans. Methods: 11C-(R)-rolipram whole-body and brain PET scans were performed in six individuals with MAS (three for brain scans and six for whole-body scans) and nine healthy controls (seven for brain scans and six for whole-body scans). Results: 11C-(R)-rolipram binding correlated with known locations of fibrous dysplasia in the periphery of individuals with MAS; no uptake was observed in the bones of healthy controls. In peripheral organs and the brain, no difference in 11C-(R)-rolipram uptake was noted between participants with MAS and healthy controls. Conclusion: This study is the first to find evidence for increased cAMP activity in areas of fibrous dysplasia in vivo. No differences in brain uptake between MAS participants and controls were detected, which could be due to several reasons, including the limited anatomic resolution of PET. Nevertheless, the results confirm the usefulness of PET scans with 11C-(R)-rolipram to indirectly measure increased cAMP pathway activation in human disease.




imag

Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery

Gone are the days when medical imaging was used primarily to visualize anatomical structures. The emergence of molecular imaging, championed by radiolabeled fluorodeoxyglucose positron emission tomography (18FDG PET) has expanded the information content derived from imaging to include pathophysiological and molecular processes. Cancer imaging, in particular, has leveraged advances in molecular imaging agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of molecular imaging and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice.




imag

MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics and Preliminary Imaging of 68Ga-NeoBOMB1, a Gastrin-releasing Peptide Receptor Antagonist, in GIST Patients

Introduction: Gastrin Releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labelled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a Phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumours (‘MITIGATE’) (grant agreement number 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Materials and Methods: The main objectives were evaluation of safety, biodistribution, dosimetry and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced TKI-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 3 MBq/kg body-weight were injected intravenously and safety parameters were assessed. PET/CT included dynamic imaging at 5 min, 11 min and 19 min as well as static imaging at 1, 2 and 3-4 h p.i. for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetics. Tumor targeting was assessed on a per-lesion and per-patient basis. Results: 68Ga-NeoBOMB1 (50 µg) was prepared with high radiochemical purity (yield >97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 weeks. Dosimetry calculations revealed a mean adsorbed effective dose of 0.029 ± 0.06 mSv/MBq with highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7 ± 5.4% of injected dose 4h p.i.). Plasma metabolite analyses revealed high stability, metabolites were only detected in the urine. In three patients a significant uptake with increasing maximum standard uptake values (SUVmax at 2h p.i.: 4.3 to 25.9) over time was found in tumor lesions. Conclusion: This Phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging and absorbed dose estimates are comparable to other 68Ga-labelled radiopharmaceuticals used in clinical routine.




imag

CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma

C-X-C chemokine receptor 4 is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. Magnetic resonance imaging (MRI) is the standard imaging technology for central nervous system involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (CNSL, n = 8 primary and n = 3 secondary involvement) were imaged with the CXCR4-directed positron emission tomography (PET) tracer 68Ga-Pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-Pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-Pentixafor-PET showed excellent contrast characteristics to the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-Pentixafor-PET represents a novel diagnostic tool for central nervous system lymphoma with potential implications for theranostic approaches as well as response and risk assessment.




imag

PET imaging quantifying 68Ga-PSMA-11 uptake in metastatic colorectal cancer

At diagnosis 22% of colorectal cancer (CRC) patients have metastases and 50% later develop metastasis. Peptide receptor radionuclide therapy (PRRT) with lutetium-177 (177Lu)-PSMA-617 is employed to treat metastatic prostate cancer (PC). 177Lu-PSMA-617 targets Prostate Specific Membrane Antigen (PSMA) a cell surface protein enriched in PC and the neovasculature of other solid tumors including CRC. We performed gallium-68 (68Ga)-PSMA-11 PET-CT imaging of ten metastatic CRC patients to assess metastasis avidity. Eight patients had lesions lacking avidity and two had solitary metastases exhibiting very low avidity. Despite expression of PSMA in CRC neovasculature, none of the patients exhibited tumor avidity sufficient to be considered for 177Lu-PSMA-617 PRRT.




imag

Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192

18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels.




imag

The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study.

The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications.




imag

How images frame China's role in African development

7 May 2020 , Volume 96, Number 3

George Karavas

Political leaders, policy-makers and academics routinely refer to development as an objective process of social change through the use of technical, value-free terms. Images of poverty and inequality are regularly presented as evidence of a world that exists ‘out there’ where development unfolds. This way of seeing reflects the value of scientific forms of knowledge but also sits in tension with the normative foundations of development that take European modernization and industrialization as the benchmark for comparison. The role images play in this process is often overlooked. This article argues that a dominant mode of visuality based on a Cartesian separation between subject and object, underpinning the ascendance of European hegemony and colonialism, aligns with the core premises of orthodox development discourse. An example of how visual representations of development matter is presented through images of Africa–China relations in western media sources. Using widely circulated images depicting China's impact on African development in western news media sources as an example of why visual politics matters for policy-making, the article examines how images play a role in legitimizing development planning by rendering associated forms of epistemological and structural violence ‘invisible to the viewer’.




imag

How images frame China's role in African development

7 May 2020 , Volume 96, Number 3

George Karavas

Political leaders, policy-makers and academics routinely refer to development as an objective process of social change through the use of technical, value-free terms. Images of poverty and inequality are regularly presented as evidence of a world that exists ‘out there’ where development unfolds. This way of seeing reflects the value of scientific forms of knowledge but also sits in tension with the normative foundations of development that take European modernization and industrialization as the benchmark for comparison. The role images play in this process is often overlooked. This article argues that a dominant mode of visuality based on a Cartesian separation between subject and object, underpinning the ascendance of European hegemony and colonialism, aligns with the core premises of orthodox development discourse. An example of how visual representations of development matter is presented through images of Africa–China relations in western media sources. Using widely circulated images depicting China's impact on African development in western news media sources as an example of why visual politics matters for policy-making, the article examines how images play a role in legitimizing development planning by rendering associated forms of epistemological and structural violence ‘invisible to the viewer’.




imag

Images in Lipid Research

Stephen G. Young
May 1, 2020; 61:589-590
Editorials




imag

The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes [Images in Lipid Research]




imag

Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. [Images in Lipid Research]




imag

Ebola virus matrix protein VP40 hijacks the host plasma membrane to form the virus envelope [Images in Lipid Research]




imag

ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images in Lipid Research]




imag

Accessibility of cholesterol at cell surfaces [Images in Lipid Research]




imag

Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles]

Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.




imag

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




imag

Politics, policy-making and the presence of images of suffering children

7 May 2020 , Volume 96, Number 3

Helen Berents

In 2017 Trump expressed pity for the ‘beautiful babies’ killed in a gas attack on Khan Shaykhun in Syria before launching airstrikes against President Assad's regime. Images of suffering children in world politics are often used as a synecdoche for a broader conflict or disaster. Injured, suffering, or dead; the ways in which images of children circulate in global public discourse must be critically examined to uncover the assumptions that operate in these environments. This article explores reactions to images of children by representatives and leaders of states to trace the interconnected affective and political dimensions of these images. In contrast to attending to the expected empathetic responses prompted by images of children, this article particularly focuses on when such images prompt bellicose foreign policy decision-making. In doing this, the article forwards a way of thinking about images as contentious affective objects in international relations. The ways in which images of children's bodies and suffering are strategically deployed by politicians deserves closer scrutiny to uncover the visual politics of childhood inherent in these moments of international politics and policy-making.




imag

How images frame China's role in African development

7 May 2020 , Volume 96, Number 3

George Karavas

Political leaders, policy-makers and academics routinely refer to development as an objective process of social change through the use of technical, value-free terms. Images of poverty and inequality are regularly presented as evidence of a world that exists ‘out there’ where development unfolds. This way of seeing reflects the value of scientific forms of knowledge but also sits in tension with the normative foundations of development that take European modernization and industrialization as the benchmark for comparison. The role images play in this process is often overlooked. This article argues that a dominant mode of visuality based on a Cartesian separation between subject and object, underpinning the ascendance of European hegemony and colonialism, aligns with the core premises of orthodox development discourse. An example of how visual representations of development matter is presented through images of Africa–China relations in western media sources. Using widely circulated images depicting China's impact on African development in western news media sources as an example of why visual politics matters for policy-making, the article examines how images play a role in legitimizing development planning by rendering associated forms of epistemological and structural violence ‘invisible to the viewer’.




imag

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]




imag

Images in Lipid Research [Editorials]




imag

Reimagining Trade Rules to Address Climate Change in a Post-Pandemic World

Webinar Research Event

5 May 2020 - 2:00pm to 3:00pm

Event participants

James Bacchus, Distinguished University Professor of Global Affairs and Director of the Center for Global Economic and Environmental Opportunity at the University of Central Florida; Member and Chair, WTO Appellate Body, 1995 - 2003
Chair: Creon Butler, Director, Global Economy and Finance Programme, Chatham House

This event is part of the Chatham House Global Trade Policy Forum and will take place virtually only.

International trade has a crucial role to play in tackling climate change. The production and transport of goods is a major contributor to green-house gas emissions, as is the delivery of certain cross-border services. At the same time, it looks inevitable that the COVID-19 pandemic will lead to a radical re-think of global supply chains as companies and governments seek to build in greater resilience while at the same time preserving as far as possible the efficiency gains and lower costs that global supply chains generate when operating normally.

Future international trade rules will have a crucial role to play in addressing both challenges; they represent both an opportunity and a risk. If designed well, they could play a very important role in re-enforcing moves towards a more sustainable use of resources, greater overall alignment of economies with the Paris Agreement, and greater economic resilience. But they could also, if poorly designed and implemented, or overly influenced by strategic political considerations, have significant unintended and negative implications. These include: reduced economic efficiency, increased poverty, unnecessary economic decoupling and reduced consensus on the broader mitigation and adaptation measures required to meet the challenge of climate change.

Against this background, a number of key questions arise: In what areas, if any, do we need to modify or adapt key principles underlying the system of global trade rules in order to respond to the twin challenges of responding to climate change and building greater economic resilience?  Which are the most promising/practical areas on which trade policy experts should focus now to re-launch/re-energize discussions on WTO reform, including, for example, dispute settlement? What national economic policies will be needed to complement the development of new/reformed trade disciplines in these areas? How might future political changes, such as a change in the US administration, affect the prospects for and political momentum behind such deliberations? What in any eventuality is the best way to build the required political momentum?
 
This roundtable is convened by the Global Economy and Finance Programme and the US and the Americas Programme and it is part of the Chatham House Global Trade Policy Forum. The event will take place virtually only.

We would like to take this opportunity to thank founding partner AIG and supporting partners Clifford Chance LLP, Diageo plc, and EY for their generous support of the Chatham House Global Trade Policy Forum.

Please note this event is taking place between 2pm to 3pm BST.




imag

Graphic showing the role of satellite images in tracking environmental damage

1 June 2012 , Volume 68, Number 4

Eyes in the skies keeping watch on a planet under stress. Click on the PDF link to view the graphic


Graphic




imag

Unexpected findings, with uncertain implications, in research imaging

When healthy volunteers are scanned as part of a research project, unexpected findings, with uncertain implications, can be thrown up. Joanna Wardlaw, professor of applied neuroimaging and honorary consultant neuroradiologist at the University of Edinburgh, joins us to discuss how her group deals with these incidental findings, and what...




imag

Reversibility of 68Ga-FAPI-2 Trapping Might Prove an Asset for PET Quantitative Imaging




imag

Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure

Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload–induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 μL vs. 23.8 ± 1.7 μL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = –0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = –0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.




imag

18F-Fluorocholine PET/CT in Primary Hyperparathyroidism: Superior Diagnostic Performance to Conventional Scintigraphic Imaging for Localization of Hyperfunctioning Parathyroid Glands

Primary hyperparathyroidism (PHPT) is a common endocrine disorder, definitive treatment usually requiring surgical removal of the offending parathyroid glands. To perform focused surgical approaches, it is necessary to localize all hyperfunctioning glands. The aim of the study was to compare the efficiency of established conventional scintigraphic imaging modalities with emerging 18F-fluorocholine PET/CT imaging in preoperative localization of hyperfunctioning parathyroid glands in a larger series of PHPT patients. Methods: In total, 103 patients with PHPT were imaged preoperatively with 18F-fluorocholine PET/CT and conventional scintigraphic imaging methods, consisting of 99mTc-sestamibi SPECT/CT, 99mTc-sestamibi/pertechnetate subtraction imaging, and 99mTc-sestamibi dual-phase imaging. The results of histologic analysis, as well as intact parathyroid hormone and serum calcium values obtained 1 d after surgery and on follow-up, served as the standard of truth for evaluation of imaging results. Results: Diagnostic performance of 18F-fluorocholine PET/CT surpassed conventional scintigraphic methods (separately or combined), with calculated sensitivity of 92% for PET/CT and 39%–56% for conventional imaging (65% for conventional methods combined) in the entire patient group. Subgroup analysis, differentiating single and multiple hyperfunctioning parathyroid glands, showed PET/CT to be most valuable in the group with multiple hyperfunctioning glands, with sensitivity of 88%, whereas conventional imaging was significantly inferior, with sensitivity of 22%–34% (44% combined). Conclusion: 18F-fluorocholine PET/CT is a diagnostic modality superior to conventional imaging methods in patients with PHPT, allowing for accurate preoperative localization.




imag

PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes

Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of β-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of β-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14–30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20–30 min; spleen as reference region) demonstrated a statistically significant reduction (–36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20–30 min) (R2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20–30 min) (R2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20–30 min) (R2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of β-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor–preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs.




imag

Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment




imag

First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting

Immunotherapy is becoming the mainstay for treatment of a variety of malignancies, but only a subset of patients responds to treatment. Tumor-infiltrating CD8-positive (CD8+) T lymphocytes play a central role in antitumor immune responses. Noninvasive imaging of CD8+ T cells may provide new insights into the mechanisms of immunotherapy and potentially predict treatment response. We are studying the safety and utility of 89Zr-IAB22M2C, a radiolabeled minibody against CD8+ T cells, for targeted imaging of CD8+ T cells in patients with cancer. Methods: The initial dose escalation phase of this first-in-humans prospective study included 6 patients (melanoma, 1; lung, 4; hepatocellular carcinoma, 1). Patients received approximately 111 MBq (3 mCi) of 89Zr-IAB22M2C (at minibody mass doses of 0.2, 0.5, 1.0, 1.5, 5, or 10 mg) as a single dose, followed by PET/CT scans at approximately 1–2, 6–8, 24, 48, and 96–144 h after injection. Biodistribution in normal organs, lymph nodes, and lesions was evaluated. In addition, serum samples were obtained at approximately 5, 30, and 60 min and later at the times of imaging. Patients were monitored for safety during infusion and up to the last imaging time point. Results: 89Zr-IAB22M2C infusion was well tolerated, with no immediate or delayed side effects observed after injection. Serum clearance was typically biexponential and dependent on the mass of minibody administered. Areas under the serum time–activity curve, normalized to administered activity, ranged from 1.3 h/L for 0.2 mg to 8.9 h/L for 10 mg. Biodistribution was dependent on the minibody mass administered. The highest uptake was always in spleen, followed by bone marrow. Liver uptake was more pronounced with higher minibody masses. Kidney uptake was typically low. Prominent uptake was seen in multiple normal lymph nodes as early as 2 h after injection, peaking by 24–48 h after injection. Uptake in tumor lesions was seen on imaging as early as 2 h after injection, with most 89Zr-IAB22M2C–positive lesions detectable by 24 h. Lesions were visualized early in patients receiving treatment, with SUV ranging from 5.85 to 22.8 in 6 target lesions. Conclusion: 89Zr-IAB22M2C imaging is safe and has favorable kinetics for early imaging. Biodistribution suggests successful targeting of CD8+ T-cell–rich tissues. The observed targeting of tumor lesions suggests this may be informative for CD8+ T-cell accumulation within tumors. Further evaluation is under way.




imag

18F-FET PET Imaging in Differentiating Glioma Progression from Treatment-Related Changes: A Single-Center Experience

In glioma patients, differentiation between tumor progression (TP) and treatment-related changes (TRCs) remains challenging. Difficulties in classifying imaging alterations may result in a delay or an unnecessary discontinuation of treatment. PET using O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) has been shown to be a useful tool for detecting TP and TRCs. Methods: We retrospectively evaluated 127 consecutive patients with World Health Organization grade II–IV glioma who underwent 18F-FET PET imaging to distinguish between TP and TRCs. 18F-FET PET findings were verified by neuropathology (40 patients) or clinicoradiologic follow-up (87 patients). Maximum tumor-to-brain ratios (TBRmax) of 18F-FET uptake and the slope of the time–activity curves (20–50 min after injection) were determined. The diagnostic accuracy of 18F-FET PET parameters was evaluated by receiver-operating-characteristic analysis and 2 testing. The prognostic value of 18F-FET PET was estimated using the Kaplan–Meier method. Results: TP was diagnosed in 94 patients (74%) and TRCs in 33 (26%). For differentiating TP from TRCs, receiver-operating-characteristic analysis yielded an optimal 18F-FET TBRmax cutoff of 1.95 (sensitivity, 70%; specificity, 71%; accuracy, 70%; area under the curve, 0.75 ± 0.05). The highest accuracy was achieved by a combination of TBRmax and slope (sensitivity, 86%; specificity, 67%; accuracy, 81%). However, accuracy was poorer when tumors harbored isocitrate dehydrogenase (IDH) mutations (91% in IDH-wild-type tumors, 67% in IDH-mutant tumors, P < 0.001). 18F-FET PET results correlated with overall survival (P < 0.001). Conclusion: In our neurooncology department, the diagnostic performance of 18F-FET PET was convincing but slightly inferior to that of previous reports.




imag

Congressional Briefing: Diagnostic Imaging and Alzheimer Disease




imag

Prognosis of unrecognised myocardial infarction determined by electrocardiography or cardiac magnetic resonance imaging: systematic review and meta-analysis




imag

Reimagining Skilled Migration Partnerships to Support Development

While partnerships to facilitate skilled migration have had mixed success in the past, the Global Compact for Migration is advancing a new approach that may change this. This policy brief compares this new partnership model with the traditional one, highlighting the questions policymakers will need to answer if they are to encourage mobility, sustain employer engagement, and see development benefits in countries of origin.




imag

ADA free webinar exploring radiographs, diagnostic imaging

In a time when teledentistry is gaining more attention during the COVID-19 pandemic, the ADA will stream a free webinar in May that takes a close look at the different types of images needed for diagnosis, treatment planning and operative procedures.




imag

[ Religion & Spirituality ] Open Question : IMAGINE YOU HEARD KIDS ON PHONE TALKING about their difficult reducing MASTURBATION?




imag

Mind or Stomach? Imagination or Necessity?

"An army marches on its stomach" said Napoleon, who is also credited with saying "Imagination rules the world". Is history driven by raw necessity and elementary needs? Or is history hewn by people from their imagination, dreams and ideas?

The answer is simple: 'Both'. The challenge is to untangle imagination from necessity. Consider these examples:

An ancient Jewish saying is "Without flour, there is no Torah. Without Torah there is no flour." (Avot 3:17) Scholars don't eat much, but they do need to eat. And if you feed them, they produce wonders.

Give a typewriter to a monkey and he might eventually tap out Shakespeare's sonnets, but it's not very likely. Give that monkey an inventive mind and he will produce poetry, a vaccine against polio, and the atom bomb. Why the bomb? He needed it.

Necessity is the mother of invention, they say, but it's actually a two-way street. For instance, human inventiveness includes dreams of cosmic domination, leading to war. Hence the need for that bomb. Satisfying a need, like the need for flour, induces inventiveness. And this inventiveness, like the discovery of genetically modified organisms, creates new needs. Necessity induces inventiveness, and inventiveness creates new dangers, challenges and needs. This cycle is endless because the realm of imagination is boundless, far greater than prosaic reality, as we discussed elsewhere.

Imagination and necessity are intertwined, but still are quite different. Necessity focusses primarily on what we know, while imagination focusses on the unknown.

We know from experience that we need food, shelter, warmth, love, and so on. These requirements force themselves on our awareness. Even the need for protection against surprise is known, though the surprise is not.

Imagination operates in the realm of the unknown. We seek the new, the interesting, or the frightful. Imagination feeds our fears of the unknown and nurtures our hopes for the unimaginable. We explore the bounds of the possible and try breaking through to the impossible.

Mind or stomach? Imagination or necessity? Every 'known' has an 'unknown' lurking behind it, and every 'unknown' may some day be discovered or dreamed into existence. Every mind has a stomach, and a stomach with no mind is not human.




imag

The Age of Imagination


This is not only the Age of Information, this is also the Age of Imagination. Information, at any point in time, is bounded, while imagination is always unbounded. We are overwhelmed more by the potential for new ideas than by the admittedly vast existing knowledge. We are drunk with the excitement of the unknown. Drunks are sometimes not a pretty sight; Isaiah (28:8) is very graphic.

It is true that topical specialization occurs, in part, due to what we proudly call the explosion of knowledge. There is so much to know that one must ignore huge tracts of knowledge. But that is only half the story. The other half is that we have begun to discover the unknown, and its lure is irresistible. Like the scientific and global explorers of the early modern period - The Discoverers as Boorstin calls them - we are intoxicated by the potential "out there", beyond the horizon, beyond the known. That intoxication can distort our vision and judgment.

Consider Reuven's comment, from long experience, that "Engineers use formulas and various equations without being aware of the theories behind them." A pithier version was said to me by an acquisitions editor at Oxford University Press: "Engineers don't read books." She should know.

Engineers are imaginative and curious. They are seekers, and they find wonderful things. But they are too engrossed in inventing and building The New, to be much engaged with The Old. "Scholarship", wrote Thorstein Veblen is "an intimate and systematic familiarity with past cultural achievements." Engineers - even research engineers and professors of engineering - spend very little time with past masters. How many computer scientists scour the works of Charles Babbage? How often do thermal engineers study the writings of Lord Kelvin? A distinguished professor of engineering, himself a member of the US National Academy of Engineering, once told me that there is little use for journal articles more than a few years old.

Fragmentation of knowledge results from the endless potential for new knowledge. Seekers - engineers and the scientists of nature, society and humanity - move inexorably apart from one another. But nonetheless it's all connected; consilient. Technology alters how we live. Science alters what we think. How can we keep track of it all? How can we have some at least vague and preliminary sense of where we are heading and whether we value the prospect?

The first prescription is to be aware of the problem, and I greatly fear that many movers and shakers of the modern age are unaware. The second prescription is to identify who should take the lead in nurturing this awareness. That's easy: teachers, scholars, novelists, intellectuals of all sorts.

Isaiah struggled with this long ago. "Priest and prophet erred with liquor, were swallowed by wine."(Isaiah, 28:7) We are drunk with the excitement of the unknown. Who can show the way?




imag

Reimagining Professional Learning in Delaware

Stephanie Hirsh recently visited several schools in Delaware to see first-hand the impact of the state's redesigned professional learning system.




imag

Imagined homelands : British poetry in the colonies / Jason R. Rudy.

Commonwealth poetry (English) -- History and criticism.