nes

A lion that has escaped from a circus in Florence picks up a baby in its teeth, but when the baby's mother shouts at it, the lion gives the baby back to the mother unharmed. Watercolour by M. Díez de Bulnes, 1817, after N.A. Monsiau.

[Spain?], An. 1817.




nes

Babylon: Nebuchadnezzar praises the greatness of the city. Coloured etching, 17--.

Se vend a Augsbourg [Augsburg] : Au Negoce com(m)un de l'Academie Imperiale d'Empire des Arts libereaux avec privilege de Sa Majesté Impériale et avec defense ni d'en faire ni de vendre les copies, [between 1700 and 1799]




nes

Paraos (praus, boats) off the coast of the Philippines. Engraving by J. Heath, 1798.

London (Pater Noster Row) : G.G. & J. Robinson, Nov.r 1st 1798.




nes

A Chinese temple covered in porcelain. Engraving by N. Parr, 17--.

[London?], [between 1700 and 1799?]




nes

Morality, supported by Religion, points the way to happiness. Engraving by E. de Ghendt, 1807, after J.M. Moreau.

[Paris], [1807]




nes

Java: a Javanese man and woman, with houses behind. Etching by F. Garden, 1752.

[London] : [Richard Baldwin], [1752]




nes

The Raden Temenggung and regent of Lebak, Java, Indonesia. Coloured lithograph by P. Lauters after C.W.M. van der Velde, ca. 1843.

Amsterdam : Uitgegeven by Frans Buffa en Zonen, [between 1843 and 1845]




nes

The Radja Djajanagara and regent of Serang, Java, Indonesia. Coloured lithograph by P. Lauters after C.W.M. van der Velde, ca. 1843.

Amsterdam : Uitgegeven by Frans Buffa en Zonen, [between 1843 and 1845]




nes

Chicago Strike: Why Teachers Are on the Picket Lines Once Again

Teachers in the nation's third-largest school system are fighting for salary increases, class-size caps, and a written commitment for more nurses, social workers, and librarians—as well as investments some say are outside the scope of collective bargaining.




nes

Evgeny Kuznestov doesn’t consider his 2018 series-winning goal against Pittsburgh the biggest of his life

Capitals forward Evgeny Kuznetsov doesn't consider his series-winning goal against the Penguins in 2018 is the biggest goal of his life.




nes

NHL postpones 2020 international schedule

The Bruins, Predators, Avalanche, and Blue Jackets were set to play games in Mannheim, Bern, Prague, and Helsinki.




nes

NHL postpones international games planned for 2020-21 season

The NHL announces it is postponing the Global Series games that were scheduled to be held in the Czech Republic and Finland in the 2020-21 season.




nes

High Court Declines Missouri District's Appeal Over At-Large Board Voting

The justices declined to hear the appeal of the Ferguson-Florissant district over its at-large board elections, which lower courts invalidated as violating the Voting Rights Act.




nes

Introduction to Mindfulness & Manifestation Zine

2017




nes

Zine: The Sweetness Of Doing Nothing (ArtBooklet)




nes

Live Sustainably Zine - creative books and zines, life zine, art zine, substainable life book.




nes

Fatboy zine: the Philippines 2000-2002

Philippines




nes

Medizin ist Wandel : das Gedankengebäude der chinesischen Medizin richtig verstehen / Andrea-Mercedes Riegel.

Baden-Baden : DWV, Deutscher Wissenschafts-Verlag, 2019.




nes

The promise of happiness / Sara Ahmed.

Durham, [NC] : Duke University Press, 2010.




nes

Screaming awareness week: it's way past time to talk. it's time to scream.




nes

The therapeutic community : study of effectiveness : social and psychological adjustment of 400 dropouts and 100 graduates from the Phoenix House Therapeutic Community / by George De Leon.

Rockville, Maryland : National Institute on Drug Abuse, 1984.




nes

Policy and guidelines for the provision of needle and syringe exchange services to young people / Tom Aldridge and Andrew Preston.

[Dorchester] : Dorset Community NHS Trust, 1997.




nes

The wilderness of mind : sacred plants in cross-cultural perspective / Marlene Dobkin De Rios.

Beverly Hills : Sage Publications, 1976.




nes

Development of tolerance and cross-tolerance to psychomotor effects of benzodiazepines in man / by Kari Aranko.

Helsinki : Department of Pharmacology and Toxicology, University of Helsinki, 1985.




nes

Oregon's Sabrina Ionescu takes home Naismith Trophy Player of the Year honor

Sabrina Ionescu is the Naismith Trophy Player of the Year, concluding her illustrious Oregon career with one of the major postseason women's basketball awards. As the only player in college basketball history with 2,000 career points (2,562), 1,000 assists (1,091) and 1,000 rebounds (1,040) and the NCAA all-time leader with 26 triple-doubles, Ionescu has continued to rack up player of the year honors for her remarkable senior season.




nes

Oregon's Ionescu wins women's Naismith Player of the Year

Already named The Associated Press women's player of the year, Ionescu was awarded the Naismith Trophy for the most outstanding women's basketball player on Friday. Ionescu, who won AP All-American honors three times, shattered the NCAA career triple-double mark with 26 and became the first player in college history to have 2,000 points, 1,000 rebounds and 1,000 assists. Ionescu averaged 17.5 points, 9.1 assists and 8.6 rebounds with eight triple-doubles as a senior this season.




nes

Clean sweep: Oregon's Sabrina Ionescu is unanimous Player of the Year after winning Wooden Award

Sabrina Ionescu wins the Wooden Award for the second year in a row, becoming the fifth in the trophy's history to win in back-to-back seasons. With the honor, she completes a complete sweep of the national postseason player of the year awards. As a senior, Ionescu matched her own single-season mark with eight triple-doubles in 2019-20, and she was incredibly efficient from the field with a career-best 51.8 field goal percentage.




nes

Oregon's Sabrina Ionescu, Ruthy Hebard, Satou Sabally share meaning of Naismith Starting 5 honor

Pac-12 Networks' Ashley Adamson speaks with Oregon stars Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how special their recent Naismith Starting 5 honor was, as the Ducks comprise three of the nation's top five players. Ionescu (point guard), Sabally (small forward) and Hebard (power forward) led the Ducks to a 31-2 record in the 2019-20 season before it was cut short.




nes

Sabrina Ionescu, Ruthy Hebard, Satou Sabally on staying connected, WNBA Draft, Oregon's historic season

Pac-12 Networks' Ashley Adamson catches up with Oregon's "Big 3" of Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how they're adjusting to the new world without sports while still preparing for the WNBA Draft on April 17. They also share how they're staying hungry for basketball during the hiatus.




nes

WNBA Draft Profile: Transcendent guard Sabrina Ionescu projects as top pick

After sweeping every national player of the year award, Sabrina Ionescu is off to the WNBA level where her skills will make an instant impact — not just to her new team but the league as a whole. She averaged 17.5 points, 8.6 rebounds and 9.1 assists for the Ducks in 2019-20, rewriting her own NCAA career triple-double record and becoming the first in college basketball history with at least 2,000 points, 1,000 rebounds and 1,000 assists.




nes

Sabrina Ionescu: The Goat

Watch "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" debuting Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




nes

Inside Sabrina Ionescu and Ruthy Hebard's lasting bond on quick look of 'Our Stories'

Learn how Oregon stars Sabrina Ionescu and Ruthy Hebard developed a lasting bond as college freshmen and carried that through storied four-year careers for the Ducks. Watch "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" debuting Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




nes

Ruthy Hebard, Sabrina Ionescu 'represent everything that is great about basketball'

Ruthy Hebard and Sabrina Ionescu have had a remarkable four years together in Eugene, rewriting the history books and pushing the Ducks into the national spotlight. Catch the debut of "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" at Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




nes

Oregon's Ionescu looks forward to pro career in the WNBA

With the spotlight on her growing ever brighter, Sabrina Ionescu is aware she's becoming her own brand. One of the most decorated players in women's college basketball, Ionescu is about to go pro with the WNBA draft coming up Friday. Ionescu said Oregon has prepared her to understand how much impact she can have in the community and on women's basketball.




nes

Tennessee adds graduate transfer Keyen Green from Liberty

The Tennessee Lady Vols have added forward-center Keyen Green as a graduate transfer from Liberty. Coach Kellie Harper announced Wednesday that Green has signed a scholarship for the upcoming season. The 6-foot-1 Green spent the past four seasons at Liberty and graduated in May 2019.




nes

A Star Wars look at Sabrina Ionescu's Oregon accolades

See some of Sabrina Ionescu's remarkable accomplishments at Oregon set to the Star Wars opening crawl.




nes

Stanford's Tara VanDerveer on Haley Jones' versatile freshman year: 'It was really incredible'

During Friday's "Pac-12 Perspective," Stanford head coach Tara VanDerveer spoke about Haley Jones' positionless game and how the Cardinal used the dynamic freshman in 2019-20. Download and listen wherever you get your podcasts.




nes

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




nes

A Bayesian approach to disease clustering using restricted Chinese restaurant processes

Claudia Wehrhahn, Samuel Leonard, Abel Rodriguez, Tatiana Xifara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1449--1478.

Abstract:
Identifying disease clusters (areas with an unusually high incidence of a particular disease) is a common problem in epidemiology and public health. We describe a Bayesian nonparametric mixture model for disease clustering that constrains clusters to be made of adjacent areal units. This is achieved by modifying the exchangeable partition probability function associated with the Ewen’s sampling distribution. We call the resulting prior the Restricted Chinese Restaurant Process, as the associated full conditional distributions resemble those associated with the standard Chinese Restaurant Process. The model is illustrated using synthetic data sets and in an application to oral cancer mortality in Germany.




nes

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




nes

On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions

Karl Ewald, Ulrike Schneider.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.

Abstract:
We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient.




nes

The bias and skewness of M -estimators in regression

Christopher Withers, Saralees Nadarajah

Source: Electron. J. Statist., Volume 4, 1--14.

Abstract:
We consider M estimation of a regression model with a nuisance parameter and a vector of other parameters. The unknown distribution of the residuals is not assumed to be normal or symmetric. Simple and easily estimated formulas are given for the dominant terms of the bias and skewness of the parameter estimates. For the linear model these are proportional to the skewness of the ‘independent’ variables. For a nonlinear model, its linear component plays the role of these independent variables, and a second term must be added proportional to the covariance of its linear and quadratic components. For the least squares estimate with normal errors this term was derived by Box [1]. We also consider the effect of a large number of parameters, and the case of random independent variables.




nes

Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms

We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points.




nes

On lp-Support Vector Machines and Multidimensional Kernels

In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $ell_2$-norm ($ell_2$-SVM) to the more general case of $ell_p$-norms with $p>1$ ($ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $ell_2$-SVM, is extended to the more general case of $ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $ell_p$-SVM with $p>1$.




nes

Learning Causal Networks via Additive Faithfulness

In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI), a recently proposed three-way statistical relation that shares many similarities with conditional independence but without resorting to multi-dimensional kernels. This distinct feature strikes a balance between a parametric model and a fully nonparametric model, which makes the proposed model attractive for handling large networks. We develop an estimator for AFDAG based on a linear operator that characterizes ACI, and establish the consistency and convergence rates of this estimator, as well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified PC-algorithm to implement the estimating procedure efficiently, so that its complexity is determined by the level of sparseness rather than the dimension of the network. Through simulation studies we show that our method outperforms existing methods when commonly assumed conditions such as Gaussian or Gaussian copula distributions do not hold. Finally, the usefulness of AFDAG formulation is demonstrated through an application to a proteomics data set.




nes

Conjugate Gradients for Kernel Machines

Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental algorithm of statistics and machine learning. Because generic algorithms for the exact solution have cubic complexity in the number of datapoints, large datasets require to resort to approximations. In this work, the computation of the least-squares prediction is itself treated as a probabilistic inference problem. We propose a structured Gaussian regression model on the kernel function that uses projections of the kernel matrix to obtain a low-rank approximation of the kernel and the matrix. A central result is an enhanced way to use the method of conjugate gradients for the specific setting of least-squares regression as encountered in machine learning.




nes

Access thousands of newspapers and magazines with PressReader

Want to access thousands of newspapers and magazines wherever you are?




nes

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah, Yuancheng Si.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.

Abstract:
Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed.




nes

L-Logistic regression models: Prior sensitivity analysis, robustness to outliers and applications

Rosineide F. da Paz, Narayanaswamy Balakrishnan, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 455--479.

Abstract:
Tadikamalla and Johnson [ Biometrika 69 (1982) 461–465] developed the $L_{B}$ distribution to variables with bounded support by considering a transformation of the standard Logistic distribution. In this manuscript, a convenient parametrization of this distribution is proposed in order to develop regression models. This distribution, referred to here as L-Logistic distribution, provides great flexibility and includes the uniform distribution as a particular case. Several properties of this distribution are studied, and a Bayesian approach is adopted for the parameter estimation. Simulation studies, considering prior sensitivity analysis, recovery of parameters and comparison of algorithms, and robustness to outliers are all discussed showing that the results are insensitive to the choice of priors, efficiency of the algorithm MCMC adopted, and robustness of the model when compared with the beta distribution. Applications to estimate the vulnerability to poverty and to explain the anxiety are performed. The results to applications show that the L-Logistic regression models provide a better fit than the corresponding beta regression models.




nes

Failure rate of Birnbaum–Saunders distributions: Shape, change-point, estimation and robustness

Emilia Athayde, Assis Azevedo, Michelli Barros, Víctor Leiva.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 301--328.

Abstract:
The Birnbaum–Saunders (BS) distribution has been largely studied and applied. A random variable with BS distribution is a transformation of another random variable with standard normal distribution. Generalized BS distributions are obtained when the normally distributed random variable is replaced by another symmetrically distributed random variable. This allows us to obtain a wide class of positively skewed models with lighter and heavier tails than the BS model. Its failure rate admits several shapes, including the unimodal case, with its change-point being able to be used for different purposes. For example, to establish the reduction in a dose, and then in the cost of the medical treatment. We analyze the failure rates of generalized BS distributions obtained by the logistic, normal and Student-t distributions, considering their shape and change-point, estimating them, evaluating their robustness, assessing their performance by simulations, and applying the results to real data from different areas.