eat

New $G$-formula for the sequential causal effect and blip effect of treatment in sequential causal inference

Xiaoqin Wang, Li Yin.

Source: The Annals of Statistics, Volume 48, Number 1, 138--160.

Abstract:
In sequential causal inference, two types of causal effects are of practical interest, namely, the causal effect of the treatment regime (called the sequential causal effect) and the blip effect of treatment on the potential outcome after the last treatment. The well-known $G$-formula expresses these causal effects in terms of the standard parameters. In this article, we obtain a new $G$-formula that expresses these causal effects in terms of the point observable effects of treatments similar to treatment in the framework of single-point causal inference. Based on the new $G$-formula, we estimate these causal effects by maximum likelihood via point observable effects with methods extended from single-point causal inference. We are able to increase precision of the estimation without introducing biases by an unsaturated model imposing constraints on the point observable effects. We are also able to reduce the number of point observable effects in the estimation by treatment assignment conditions.




eat

A unified treatment of multiple testing with prior knowledge using the p-filter

Aaditya K. Ramdas, Rina F. Barber, Martin J. Wainwright, Michael I. Jordan.

Source: The Annals of Statistics, Volume 47, Number 5, 2790--2821.

Abstract:
There is a significant literature on methods for incorporating knowledge into multiple testing procedures so as to improve their power and precision. Some common forms of prior knowledge include (a) beliefs about which hypotheses are null, modeled by nonuniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into (possibly overlapping) groups and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, suggesting the use of more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)–(d) simultaneously, recovering a variety of known algorithms as special cases.




eat

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




eat

Correction: Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects

Trang Quynh Nguyen, Elizabeth A. Stuart.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 518--520.




eat

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




eat

Bayesian factor models for probabilistic cause of death assessment with verbal autopsies

Tsuyoshi Kunihama, Zehang Richard Li, Samuel J. Clark, Tyler H. McCormick.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 241--256.

Abstract:
The distribution of deaths by cause provides crucial information for public health planning, response and evaluation. About 60% of deaths globally are not registered or given a cause, limiting our ability to understand disease epidemiology. Verbal autopsy (VA) surveys are increasingly used in such settings to collect information on the signs, symptoms and medical history of people who have recently died. This article develops a novel Bayesian method for estimation of population distributions of deaths by cause using verbal autopsy data. The proposed approach is based on a multivariate probit model where associations among items in questionnaires are flexibly induced by latent factors. Using the Population Health Metrics Research Consortium labeled data that include both VA and medically certified causes of death, we assess performance of the proposed method. Further, we estimate important questionnaire items that are highly associated with causes of death. This framework provides insights that will simplify future data




eat

A statistical analysis of noisy crowdsourced weather data

Arnab Chakraborty, Soumendra Nath Lahiri, Alyson Wilson.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 116--142.

Abstract:
Spatial prediction of weather elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground stations. None of these data provide information at a more granular or “hyperlocal” resolution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyperlocal resolution. However, due to the low quality of the sensors and the nonlaboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyperlocal spatial prediction using this varying-quality, noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.




eat

Propensity score weighting for causal inference with multiple treatments

Fan Li, Fan Li.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2389--2415.

Abstract:
Causal or unconfounded descriptive comparisons between multiple groups are common in observational studies. Motivated from a racial disparity study in health services research, we propose a unified propensity score weighting framework, the balancing weights, for estimating causal effects with multiple treatments. These weights incorporate the generalized propensity scores to balance the weighted covariate distribution of each treatment group, all weighted toward a common prespecified target population. The class of balancing weights include several existing approaches such as the inverse probability weights and trimming weights as special cases. Within this framework, we propose a set of target estimands based on linear contrasts. We further develop the generalized overlap weights, constructed as the product of the inverse probability weights and the harmonic mean of the generalized propensity scores. The generalized overlap weighting scheme corresponds to the target population with the most overlap in covariates across the multiple treatments. These weights are bounded and thus bypass the problem of extreme propensities. We show that the generalized overlap weights minimize the total asymptotic variance of the moment weighting estimators for the pairwise contrasts within the class of balancing weights. We consider two balance check criteria and propose a new sandwich variance estimator for estimating the causal effects with generalized overlap weights. We apply these methods to study the racial disparities in medical expenditure between several racial groups using the 2009 Medical Expenditure Panel Survey (MEPS) data. Simulations were carried out to compare with existing methods.




eat

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




eat

Almost 12,000 meatpacking and food plant workers have reportedly contracted COVID-19. At least 48 have died.

The infections and deaths are spread across roughly two farms and 189 meat and processed food factories.





eat

The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia

Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation.





eat

A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control

Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 2, 649--675.

Abstract:
We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology.




eat

Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units

Pantelis Samartsidis, Shaun R. Seaman, Anne M. Presanis, Matthew Hickman, Daniela De Angelis.

Source: Statistical Science, Volume 34, Number 3, 486--503.

Abstract:
Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research.




eat

Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes

Georg Lindgren.

Source: Statistical Science, Volume 34, Number 1, 100--128.

Abstract:
We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods.




eat

Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data

Nicole Bohme Carnegie.

Source: Statistical Science, Volume 34, Number 1, 90--93.

Abstract:
With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals.




eat

Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning

The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence–divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features.

SIGNIFICANCE STATEMENT The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations.




eat

Heat burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




eat

Cleanair posters to create a smoke-free environment / designed by Biman Mullick ; published by Cleanair.

London (33 Stillness Road, London SE23 ING) : Cleanair, [198-?]




eat

[Silhouette of a pregant woman smoking with death skull inside womb, 29 January 1994] / design: Biman Mullick.

London, [29 January 1994]




eat

Forget Black Booties, Amal Clooney and J.Lo Are Wearing This Weather-Resistant Boot Trend Instead

And it’s on sale at Nordstrom.




eat

Sweatsuits Should Be Your Cozy Day Uniform—and These Are Our Favorites From Amazon

This retro style is making a comeback for a reason.




eat

how to become a great writer




eat

New ‘Great Exhibition at Home’ challenge launched to inspire young innovators




eat

Bottom Line: iPhone SE Packs Great Value for the Money

Apple's new iPhone SE delivers incredible value and performance, has a surprisingly good camera, and handles videos well. Reviewers were impressed by the phone's A13 chipset. However, criticisms include insufficient battery life, absence of night mode, and lack of 5G support. "For those of us concerned about money ... the SE provides the greatest bang for the buck," said tech analyst Rob Enderle.




eat

4 Sales Presentation Innovations That Keep Viewers on the Edge of Their Seats

People have been giving presentations for thousands of years, from Moses with his stone tablets to Elon Musk revealing his grand plans to colonize Mars. While the elements of a great pitchman generally have remained the same over the past 5,000 years -- conviction, charisma, credibility -- today's successful presenters do more than just get in front of an audience and talk.




eat

The expectations on central banks are simply too great

Original quotes from interview with Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, in Germany's Boerzen-Zeitung, conducted by Mr Mark Schroers and published on 21 November 2019.




eat

Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.

SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity.




eat

Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex

Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.

SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.




eat

Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex

Statistical regularities in natural sounds facilitate the perceptual segregation of auditory sources, or streams. Repetition is one cue that drives stream segregation in humans, but the neural basis of this perceptual phenomenon remains unknown. We demonstrated a similar perceptual ability in animals by training ferrets of both sexes to detect a stream of repeating noise samples (foreground) embedded in a stream of random samples (background). During passive listening, we recorded neural activity in primary auditory cortex (A1) and secondary auditory cortex (posterior ectosylvian gyrus, PEG). We used two context-dependent encoding models to test for evidence of streaming of the repeating stimulus. The first was based on average evoked activity per noise sample and the second on the spectro-temporal receptive field. Both approaches tested whether differences in neural responses to repeating versus random stimuli were better modeled by scaling the response to both streams equally (global gain) or by separately scaling the response to the foreground versus background stream (stream-specific gain). Consistent with previous observations of adaptation, we found an overall reduction in global gain when the stimulus began to repeat. However, when we measured stream-specific changes in gain, responses to the foreground were enhanced relative to the background. This enhancement was stronger in PEG than A1. In A1, enhancement was strongest in units with low sparseness (i.e., broad sensory tuning) and with tuning selective for the repeated sample. Enhancement of responses to the foreground relative to the background provides evidence for stream segregation that emerges in A1 and is refined in PEG.

SIGNIFICANCE STATEMENT To interact with the world successfully, the brain must parse behaviorally important information from a complex sensory environment. Complex mixtures of sounds often arrive at the ears simultaneously or in close succession, yet they are effortlessly segregated into distinct perceptual sources. This process breaks down in hearing-impaired individuals and speech recognition devices. By identifying the underlying neural mechanisms that facilitate perceptual segregation, we can develop strategies for ameliorating hearing loss and improving speech recognition technology in the presence of background noise. Here, we present evidence to support a hierarchical process, present in primary auditory cortex and refined in secondary auditory cortex, in which sound repetition facilitates segregation.




eat

Jackie Chan set to defeat the world's worst enemy - Hunger

International Kungfu superstar and renowned Hollywood film actor Jackie Chan has joined FAO in the fight against hunger. In a recent visit to Ethiopia, Chan met with beneficiaries of the ‘Purchase from Africans for Africa’ (PAA) project as well as a South-South Cooperation Programme where he discussed with Chinese experts how they exchange technical knowledge with Ethiopian farmers to help them [...]




eat

The Zero Hunger Challenge: Can we create a world where no one is hungry?

At the Rio+20 Conference on Sustainable Development in June 2012, UN Secretary-General Ban Ki-moon announced a new global challenge for world leaders and individuals from all sectors: create a world where no one is hungry. He emphasized that there is enough food in the world to feed our population, so the challenge comes from making sure that everyone has access [...]




eat

Water Scarcity – One of the greatest challenges of our time

Water is essential for agricultural production and food security.  It is the lifeblood of ecosystems, including forests, lakes and wetlands, on which the food and nutritional security of present and future generations depends on. Yet, our freshwater resources are dwindling at an alarming rate. Growing water scarcity is now one of the leading challenges for sustainable development.  This challenge will [...]




eat

Great hopes for climate-smart farming

Last year, Ashmita Thapa’s husband left their hometown in southern Nepal to find work in Saudi Arabia. He had been working as a farmer and used to be able to grow enough food for the family. But now, Ashmita explains, the yields are poorer and poorer. “This is a part of climate change,” she adds. “There isn’t as much rain as [...]




eat

The Mexican school where pupils plant, harvest and eat together

Elvis Cortés Hernández grabs his lunch and sits down with his friends. We’re at the General Lázaro Cárdenas school in Ajalpan, deep in the heart of Mexico’s Puebla province and the ten–year–old is chatting about the school’s vegetable garden, one element of its progressive food policy. “I like to eat in the school dining room because they give me carrots, [...]




eat

How much do you know about healthy eating?

Diets vary greatly from place to place based on food availability, eating habits and culture. Yet, when it comes to food, there is a lot that we know about what is and what is not good for us and this is true no matter where we live. Societal changes, however, are making these choices more complicated. While many countries are [...]




eat

How to get kids to eat pulses

Pulses are highly versatile ingredients to cook with—as either a main meal or a side dish, they are the perfect complement to even the boldest of flavours. But just like any new type of food, convincing the pickiest eaters in the family to try these nutritious beans, peas and lentils can sometimes prove difficult.  




eat

If You Want to See Thousands of Fireflies Light Up at Once, Head to the Great Smoky Mountains

A firefly mating ritual turns into a synchronized light show




eat

Joy Harjo, First Native American Writer to Be Named U.S. Poet Laureate, Reappointed for Second Term

Harjo, a member of the Muskogee Creek Nation, says the appointment "honors the place of Native people in this country, the place of Native people’s poetry"




eat

A Torpedo Malfunction Threatens to Destroy a U.S. Submarine

The USS Silversides is patrolling the Pacific during WWII when it finds itself in a terrifying situation: one of its torpedoes has jammed




eat

Eat Me Before I Eat You! A New Foe For Bad Bugs




eat

Rescued From Rot, 19th-Century Naval Figureheads to Feature in New Exhibit

A collection of 14 restored wooden statues, including a two-ton William IV, will be shown at the Box Museum in England




eat

This Fading Star Wasn't on the Brink of Death After All—It Was Just Dusty

After four months of unexpected dimming, the red supergiant star has perked back up, and astronomers may have a new explanation for the fluke




eat

Urban Coyotes Eat a Lot of Garbage—and Cats

A new study shows how city-dwelling coyotes thrive by feasting on human-linked food sources




eat

New Analysis Refutes Nazareth Inscription's Ties to Jesus' Death

The marble slab appears to be Greek in origin and may have been written in response to the death of a tyrant on the island of Kos




eat

Explore 3-D Models of Historic Yukon Structures Threatened by Erosion

"We thought it was a good idea to get a comprehensive record of the site while we could in case the water levels rise," says one official




eat

Albert Uderzo, Co-Creator of 'Asterix and Obelix' Comics, Dies at 92

The pint-sized, mustachioed Gaul immortalized in the French cartoon has spawned films, a theme park and many other spin-offs




eat

COVID-19 Could Threaten Great Ape Populations, Researchers Warn

No SARS-CoV-2 infections have yet been detected in our closest living relatives. But there is precedent for viruses jumping from people to other great apes




eat

Bored at Home? Help Great Britain 'Rescue' Its Old Rainfall Records

Precious data points logged on paper are in dire need of a hero. Could it be you?




eat

Saturn's Auroras Could Help Explain the Weird Amounts of Heat in Its Atmosphere

The planet's temperatures spike around the latitudes where auroras show up




eat

The Great Barrier Reef Is Now Facing Most Widespread Bleaching Event Yet

The severity of this year's bleaching is second only to 2016, during which a third of the reef’s corals died