age

Bacteriophages : biology, technology, therapy

9783319405988 electronic book




age

Atlas of ulcers in systemic sclerosis : diagnosis and management

9783319984773 (electronic bk.)




age

Anomalies of the Developing Dentition : a Clinical Guide to Diagnosis and Management

Soxman, Jane A., author.
9783030031640 (electronic bk.)




age

Advanced age geriatric care : a comprehensive guide

9783319969985 (electronic bk.)




age

Fill Management Plan PIC





age

Averages of unlabeled networks: Geometric characterization and asymptotic behavior

Eric D. Kolaczyk, Lizhen Lin, Steven Rosenberg, Jackson Walters, Jie Xu.

Source: The Annals of Statistics, Volume 48, Number 1, 514--538.

Abstract:
It is becoming increasingly common to see large collections of network data objects, that is, data sets in which a network is viewed as a fundamental unit of observation. As a result, there is a pressing need to develop network-based analogues of even many of the most basic tools already standard for scalar and vector data. In this paper, our focus is on averages of unlabeled, undirected networks with edge weights. Specifically, we (i) characterize a certain notion of the space of all such networks, (ii) describe key topological and geometric properties of this space relevant to doing probability and statistics thereupon, and (iii) use these properties to establish the asymptotic behavior of a generalized notion of an empirical mean under sampling from a distribution supported on this space. Our results rely on a combination of tools from geometry, probability theory and statistical shape analysis. In particular, the lack of vertex labeling necessitates working with a quotient space modding out permutations of labels. This results in a nontrivial geometry for the space of unlabeled networks, which in turn is found to have important implications on the types of probabilistic and statistical results that may be obtained and the techniques needed to obtain them.




age

Assessing wage status transition and stagnation using quantile transition regression

Chih-Yuan Hsu, Yi-Hau Chen, Ruoh-Rong Yu, Tsung-Wei Hung.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 160--177.

Abstract:
Workers in Taiwan overall have been suffering from long-lasting wage stagnation since the mid-1990s. In particular, there seems to be little mobility for the wages of Taiwanese workers to transit across wage quantile groups. It is of interest to see if certain groups of workers, such as female, lower educated and younger generation workers, suffer from the problem more seriously than the others. This work tries to apply a systematic statistical approach to study this issue, based on the longitudinal data from the Panel Study of Family Dynamics (PSFD) survey conducted in Taiwan since 1999. We propose the quantile transition regression model, generalizing recent methodology for quantile association, to assess the wage status transition with respect to the marginal wage quantiles over time as well as the effects of certain demographic and job factors on the wage status transition. Estimation of the model can be based on the composite likelihoods utilizing the binary, or ordinal-data information regarding the quantile transition, with the associated asymptotic theory established. A goodness-of-fit procedure for the proposed model is developed. The performances of the estimation and the goodness-of-fit procedures for the quantile transition model are illustrated through simulations. The application of the proposed methodology to the PSFD survey data suggests that female, private-sector workers with higher age and education below postgraduate level suffer from more severe wage status stagnation than the others.




age

Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis

Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.

Abstract:
Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields.




age

Approximate inference for constructing astronomical catalogs from images

Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1884--1926.

Abstract:
We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a random variable with parameters that depend on the latent properties of stars and galaxies. These latent properties are themselves modeled as random. We compare two procedures for posterior inference. One procedure is based on Markov chain Monte Carlo (MCMC) while the other is based on variational inference (VI). The MCMC procedure excels at quantifying uncertainty, while the VI procedure is 1000 times faster. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores to construct an astronomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating the scaling characteristics necessary to construct catalogs for upcoming astronomical surveys.




age

Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?

Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.

Abstract:
The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models.




age

A Bayesian mark interaction model for analysis of tumor pathology images

Qiwei Li, Xinlei Wang, Faming Liang, Guanghua Xiao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1708--1732.

Abstract:
With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of $188$ lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell–cell interactions in cancer progression.




age

Convergence of the age structure of general schemes of population processes

Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner.

Source: Bernoulli, Volume 26, Number 2, 893--926.

Abstract:
We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation.




age

On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

Keisuke Yano, Kengo Kato.

Source: Bernoulli, Volume 26, Number 1, 616--641.

Abstract:
In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.




age

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




age

Gordon of Huntly : heraldic heritage : cadets to South Australia / Robin Gregory Gordon.

South Australia -- Genealogy.




age

Our Lady of Grace family page of history : a bookweek bicentennial project / edited by Janeen Brian.

Our Lady of Grace School (Glengowrie, S.A.)




age

McGraw-Hill and Cengage Abandon Merger Plans

The two major companies cited what they considered onerous divestiture requirements from the U.S. Department of Justice as the reason behind their joint decision.

The post McGraw-Hill and Cengage Abandon Merger Plans appeared first on Market Brief.



  • Marketplace K-12
  • Business Strategy
  • COVID-19
  • Curriculum / Digital Curriculum
  • Mergers and Acquisitions
  • Online / Virtual Learning

age

These are the most dangerous jobs you can have in the age of coronavirus

For millions of Americans, working at home isn't an option. NBC News identified seven occupations in which employees are at especially high risk of COVID-19.





age

Variational Message Passing for Elaborate Response Regression Models

M. W. McLean, M. P. Wand.

Source: Bayesian Analysis, Volume 14, Number 2, 371--398.

Abstract:
We build on recent work concerning message passing approaches to approximate fitting and inference for arbitrarily large regression models. The focus is on regression models where the response variable is modeled to have an elaborate distribution, which is loosely defined to mean a distribution that is more complicated than common distributions such as those in the Bernoulli, Poisson and Normal families. Examples of elaborate response families considered here are the Negative Binomial and $t$ families. Variational message passing is more challenging due to some of the conjugate exponential families being non-standard and numerical integration being needed. Nevertheless, a factor graph fragment approach means the requisite calculations only need to be done once for a particular elaborate response distribution family. Computer code can be compartmentalized, including that involving numerical integration. A major finding of this work is that the modularity of variational message passing extends to elaborate response regression models.




age

Smoking is bad for your image / design : Biman Mullick.

[London?], [199-?]




age

Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018.

[London], 2019.




age

Afferents and Homotypic Neighbors Regulate Horizontal Cell Morphology, Connectivity, and Retinal Coverage

Benjamin E. Reese
Mar 2, 2005; 25:2167-2175
BehavioralSystemsCognitive




age

Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;1

KM Harris
Jul 1, 1992; 12:2685-2705
Articles




age

Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage

Jessica A. Gorski
Aug 1, 2002; 22:6309-6314
BRIEF COMMUNICATION




age

Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation

HG Kuhn
Mar 15, 1996; 16:2027-2033
Articles




age

BIRTHDAY PARTY PACKAGE/ DROP-IN LEADERS




age

Le Communiqué de Bâle finalise les principes relatifs aux tests de résistance, passe en revue les moyens pour mettre fin aux comportements d'arbitrage réglementaire, s'accorde sur la liste annuelle des G-SIB et discute du ratio

French translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018.




age

dark-ages flavored darkness




age

Trying Times for Employee Engagement

These days are either the most trying time for encouraging employee engagement or the best we could expect. With so many people working remotely, many businesses need extra ways to communicate with the rank and file, and this might present a prime opportunity to try new things. We make a big deal of engaging the customer, and in most CRM circles engagement outranks simple customer experience.




age

Zoom Oracles Its Way to Center Stage

Oracle and Zoom just entered a deal that for once is more about technological audacity than about dollars -- a partnership to host Zoom on Oracle Cloud Infrastructure. In just a few months -- basically since the beginning of the novel coronavirus pandemic -- Zoom has seen demand for its service grow from about 10 million daily meeting participants to more than 300 million.




age

Frank Rich: The Rage Won't End on Election Day




age

Crisis management framework: what remains to be done?

Welcoming remarks by Mr Fernando Restoy, Chairman, Financial Stability Institute, Bank for International Settlements, at the FSI-IADI conference on crisis management, resolution and deposit insurance: what's next and how to prepare, Basel, 4 September 2019.




age

Exiting low inflation traps by "consensus": nominal wages and price stability

Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019.




age

Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.

SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity.




age

Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model

Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [11C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies.

SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11C]ABP688 and [11C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy.




age

Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice

To determine whether Cav1.2 voltage-gated Ca2+ channels contribute to astrocyte activation, we generated an inducible conditional knock-out mouse in which the Cav1.2 α subunit was deleted in GFAP-positive astrocytes. This astrocytic Cav1.2 knock-out mouse was tested in the cuprizone model of myelin injury and repair which causes astrocyte and microglia activation in the absence of a lymphocytic response. Deletion of Cav1.2 channels in GFAP-positive astrocytes during cuprizone-induced demyelination leads to a significant reduction in the degree of astrocyte and microglia activation and proliferation in mice of either sex. Concomitantly, the production of proinflammatory factors such as TNFα, IL1β and TGFβ1 was significantly decreased in the corpus callosum and cortex of Cav1.2 knock-out mice through demyelination. Furthermore, this mild inflammatory environment promotes oligodendrocyte progenitor cells maturation and myelin regeneration across the remyelination phase of the cuprizone model. Similar results were found in animals treated with nimodipine, a Cav1.2 Ca2+ channel inhibitor with high affinity to the CNS. Mice of either sex injected with nimodipine during the demyelination stage of the cuprizone treatment displayed a reduced number of reactive astrocytes and showed a faster and more efficient brain remyelination. Together, these results indicate that Cav1.2 Ca2+ channels play a crucial role in the induction and proliferation of reactive astrocytes during demyelination; and that attenuation of astrocytic voltage-gated Ca2+ influx may be an effective therapy to reduce brain inflammation and promote myelin recovery in demyelinating diseases.

SIGNIFICANCE STATEMENT Reducing voltage-gated Ca2+ influx in astrocytes during brain demyelination significantly attenuates brain inflammation and astrocyte reactivity. Furthermore, these changes promote myelin restoration and oligodendrocyte maturation throughout remyelination.




age

Molecular Mechanisms of Non-ionotropic NMDA Receptor Signaling in Dendritic Spine Shrinkage

Structural plasticity of dendritic spines is a key component of the refinement of synaptic connections during learning. Recent studies highlight a novel role for the NMDA receptor (NMDAR), independent of ion flow, in driving spine shrinkage and LTD. Yet little is known about the molecular mechanisms that link conformational changes in the NMDAR to changes in spine size and synaptic strength. Here, using two-photon glutamate uncaging to induce plasticity at individual dendritic spines on hippocampal CA1 neurons from mice and rats of both sexes, we demonstrate that p38 MAPK is generally required downstream of non-ionotropic NMDAR signaling to drive both spine shrinkage and LTD. In a series of pharmacological and molecular genetic experiments, we identify key components of the non-ionotropic NMDAR signaling pathway driving dendritic spine shrinkage, including the interaction between NOS1AP (nitric oxide synthase 1 adaptor protein) and neuronal nitric oxide synthase (nNOS), nNOS enzymatic activity, activation of MK2 (MAPK-activated protein kinase 2) and cofilin, and signaling through CaMKII. Our results represent a large step forward in delineating the molecular mechanisms of non-ionotropic NMDAR signaling that can drive shrinkage and elimination of dendritic spines during synaptic plasticity.

SIGNIFICANCE STATEMENT Signaling through the NMDA receptor (NMDAR) is vitally important for the synaptic plasticity that underlies learning. Recent studies highlight a novel role for the NMDAR, independent of ion flow, in driving synaptic weakening and dendritic spine shrinkage during synaptic plasticity. Here, we delineate several key components of the molecular pathway that links conformational signaling through the NMDAR to dendritic spine shrinkage during synaptic plasticity.




age

7 things you should know about FAO and the Post-2015 development agenda

As FAO launches dedicated webpages on post-2015, here are seven things to know about the process and how FAO is playing its part. 7 - Post-2015 development agenda - The name refers to the process through which Member States agree on a new global development framework to succeed the Millennium Development Goals (MDGs), eight goals that followed the UN Millennium Declaration [...]




age

Visit the Only Village Inside the Grand Canyon

Supai is so remote, mail is delivered by mule train




age

Virus worries K-Town: Local agencies to discuss virus preparedness




age

Trash cans listed on borough agenda




age

Road Rage




age

How the British Navy Camouflaged Their Ships Using Art

The British Navy knew it couldn't completely disguise a ship to protect it from attack during WWI. So they turned to 'Dazzle Painting'




age

Art Is Dead New Project Images




age

Portable, Pocket-Sized Rock Art Discovered in Ice Age Indonesian Cave

The findings further refute the outdated notion that humans' capacity for complex artistic expression evolved exclusively in Europe




age

Urban Coyotes Eat a Lot of Garbage—and Cats

A new study shows how city-dwelling coyotes thrive by feasting on human-linked food sources




age

5.4-Magnitude Earthquake Damages Zagreb Cathedral, Museums

The tremors, which arrived in the midst of the COVID-19 pandemic, was the worst the Croatian capital has seen in 140 years




age

Japan's Experiment to Calculate an Asteroid's Age Was a Smashing Success

The spacecraft Hayabusa2 hurled a four-pound copper ball toward the asteroid's surface at about 4,500 miles an hour to create an artificial crater




age

To Image a Black Hole Again, Scientists May Need to Put a Telescope on the Moon

New calculations show that the ring of light surrounding a black hole is actually made up of infinite subrings that can’t be seen with current technology