act

An episode in 'Every man in his humour' by Ben Jonson: Charles Dickens in character as Captain Bobadill is awakened after a hard night's drinking. Lithograph by T.H. Maguire after C.R. Leslie.

[London?]




act

William Macready in character as Werner in the play Werner by Lord Byron. Engraving by C.W. Sharpe after D. Maclise.

[London?]




act

The second feast of Esther: Haman bows before Esther, seeking her pardon for his plan to kill her and all other Jews; King Ahasuerus returns to the room in rage and misinterprets his action. Engraving, 17--.




act

Acts of mercy : the Middlesex Hospital paintings by Frederick Cayley Robinson (1862-1927) / [text by William Schupbach].

[London] : [Wellcome Trust], [2009]




act

Report upon the Scott Moncrieff system for the bacteriological purification of sewage / by Alexander C. Houston.

[London] : Waterlow Bros. & Layton, Limited, [1893]




act

Anaheim Ducks re-sign Djoos, Hakanpää to 1-year contracts

The Anaheim Ducks have re-signed defensemen Christian Djoos and Jani Hakanpaa to one-year contracts. The Ducks announced the deals Wednesday. Djoos had one goal and two assists in nine games with the Ducks after they acquired him from the Washington Capitals on Feb. 24 in a trade for forward Daniel Sprong.




act

Brendan Leipsic's Capitals contract terminated after offensive remarks revealed

The Washington Capitals have placed former Winterhawks wing Brendan Leipsic on unconditional waivers with the intention of his contract being terminated after private messages revealed misogynistic comments. > The Washington Capitals have placed Brendan Leipsic on unconditional waivers for purposes of terminating his contract.https://t.co/UnADibu2yQ




act

After Protracted Political Spat, Missouri Rehires Fired State Schools Chief

Former Republican Missouri Gov. Eric Greitens appointed enough board members to have Commissioner Margie Vandeven fired last year, but now that he's gone, the state board decided to hire her back.




act

Shifting Science Instruction to the Coronavirus: New Activities, Units

A small group of science teachers in Missouri is using the coronavirus as a teachable moment that's aligned to the Next Generation Science Standards.




act

Critical and creative approaches to mental health practice




act

Radioactive Animals




act

Administrative scheme for the County of London made by the London County Council on 18th December, 1934, for discharging the functions transferred to the Council by Part I of the Local Government Act, 1929, and orders made bu the Minister of Health under

England : London County Council, Public Assistance Department, 1935.




act

Narcotic antagonists, the search for long-acting preparations / editor, Robert Willette.

Rockville, Maryland : National Institute on Drug Abuse, 1976.




act

Strategies for research on the interactions of drugs of abuse / editors, Monique C. Braude, Harold M. Ginzburg.

Rockville, Maryland : National Institute on Drug Abuse, 1986.




act

Structure-activity relationships of the cannabinoids / editors, Rao S. Rapaka, Alexandros Makriyannis.

Rockville, Maryland : National Institute on Drug Abuse, 1987.




act

Learning factors in substance abuse / editor, Barbara A. Ray.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




act

Compulsory treatment of drug abuse : research and clinical practice / editors, Carl G. Leukefeld, Frank M. Tims.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




act

Drug abuse treatment client characteristics and pretreatment behaviors : 1979-1981 TOPS admission cohorts / Robert L. Hubbard, Robert M. Bray, Elizabeth R. Cavanaugh, J. Valley Rachal, S. Gail Craddock, James J. Collins, Margaret Allison ; Research Triang

Rockville, Maryland : National Institute on Drug Abuse, 1986.




act

Psychosocial characteristics of drug-abusing women / by Marvin R. Burt, principal investigator ; Thomas J. Glynn, Barbara J. Sowder ; Burt Associates, Inc.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




act

The aging process and psychoactive drug use.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




act

Your thoughts are not facts.

[London] : [publisher not identified], [2019]




act

Evaluating drug information programs / Panel on the Impact of Information on Drug Use and Misuse, National Research Council ; prepared for National Institute of Mental Health.

Springfield, Virginia : National Technical Information Service, 1973.




act

Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.]

Springfield, Virginia : National Technical Information Service, 1974.




act

Methadone substitution therapy : policies and practices / edited by Hamid Ghodse, Carmel Clancy, Adenekan Oyefeso.

London : European Collaborating Centres in Addiction Studies, 1998.




act

Series 04: Contact prints of suburbs of Sydney NSW, ca 1960s-1980s




act

WNBA Draft Profile: Versatile forward Satou Sabally can provide instant impact

Athletic forward Satou Sabally is preparing to take the leap to the WNBA level following three productive seasons at Oregon. As a junior, she averaged 16.2 points and 6.9 rebounds per game while helping the Ducks sweep the Pac-12 regular season and tournament titles. At 6-foot-4, she also drained 45 3-pointers for Oregon in 2019-20 while notching a career-best average of 2.3 assists per game.




act

'A pioneer, a trailblazer' - Reaction to McGraw's retirement

Notre Dame coach Muffet McGraw retired after 33 seasons Wednesday. What she did for me in those four years, I came in as a girl and left as a woman.'' - WNBA player Kayla McBride, who played for Notre Dame from 2010-14.




act

Drift estimation for stochastic reaction-diffusion systems

Gregor Pasemann, Wilhelm Stannat.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 547--579.

Abstract:
A parameter estimation problem for a class of semilinear stochastic evolution equations is considered. Conditions for consistency and asymptotic normality are given in terms of growth and continuity properties of the nonlinear part. Emphasis is put on the case of stochastic reaction-diffusion systems. Robustness results for statistical inference under model uncertainty are provided.




act

Exact recovery in block spin Ising models at the critical line

Matthias Löwe, Kristina Schubert.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1796--1815.

Abstract:
We show how to exactly reconstruct the block structure at the critical line in the so-called Ising block model. This model was recently re-introduced by Berthet, Rigollet and Srivastava in [2]. There the authors show how to exactly reconstruct blocks away from the critical line and they give an upper and a lower bound on the number of observations one needs; thereby they establish a minimax optimal rate (up to constants). Our technique relies on a combination of their methods with fluctuation results obtained in [20]. The latter are extended to the full critical regime. We find that the number of necessary observations depends on whether the interaction parameter between two blocks is positive or negative: In the first case, there are about $Nlog N$ observations required to exactly recover the block structure, while in the latter case $sqrt{N}log N$ observations suffice.




act

Posterior contraction and credible sets for filaments of regression functions

Wei Li, Subhashis Ghosal.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1707--1743.

Abstract:
A filament consists of local maximizers of a smooth function $f$ when moving in a certain direction. A filamentary structure is an important feature of the shape of an object and is also considered as an important lower dimensional characterization of multivariate data. There have been some recent theoretical studies of filaments in the nonparametric kernel density estimation context. This paper supplements the current literature in two ways. First, we provide a Bayesian approach to the filament estimation in regression context and study the posterior contraction rates using a finite random series of B-splines basis. Compared with the kernel-estimation method, this has a theoretical advantage as the bias can be better controlled when the function is smoother, which allows obtaining better rates. Assuming that $f:mathbb{R}^{2}mapsto mathbb{R}$ belongs to an isotropic Hölder class of order $alpha geq 4$, with the optimal choice of smoothing parameters, the posterior contraction rates for the filament points on some appropriately defined integral curves and for the Hausdorff distance of the filament are both $(n/log n)^{(2-alpha )/(2(1+alpha ))}$. Secondly, we provide a way to construct a credible set with sufficient frequentist coverage for the filaments. We demonstrate the success of our proposed method in simulations and one application to earthquake data.




act

A general drift estimation procedure for stochastic differential equations with additive fractional noise

Fabien Panloup, Samy Tindel, Maylis Varvenne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.

Abstract:
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.




act

Generalized bounds for active subspaces

Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.

Abstract:
In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability.




act

Practical Locally Private Heavy Hitters

We present new practical local differentially private heavy hitters algorithms achieving optimal or near-optimal worst-case error and running time -- TreeHist and Bitstogram. In both algorithms, server running time is $ ilde O(n)$ and user running time is $ ilde O(1)$, hence improving on the prior state-of-the-art result of Bassily and Smith [STOC 2015] requiring $O(n^{5/2})$ server time and $O(n^{3/2})$ user time. With a typically large number of participants in local algorithms (in the millions), this reduction in time complexity, in particular at the user side, is crucial for making locally private heavy hitters algorithms usable in practice. We implemented Algorithm TreeHist to verify our theoretical analysis and compared its performance with the performance of Google's RAPPOR code.




act

High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix

In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios.




act

A New Class of Time Dependent Latent Factor Models with Applications

In many applications, observed data are influenced by some combination of latent causes. For example, suppose sensors are placed inside a building to record responses such as temperature, humidity, power consumption and noise levels. These random, observed responses are typically affected by many unobserved, latent factors (or features) within the building such as the number of individuals, the turning on and off of electrical devices, power surges, etc. These latent factors are usually present for a contiguous period of time before disappearing; further, multiple factors could be present at a time. This paper develops new probabilistic methodology and inference methods for random object generation influenced by latent features exhibiting temporal persistence. Every datum is associated with subsets of a potentially infinite number of hidden, persistent features that account for temporal dynamics in an observation. The ensuing class of dynamic models constructed by adapting the Indian Buffet Process — a probability measure on the space of random, unbounded binary matrices — finds use in a variety of applications arising in operations, signal processing, biomedicine, marketing, image analysis, etc. Illustrations using synthetic and real data are provided.




act

Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution.




act

Health & Active Living Challenge




act

Stein characterizations for linear combinations of gamma random variables

Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, Yvik Swan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 394--413.

Abstract:
In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (not necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined.




act

A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences

Natalia Shenkman.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.

Abstract:
While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities.




act

Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach

Durba Bhattacharya, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.

Abstract:
Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI.




act

Simple step-stress models with a cure fraction

Nandini Kannan, Debasis Kundu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 2--17.

Abstract:
In this article, we consider models for time-to-event data obtained from experiments in which stress levels are altered at intermediate stages during the observation period. These experiments, known as step-stress tests, belong to the larger class of accelerated tests used extensively in the reliability literature. The analysis of data from step-stress tests largely relies on the popular cumulative exposure model. However, despite its simple form, the utility of the model is limited, as it is assumed that the hazard function of the underlying distribution is discontinuous at the points at which the stress levels are changed, which may not be very reasonable. Due to this deficiency, Kannan et al. ( Journal of Applied Statistics 37 (2010b) 1625–1636) introduced the cumulative risk model, where the hazard function is continuous. In this paper, we propose a class of parametric models based on the cumulative risk model assuming the underlying population contains long-term survivors or ‘cured’ fraction. An EM algorithm to compute the maximum likelihood estimators of the unknown parameters is proposed. This research is motivated by a study on altitude decompression sickness. The performance of different parametric models will be evaluated using data from this study.




act

Fractional backward stochastic variational inequalities with non-Lipschitz coefficient

Katarzyna Jańczak-Borkowska.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 480--497.

Abstract:
We prove the existence and uniqueness of the solution of backward stochastic variational inequalities with respect to fractional Brownian motion and with non-Lipschitz coefficient. We assume that $H>1/2$.




act

Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise

Sophie Achard, Jean-François Coeurjolly

Source: Statist. Surv., Volume 4, 117--147.

Abstract:
This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the R package dvfBm.




act

On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED)

Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods.

Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied.




act

Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED)

Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.




act

COVID-19 transmission risk factors. (arXiv:2005.03651v1 [q-bio.QM])

We analyze risk factors correlated with the initial transmission growth rate of the COVID-19 pandemic. The number of cases follows an early exponential expansion; we chose as a starting point in each country the first day with 30 cases and used 12 days. We looked for linear correlations of the exponents with other variables, using 126 countries. We find a positive correlation with high C.L. with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date ($2cdot10^{-5}$), high level of contact in greeting habits ($6 cdot 10^{-5}$), lung cancer ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), urbanization ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, smaller sample, 73 countries), low Vitamin D levels ($p$-value $0.002-0.006$, smaller sample, $sim 50$ countries). There is highly significant correlation also with blood type: positive correlation with RH- ($2cdot10^{-5}$) and A+ ($2cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). We also find positive correlation with moderate C.L. ($p$-value of $0.02sim0.03$) with: CO$_2$ emissions, type-1 diabetes, low vaccination coverage for Tuberculosis (BCG). Several such variables are correlated with each other and so they likely have common interpretations. We also analyzed the possible existence of a bias: countries with low GDP-per capita, typically located in warm regions, might have less intense testing and we discuss correlation with the above variables.




act

Know Your Clients' behaviours: a cluster analysis of financial transactions. (arXiv:2005.03625v1 [econ.EM])

In Canada, financial advisors and dealers by provincial securities commissions, and those self-regulatory organizations charged with direct regulation over investment dealers and mutual fund dealers, respectively to collect and maintain Know Your Client (KYC) information, such as their age or risk tolerance, for investor accounts. With this information, investors, under their advisor's guidance, make decisions on their investments which are presumed to be beneficial to their investment goals. Our unique dataset is provided by a financial investment dealer with over 50,000 accounts for over 23,000 clients. We use a modified behavioural finance recency, frequency, monetary model for engineering features that quantify investor behaviours, and machine learning clustering algorithms to find groups of investors that behave similarly. We show that the KYC information collected does not explain client behaviours, whereas trade and transaction frequency and volume are most informative. We believe the results shown herein encourage financial regulators and advisors to use more advanced metrics to better understand and predict investor behaviours.




act

Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms. (arXiv:2005.03557v1 [cs.LG])

As an important type of reinforcement learning algorithms, actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies. In the first nested-loop design, actor's one update of policy is followed by an entire loop of critic's updates of the value function, and the finite-sample analysis of such AC and NAC algorithms have been recently well established. The second two time-scale design, in which actor and critic update simultaneously but with different learning rates, has much fewer tuning parameters than the nested-loop design and is hence substantially easier to implement. Although two time-scale AC and NAC have been shown to converge in the literature, the finite-sample convergence rate has not been established. In this paper, we provide the first such non-asymptotic convergence rate for two time-scale AC and NAC under Markovian sampling and with actor having general policy class approximation. We show that two time-scale AC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-2.5}log^3(epsilon^{-1}))$ to attain an $epsilon$-accurate stationary point, and two time-scale NAC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-4}log^2(epsilon^{-1}))$ to attain an $epsilon$-accurate global optimal point. We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling and for analyzing the convergence rate of the linear critic with dynamically changing base functions and transition kernel.




act

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




act

Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. (arXiv:2005.03220v1 [stat.ME])

Ridge regression (RR) is a regularization technique that penalizes the L2-norm of the coefficients in linear regression. One of the challenges of using RR is the need to set a hyperparameter ($alpha$) that controls the amount of regularization. Cross-validation is typically used to select the best $alpha$ from a set of candidates. However, efficient and appropriate selection of $alpha$ can be challenging, particularly where large amounts of data are analyzed. Because the selected $alpha$ depends on the scale of the data and predictors, it is not straightforwardly interpretable. Here, we propose to reparameterize RR in terms of the ratio $gamma$ between the L2-norms of the regularized and unregularized coefficients. This approach, called fractional RR (FRR), has several benefits: the solutions obtained for different $gamma$ are guaranteed to vary, guarding against wasted calculations, and automatically span the relevant range of regularization, avoiding the need for arduous manual exploration. We provide an algorithm to solve FRR, as well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge). We show that the proposed method is fast and scalable for large-scale data problems, and delivers results that are straightforward to interpret and compare across models and datasets.