tri Pediatrician Group Issues Home Birth Policy Statement By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Pediatrician Group Issues Home Birth Policy StatementCategory: Health NewsCreated: 4/29/2013 10:35:00 AMLast Editorial Review: 4/29/2013 12:00:00 AM Full Article
tri Pediatricians Should Plan for Anthrax Attack, U.S. Experts Say By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Pediatricians Should Plan for Anthrax Attack, U.S. Experts SayCategory: Health NewsCreated: 4/28/2014 9:35:00 AMLast Editorial Review: 4/28/2014 12:00:00 AM Full Article
tri Pediatricians Issue New Guidelines for Hospital Release of Newborns By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Pediatricians Issue New Guidelines for Hospital Release of NewbornsCategory: Health NewsCreated: 4/27/2015 12:00:00 AMLast Editorial Review: 4/27/2015 12:00:00 AM Full Article
tri More Than 1 in 10 Teens Has Tried E-Cigarettes, Study Finds By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: More Than 1 in 10 Teens Has Tried E-Cigarettes, Study FindsCategory: Health NewsCreated: 4/26/2015 12:00:00 AMLast Editorial Review: 4/27/2015 12:00:00 AM Full Article
tri Pediatrics Group Advises Doctors on How to Spot Child Abuse By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Pediatrics Group Advises Doctors on How to Spot Child AbuseCategory: Health NewsCreated: 4/27/2015 12:00:00 AMLast Editorial Review: 4/28/2015 12:00:00 AM Full Article
tri High-Pitched Sounds May Trigger Seizures in Cats By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: High-Pitched Sounds May Trigger Seizures in CatsCategory: Health NewsCreated: 4/28/2015 12:00:00 AMLast Editorial Review: 4/29/2015 12:00:00 AM Full Article
tri Births of Triplets, Quadruplets on Decline in U.S.: Report By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Births of Triplets, Quadruplets on Decline in U.S.: ReportCategory: Health NewsCreated: 4/28/2016 12:00:00 AMLast Editorial Review: 4/28/2016 12:00:00 AM Full Article
tri Psychiatric Scars of Wartime Brain Injury May Linger for Years By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Psychiatric Scars of Wartime Brain Injury May Linger for YearsCategory: Health NewsCreated: 5/1/2017 12:00:00 AMLast Editorial Review: 5/2/2017 12:00:00 AM Full Article
tri Thunderstorms Can Trigger Asthma Flares, Study Finds By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Thunderstorms Can Trigger Asthma Flares, Study FindsCategory: Health NewsCreated: 5/1/2017 12:00:00 AMLast Editorial Review: 5/2/2017 12:00:00 AM Full Article
tri Half of U.S. Docs Get Payments From Drug, Device Industries: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Half of U.S. Docs Get Payments From Drug, Device Industries: StudyCategory: Health NewsCreated: 5/2/2017 12:00:00 AMLast Editorial Review: 5/3/2017 12:00:00 AM Full Article
tri Health Tip: Preparing Nutritious Meals By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Health Tip: Preparing Nutritious MealsCategory: Health NewsCreated: 5/4/2017 12:00:00 AMLast Editorial Review: 5/4/2017 12:00:00 AM Full Article
tri Striving for Facebook 'Likes' May Not Boost Your Self-Esteem By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Striving for Facebook 'Likes' May Not Boost Your Self-EsteemCategory: Health NewsCreated: 5/3/2017 12:00:00 AMLast Editorial Review: 5/4/2017 12:00:00 AM Full Article
tri 'Dr. Google' May Undermine Parents' Trust in Their Pediatrician By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: 'Dr. Google' May Undermine Parents' Trust in Their PediatricianCategory: Health NewsCreated: 5/5/2017 12:00:00 AMLast Editorial Review: 5/5/2017 12:00:00 AM Full Article
tri Work Stress, Poor Sleep, High Blood Pressure a Deadly Trio By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Work Stress, Poor Sleep, High Blood Pressure a Deadly TrioCategory: Health NewsCreated: 4/29/2019 12:00:00 AMLast Editorial Review: 4/29/2019 12:00:00 AM Full Article
tri Most States Restrict Pregnant Women's Advance Directives: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Most States Restrict Pregnant Women's Advance Directives: StudyCategory: Health NewsCreated: 4/26/2019 12:00:00 AMLast Editorial Review: 4/29/2019 12:00:00 AM Full Article
tri FDA OKs Restricted Sales of 'Heat-Not-Burn' Tobacco Devices By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: FDA OKs Restricted Sales of 'Heat-Not-Burn' Tobacco DevicesCategory: Health NewsCreated: 4/30/2019 12:00:00 AMLast Editorial Review: 5/1/2019 12:00:00 AM Full Article
tri Isolation During Coronavirus Pandemic a Trigger for Depression By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Isolation During Coronavirus Pandemic a Trigger for DepressionCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/27/2020 12:00:00 AM Full Article
tri COVID-19 Continues to Strike Men Harder Than Women By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: COVID-19 Continues to Strike Men Harder Than WomenCategory: Health NewsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/29/2020 12:00:00 AM Full Article
tri Thousands of Health Care Workers Lack Insurance If COVID-19 Strikes: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Thousands of Health Care Workers Lack Insurance If COVID-19 Strikes: StudyCategory: Health NewsCreated: 4/30/2020 12:00:00 AMLast Editorial Review: 5/1/2020 12:00:00 AM Full Article
tri Sleep Disturbances May Trigger Migraine By www.medicinenet.com Published On :: Fri, 27 Dec 2019 00:00:00 PDT Title: Sleep Disturbances May Trigger MigraineCategory: Health NewsCreated: 12/26/2019 12:00:00 AMLast Editorial Review: 12/27/2019 12:00:00 AM Full Article
tri Trial Finds Acupuncture May Help Prevent Migraines By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: Trial Finds Acupuncture May Help Prevent MigrainesCategory: Health NewsCreated: 3/26/2020 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
tri Key Areas of the Brain Triggered in Recent Heart Attack Survivors By www.medicinenet.com Published On :: Wed, 6 May 2020 00:00:00 PDT Title: Key Areas of the Brain Triggered in Recent Heart Attack SurvivorsCategory: Health NewsCreated: 5/5/2020 12:00:00 AMLast Editorial Review: 5/6/2020 12:00:00 AM Full Article
tri AHA News: Tropical Smoothie Adds a Healthy Green Touch to St. Patrick's Day By www.medicinenet.com Published On :: Tue, 17 Mar 2020 00:00:00 PDT Title: AHA News: Tropical Smoothie Adds a Healthy Green Touch to St. Patrick's DayCategory: Health NewsCreated: 3/16/2020 12:00:00 AMLast Editorial Review: 3/17/2020 12:00:00 AM Full Article
tri PMC Adds Support for Machine-Readable Clinical Trial Information By www.ncbi.nlm.nih.gov Published On :: Mon, 7 Jan 2019 08:00:00 EST Machine-readability of scholarly outputs is critical to supporting large-scale analysis of the scientific literature. To that end, PMC’s Tagging Guidelines and internal processes have been updated to support the JATS4R recommendations for tagging clinical trial information. NLM encourages PMC-participating publishers, journals, and data providers to review this guidance. Please contact us at pubmedcentral@ncbi.nlm.nih.gov if you have any questions. Full Article
tri Intense Exercise Can Trigger Heart Trouble in the Unprepared By www.medicinenet.com Published On :: Tue, 3 Mar 2020 00:00:00 PDT Title: Intense Exercise Can Trigger Heart Trouble in the UnpreparedCategory: Health NewsCreated: 3/2/2020 12:00:00 AMLast Editorial Review: 3/3/2020 12:00:00 AM Full Article
tri Biktarvy (bictegravir, emtricitabine, and tenofovir alafenamide) By www.medicinenet.com Published On :: Thu, 16 Apr 2020 00:00:00 PDT Title: Biktarvy (bictegravir, emtricitabine, and tenofovir alafenamide)Category: MedicationsCreated: 4/16/2020 12:00:00 AMLast Editorial Review: 4/16/2020 12:00:00 AM Full Article
tri Genvoya (elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide) By www.medicinenet.com Published On :: Fri, 17 Apr 2020 00:00:00 PDT Title: Genvoya (elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide)Category: MedicationsCreated: 4/17/2020 12:00:00 AMLast Editorial Review: 4/17/2020 12:00:00 AM Full Article
tri Endometriosis Risk Can Be Predicted in Young Girls: Study By www.medicinenet.com Published On :: Tue, 10 Mar 2020 00:00:00 PDT Title: Endometriosis Risk Can Be Predicted in Young Girls: StudyCategory: Health NewsCreated: 3/10/2020 12:00:00 AMLast Editorial Review: 3/10/2020 12:00:00 AM Full Article
tri Xiaflex (collagenase clostridium histolyticum) By www.medicinenet.com Published On :: Tue, 3 Mar 2020 00:00:00 PDT Title: Xiaflex (collagenase clostridium histolyticum)Category: MedicationsCreated: 3/3/2020 12:00:00 AMLast Editorial Review: 3/3/2020 12:00:00 AM Full Article
tri What Is Nasogastric Intubation Used For? By www.medicinenet.com Published On :: Mon, 4 May 2020 00:00:00 PDT Title: What Is Nasogastric Intubation Used For?Category: Procedures and TestsCreated: 5/4/2020 12:00:00 AMLast Editorial Review: 5/4/2020 12:00:00 AM Full Article
tri Wellbutrin (bupropion) By www.medicinenet.com Published On :: Wed, 12 Feb 2020 00:00:00 PDT Title: Wellbutrin (bupropion)Category: MedicationsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 2/12/2020 12:00:00 AM Full Article
tri FDA Approves Trodelvy for Metastatic Triple-Negative Breast Cancer By www.medicinenet.com Published On :: Fri, 24 Apr 2020 00:00:00 PDT Title: FDA Approves Trodelvy for Metastatic Triple-Negative Breast CancerCategory: Health NewsCreated: 4/24/2020 12:00:00 AMLast Editorial Review: 4/24/2020 12:00:00 AM Full Article
tri Fewer Kids in Cancer Trials, Which Might Not Be a Bad Thing By www.medicinenet.com Published On :: Wed, 6 May 2020 00:00:00 PDT Title: Fewer Kids in Cancer Trials, Which Might Not Be a Bad ThingCategory: Health NewsCreated: 5/5/2020 12:00:00 AMLast Editorial Review: 5/6/2020 12:00:00 AM Full Article
tri Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 Long noncoding RNAs (lncRNA) have been found to play critical roles in tumorigenesis and the development of various cancers, including hepatocellular carcinoma (HCC). Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) has been identified as an oncogene and prognostic biomarker in HCC. Here, we demonstrated that MALAT1 expression was obviously high in sorafenib-resistant HCC cells. Furthermore, knockdown of MALAT1 increased sorafenib sensitivity in nonresponsive HCC cells, whereas forced expression of MALAT1 conferred sorafenib resistance to responsive HCC cells in vitro. In addition, loss/gain-of-function assays revealed that MALAT1 promoted cell proliferation, migration, and epithelial–mesenchymal transition in HCC cells. Mechanistically, MALAT1 regulated Aurora-A expression by sponging miR-140-5p, thus promoting sorafenib resistance in HCC cells. Moreover, MALAT1 inhibition enhanced the antitumor efficacy of sorafenib in vivo. Clinically, we found that MALAT1 expression was negatively correlated with miR-140-5p expression but positively correlated with Aurora-A expression in patients with HCC and that upregulated MALAT1 was closely correlated with poor survival outcomes in patients with HCC. These findings indicated that MALAT1 may be a novel target for prognosis prediction and therapeutic strategies in patients with HCC treated with sorafenib. Full Article
tri Elucidation of Pelareorep Pharmacodynamics in A Phase I Trial in Patients with KRAS-Mutated Colorectal Cancer By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 KRAS mutation is a negative predictive biomarker of anti-EGFR agents in patients with metastatic colorectal cancer (mCRC), and remains an elusive target. Pelareorep, a double-stranded RNA virus selectively replicates in KRAS-mutated cells, and is synergistic with irinotecan. A dose escalation trial of FOLFIRI/bevacizumab [irinotecan (150–180 mg/m2) and pelareorep (1 x 1010 TCID50–3 x 1010 TCID50)] was implemented in adult patients with oxaliplatin refractory/intolerant, KRAS-mutant mCRC. Pelareorep was administered intravenously over 1 hour on days 1–5 every 4 weeks. Additional studies included pharmacokinetics, tumor morphology, and immune responses. Among FOLFIRI-naïve patients, the highest dose of FOLFIRI/bevacizumab (180 mg/m2 irinotecan) and pelareorep (3 x 1010 TCID50) was well tolerated, without a dose-limiting toxicity. At the recommended phase II dose, 3 of 6 patients (50%) had a partial response; the median progression-free and overall survival (PFS, OS) were 65.6 weeks and 25.1 months, respectively. Toxicities included myelosuppression, fatigue, and diarrhea. Transmission electron microscopy revealed viral factories (viral collections forming vesicular structures), at various stages of development. Immunogold staining against viral capsid -1 protein demonstrated viral "homing" in the tumor cells. The nucleus displayed sufficient euchromatin regions suggestive of active transcription. Flow cytometry revealed rapid dendritic cell maturation (48 hours) with subsequent activation of cytotoxic T cells (7 days). The combination of pelareorep with FOLFIRI/bevacizumab is safe. The PFS and OS data are encouraging and deserve further exploration. Pelareorep leads to a clear recurrent immune stimulatory response with cytotoxic T-cell activation, and homes and replicates in the tumor. Full Article
tri Top-Cited Articles from Dental Education Journals, 2009 to 2018: A Bibliometric Analysis By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 The number of citations an article receives is an important indicator to quantify its influence in its field. The aim of this study was to identify and analyze the characteristics of the 50 top-cited articles addressing dental education published in two journals dedicated to dental education (European Journal of Dental Education and Journal of Dental Education). The Web of Science database was searched to retrieve the 50 most-cited articles from the two journals in December 2018. The top-cited articles were analyzed for journal of publication, number of citations, institution and country of origin, year of publication, study type, keywords, theme and subtheme, and international collaborations. The results showed the 50 top-cited articles were cited between 24 and 146 times each. The majority of these top-cited articles (n=34) were published in the Journal of Dental Education. Half (n=25) of the articles were by authors in the U.S. The most common study types were surveys (n=26) and reviews (n=10). The main themes of these top-cited articles were curriculum and learner characteristics. This bibliometric analysis can serve as a reference for recognizing studies with the most impact in the scholarship of dental education. Full Article
tri Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate. IMPORTANCE Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. Full Article
tri Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2. We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells. IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP). Full Article
tri New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile. However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils. IMPORTANCE Clostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile. Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI. Full Article
tri In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms. IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease. Full Article
tri Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture. Full Article
tri A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics. Full Article
tri Deletion of the Zinc Transporter Lipoprotein AdcAII Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated adcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the adcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated adcAII strains. However, transformation of adcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated adcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of adcAII. Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype. IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the adcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and adcAII, further investigation of which could further characterize mechanisms of capsule regulation. Full Article
tri Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass. IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex. Full Article
tri Metabolism of Gluconeogenic Substrates by an Intracellular Fungal Pathogen Circumvents Nutritional Limitations within Macrophages By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Microbial pathogens exploit host nutrients to proliferate and cause disease. Intracellular pathogens, particularly those exclusively living in the phagosome such as Histoplasma capsulatum, must adapt and acquire nutrients within the nutrient-limited phagosomal environment. In this study, we investigated which host nutrients could be utilized by Histoplasma as carbon sources to proliferate within macrophages. Histoplasma yeasts can grow on hexoses and amino acids but not fatty acids as the carbon source in vitro. Transcriptional analysis and metabolism profiling showed that Histoplasma yeasts downregulate glycolysis and fatty acid utilization but upregulate gluconeogenesis within macrophages. Depletion of glycolysis or fatty acid utilization pathways does not prevent Histoplasma growth within macrophages or impair virulence in vivo. However, loss of function in Pck1, the enzyme catalyzing the first committed step of gluconeogenesis, impairs Histoplasma growth within macrophages and severely attenuates virulence in vivo, indicating that Histoplasma yeasts rely on catabolism of gluconeogenic substrates (e.g., amino acids) to proliferate within macrophages. IMPORTANCE Histoplasma is a primary human fungal pathogen that survives and proliferates within host immune cells, particularly within the macrophage phagosome compartment. The phagosome compartment is a nutrient-limited environment, requiring Histoplasma yeasts to be able to assimilate available carbon sources within the phagosome to meet their nutritional needs. In this study, we showed that Histoplasma yeasts do not utilize fatty acids or hexoses for growth within macrophages. Instead, Histoplasma yeasts consume gluconeogenic substrates to proliferate in macrophages. These findings reveal the phagosome composition from a nutrient standpoint and highlight essential metabolic pathways that are required for a phagosomal pathogen to proliferate in this intracellular environment. Full Article
tri Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive. IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis. Full Article
tri The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics. IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Full Article
tri X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Full Article
tri APOBEC3C Tandem Domain Proteins Create Super Restriction Factors against HIV-1 By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a "super restriction factor" that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif. IMPORTANCE As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV. Full Article
tri Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans. However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1. In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1. In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies. IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans. Full Article