or

Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks. (arXiv:2003.10810v2 [cs.LG] UPDATED)

Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories.




or

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




or

Mnemonics Training: Multi-Class Incremental Learning without Forgetting. (arXiv:2002.10211v3 [cs.CV] UPDATED)

Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts. However, there is an inherent trade-off to effectively learning new concepts without catastrophic forgetting of previous ones. To alleviate this issue, it has been proposed to keep around a few examples of the previous concepts but the effectiveness of this approach heavily depends on the representativeness of these examples. This paper proposes a novel and automatic framework we call mnemonics, where we parameterize exemplars and make them optimizable in an end-to-end manner. We train the framework through bilevel optimizations, i.e., model-level and exemplar-level. We conduct extensive experiments on three MCIL benchmarks, CIFAR-100, ImageNet-Subset and ImageNet, and show that using mnemonics exemplars can surpass the state-of-the-art by a large margin. Interestingly and quite intriguingly, the mnemonics exemplars tend to be on the boundaries between different classes.




or

Cyclic Boosting -- an explainable supervised machine learning algorithm. (arXiv:2002.03425v2 [cs.LG] UPDATED)

Supervised machine learning algorithms have seen spectacular advances and surpassed human level performance in a wide range of specific applications. However, using complex ensemble or deep learning algorithms typically results in black box models, where the path leading to individual predictions cannot be followed in detail. In order to address this issue, we propose the novel "Cyclic Boosting" machine learning algorithm, which allows to efficiently perform accurate regression and classification tasks while at the same time allowing a detailed understanding of how each individual prediction was made.




or

On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED)

Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods.

Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied.




or

Restricting the Flow: Information Bottlenecks for Attribution. (arXiv:2001.00396v3 [stat.ML] UPDATED)

Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBA




or

A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED)

We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error.




or

Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space. (arXiv:1912.02400v2 [cs.LG] UPDATED)

We focus on the challenge of finding a diverse collection of quality solutions on complex continuous domains. While quality diver-sity (QD) algorithms like Novelty Search with Local Competition (NSLC) and MAP-Elites are designed to generate a diverse range of solutions, these algorithms require a large number of evaluations for exploration of continuous spaces. Meanwhile, variants of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are among the best-performing derivative-free optimizers in single-objective continuous domains. This paper proposes a new QD algorithm called Covariance Matrix Adaptation MAP-Elites (CMA-ME). Our new algorithm combines the self-adaptation techniques of CMA-ES with archiving and mapping techniques for maintaining diversity in QD. Results from experiments based on standard continuous optimization benchmarks show that CMA-ME finds better-quality solutions than MAP-Elites; similarly, results on the strategic game Hearthstone show that CMA-ME finds both a higher overall quality and broader diversity of strategies than both CMA-ES and MAP-Elites. Overall, CMA-ME more than doubles the performance of MAP-Elites using standard QD performance metrics. These results suggest that QD algorithms augmented by operators from state-of-the-art optimization algorithms can yield high-performing methods for simultaneously exploring and optimizing continuous search spaces, with significant applications to design, testing, and reinforcement learning among other domains.




or

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




or

Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED)

Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.




or

Differentiable Sparsification for Deep Neural Networks. (arXiv:1910.03201v2 [cs.LG] UPDATED)

A deep neural network has relieved the burden of feature engineering by human experts, but comparable efforts are instead required to determine an effective architecture. On the other hands, as the size of a network has over-grown, a lot of resources are also invested to reduce its size. These problems can be addressed by sparsification of an over-complete model, which removes redundant parameters or connections by pruning them away after training or encouraging them to become zero during training. In general, however, these approaches are not fully differentiable and interrupt an end-to-end training process with the stochastic gradient descent in that they require either a parameter selection or a soft-thresholding step. In this paper, we propose a fully differentiable sparsification method for deep neural networks, which allows parameters to be exactly zero during training, and thus can learn the sparsified structure and the weights of networks simultaneously using the stochastic gradient descent. We apply the proposed method to various popular models in order to show its effectiveness.




or

Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED)

Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.




or

Additive Bayesian variable selection under censoring and misspecification. (arXiv:1907.13563v3 [stat.ME] UPDATED)

We study the interplay of two important issues on Bayesian model selection (BMS): censoring and model misspecification. We consider additive accelerated failure time (AAFT), Cox proportional hazards and probit models, and a more general concave log-likelihood structure. A fundamental question is what solution can one hope BMS to provide, when (inevitably) models are misspecified. We show that asymptotically BMS keeps any covariate with predictive power for either the outcome or censoring times, and discards other covariates. Misspecification refers to assuming the wrong model or functional effect on the response, including using a finite basis for a truly non-parametric effect, or omitting truly relevant covariates. We argue for using simple models that are computationally practical yet attain good power to detect potentially complex effects, despite misspecification. Misspecification and censoring both have an asymptotically negligible effect on (suitably-defined) false positives, but their impact on power is exponential. We portray these issues via simple descriptions of early/late censoring and the drop in predictive accuracy due to misspecification. From a methods point of view, we consider local priors and a novel structure that combines local and non-local priors to enforce sparsity. We develop algorithms to capitalize on the AAFT tractability, approximations to AAFT and probit likelihoods giving significant computational gains, a simple augmented Gibbs sampler to hierarchically explore linear and non-linear effects, and an implementation in the R package mombf. We illustrate the proposed methods and others based on likelihood penalties via extensive simulations under misspecification and censoring. We present two applications concerning the effect of gene expression on colon and breast cancer.




or

Convergence rates for optimised adaptive importance samplers. (arXiv:1903.12044v4 [stat.CO] UPDATED)

Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which extit{adapt} themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $mathcal{O}(1/sqrt{N})$ convergence rate as standard importance samplers, where $N$ is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed extit{optimised adaptive importance samplers} (OAIS). These samplers rely on the iterative minimisation of the $chi^2$-divergence between an exponential-family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $L_2$ errors of the optimised samplers converge to the optimal rate of $mathcal{O}(1/sqrt{N})$ and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $L_2$ error increases by a factor $sqrt{ ho^star} > 1$, where $ ho^star - 1$ is the minimum $chi^2$-divergence between the target and an exponential-family proposal.




or

An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED)

The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.




or

FNNC: Achieving Fairness through Neural Networks. (arXiv:1811.00247v3 [cs.LG] UPDATED)

In classification models fairness can be ensured by solving a constrained optimization problem. We focus on fairness constraints like Disparate Impact, Demographic Parity, and Equalized Odds, which are non-decomposable and non-convex. Researchers define convex surrogates of the constraints and then apply convex optimization frameworks to obtain fair classifiers. Surrogates serve only as an upper bound to the actual constraints, and convexifying fairness constraints might be challenging.

We propose a neural network-based framework, emph{FNNC}, to achieve fairness while maintaining high accuracy in classification. The above fairness constraints are included in the loss using Lagrangian multipliers. We prove bounds on generalization errors for the constrained losses which asymptotically go to zero. The network is optimized using two-step mini-batch stochastic gradient descent. Our experiments show that FNNC performs as good as the state of the art, if not better. The experimental evidence supplements our theoretical guarantees. In summary, we have an automated solution to achieve fairness in classification, which is easily extendable to many fairness constraints.




or

Semiparametric Optimal Estimation With Nonignorable Nonresponse Data. (arXiv:1612.09207v3 [stat.ME] UPDATED)

When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using any instrumental variable. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean Labor and Income Panel Survey data.




or

Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED)

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute).




or

Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. (arXiv:2005.03658v1 [stat.ME])

Heat waves resulting from prolonged extreme temperatures pose a significant risk to human health globally. Given the limitations of observations of extreme temperature, climate models are often used to characterize extreme temperature globally, from which one can derive quantities like return values to summarize the magnitude of a low probability event for an arbitrary geographic location. However, while these derived quantities are useful on their own, it is also often important to apply a spatial statistical model to such data in order to, e.g., understand how the spatial dependence properties of the return values vary over space and emulate the climate model for generating additional spatial fields with corresponding statistical properties. For these objectives, when modeling global data it is critical to use a nonstationary covariance function. Furthermore, given that the output of modern global climate models can be on the order of $mathcal{O}(10^4)$, it is important to utilize approximate Gaussian process methods to enable inference. In this paper, we demonstrate the application of methodology introduced in Risser and Turek (2020) to conduct a nonstationary and fully Bayesian analysis of a large data set of 20-year return values derived from an ensemble of global climate model runs with over 50,000 spatial locations. This analysis uses the freely available BayesNSGP software package for R.




or

Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. (arXiv:2005.03654v1 [eess.IV])

The paper focuses on a novel approach for false-positive reduction (FPR) of nodule candidates in Computer-aided detection (CADe) system after suspicious lesions proposing stage. Unlike common decisions in medical image analysis, the proposed approach considers input data not as 2d or 3d image, but as a point cloud and uses deep learning models for point clouds. We found out that models for point clouds require less memory and are faster on both training and inference than traditional CNN 3D, achieves better performance and does not impose restrictions on the size of the input image, thereby the size of the nodule candidate. We propose an algorithm for transforming 3d CT scan data to point cloud. In some cases, the volume of the nodule candidate can be much smaller than the surrounding context, for example, in the case of subpleural localization of the nodule. Therefore, we developed an algorithm for sampling points from a point cloud constructed from a 3D image of the candidate region. The algorithm guarantees to capture both context and candidate information as part of the point cloud of the nodule candidate. An experiment with creating a dataset from an open LIDC-IDRI database for a feature of the FPR task was accurately designed, set up and described in detail. The data augmentation technique was applied to avoid overfitting and as an upsampling method. Experiments are conducted with PointNet, PointNet++ and DGCNN. We show that the proposed approach outperforms baseline CNN 3D models and demonstrates 85.98 FROC versus 77.26 FROC for baseline models.




or

COVID-19 transmission risk factors. (arXiv:2005.03651v1 [q-bio.QM])

We analyze risk factors correlated with the initial transmission growth rate of the COVID-19 pandemic. The number of cases follows an early exponential expansion; we chose as a starting point in each country the first day with 30 cases and used 12 days. We looked for linear correlations of the exponents with other variables, using 126 countries. We find a positive correlation with high C.L. with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date ($2cdot10^{-5}$), high level of contact in greeting habits ($6 cdot 10^{-5}$), lung cancer ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), urbanization ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, smaller sample, 73 countries), low Vitamin D levels ($p$-value $0.002-0.006$, smaller sample, $sim 50$ countries). There is highly significant correlation also with blood type: positive correlation with RH- ($2cdot10^{-5}$) and A+ ($2cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). We also find positive correlation with moderate C.L. ($p$-value of $0.02sim0.03$) with: CO$_2$ emissions, type-1 diabetes, low vaccination coverage for Tuberculosis (BCG). Several such variables are correlated with each other and so they likely have common interpretations. We also analyzed the possible existence of a bias: countries with low GDP-per capita, typically located in warm regions, might have less intense testing and we discuss correlation with the above variables.




or

Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG])

We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).




or

Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST])

The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model.




or

Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT])

This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator.




or

A simulation study of disaggregation regression for spatial disease mapping. (arXiv:2005.03604v1 [stat.AP])

Disaggregation regression has become an important tool in spatial disease mapping for making fine-scale predictions of disease risk from aggregated response data. By including high resolution covariate information and modelling the data generating process on a fine scale, it is hoped that these models can accurately learn the relationships between covariates and response at a fine spatial scale. However, validating these high resolution predictions can be a challenge, as often there is no data observed at this spatial scale. In this study, disaggregation regression was performed on simulated data in various settings and the resulting fine-scale predictions are compared to the simulated ground truth. Performance was investigated with varying numbers of data points, sizes of aggregated areas and levels of model misspecification. The effectiveness of cross validation on the aggregate level as a measure of fine-scale predictive performance was also investigated. Predictive performance improved as the number of observations increased and as the size of the aggregated areas decreased. When the model was well-specified, fine-scale predictions were accurate even with small numbers of observations and large aggregated areas. Under model misspecification predictive performance was significantly worse for large aggregated areas but remained high when response data was aggregated over smaller regions. Cross-validation correlation on the aggregate level was a moderately good predictor of fine-scale predictive performance. While the simulations are unlikely to capture the nuances of real-life response data, this study gives insight into the effectiveness of disaggregation regression in different contexts.




or

Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG])

We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.




or

Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms. (arXiv:2005.03557v1 [cs.LG])

As an important type of reinforcement learning algorithms, actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies. In the first nested-loop design, actor's one update of policy is followed by an entire loop of critic's updates of the value function, and the finite-sample analysis of such AC and NAC algorithms have been recently well established. The second two time-scale design, in which actor and critic update simultaneously but with different learning rates, has much fewer tuning parameters than the nested-loop design and is hence substantially easier to implement. Although two time-scale AC and NAC have been shown to converge in the literature, the finite-sample convergence rate has not been established. In this paper, we provide the first such non-asymptotic convergence rate for two time-scale AC and NAC under Markovian sampling and with actor having general policy class approximation. We show that two time-scale AC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-2.5}log^3(epsilon^{-1}))$ to attain an $epsilon$-accurate stationary point, and two time-scale NAC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-4}log^2(epsilon^{-1}))$ to attain an $epsilon$-accurate global optimal point. We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling and for analyzing the convergence rate of the linear critic with dynamically changing base functions and transition kernel.




or

Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts. (arXiv:2005.03540v1 [stat.AP])

In the field of numerical weather prediction (NWP), the probabilistic distribution of the future state of the atmosphere is sampled with Monte-Carlo-like simulations, called ensembles. These ensembles have deficiencies (such as conditional biases) that can be corrected thanks to statistical post-processing methods. Several ensembles exist and may be corrected with different statistiscal methods. A further step is to combine these raw or post-processed ensembles. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. This article adapts this theory to the case of probabilistic forecasts issued as step-wise cumulative distribution functions (CDF). The theory is applied to wind speed forecasting, by combining several raw or post-processed ensembles, considered as CDFs. The second goal of this study is to explore the use of two forecast performance criteria: the Continous ranked probability score (CRPS) and the Jolliffe-Primo test. Comparing the results obtained with both criteria leads to reconsidering the usual way to build skillful probabilistic forecasts, based on the minimization of the CRPS. Minimizing the CRPS does not necessarily produce reliable forecasts according to the Jolliffe-Primo test. The Jolliffe-Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. It is proposed to use both criterion to achieve reliable and skillful probabilistic forecasts.




or

Robust location estimators in regression models with covariates and responses missing at random. (arXiv:2005.03511v1 [stat.ME])

This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some of covariates. The target is a marginal location parameter which is given through an $M-$functional. To obtain robust Fisher--consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values by assuming a missing at random condition. Three methods are considered to estimate the marginal distribution function which allows to obtain the $M-$location of interest: the well-known inverse probability weighting, a convolution--based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. The robust proposed estimators and the classical ones are compared through a numerical study under different missing models including clean and contaminated samples. We illustrate the estimators behaviour under a nonlinear model. A real data set is also analysed.




or

Reference and Document Aware Semantic Evaluation Methods for Korean Language Summarization. (arXiv:2005.03510v1 [cs.CL])

Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Recently, many models for text summarization have been proposed. Most of those models were evaluated using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.




or

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




or

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




or

Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP])

Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.




or

Feature Selection Methods for Uplift Modeling. (arXiv:2005.03447v1 [cs.LG])

Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).




or

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




or

Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion. (arXiv:2005.03419v1 [stat.ML])

In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.




or

SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation. (arXiv:2005.03403v1 [cs.LG])

We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs). We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2. To our best knowledge, this algorithm is the first formulation that integrates three mainstream model compression ideas: sparsification or pruning, decomposition, and quantization, into one unified framework. The resulting sparse and readily-quantized DNN thus enjoys greatly reduced energy consumption in data movement as well as weight storage. On top of that, we further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance. Extensive experiments show that 1) on the algorithm level, SmartExchange outperforms state-of-the-art compression techniques, including merely sparsification or pruning, decomposition, and quantization, in various ablation studies based on nine DNN models and four datasets; and 2) on the hardware level, the proposed SmartExchange based accelerator can improve the energy efficiency by up to 6.7$ imes$ and the speedup by up to 19.2$ imes$ over four state-of-the-art DNN accelerators, when benchmarked on seven DNN models (including four standard DNNs, two compact DNN models, and one segmentation model) and three datasets.




or

Distributional Robustness of K-class Estimators and the PULSE. (arXiv:2005.03353v1 [econ.EM])

In causal settings, such as instrumental variable settings, it is well known that estimators based on ordinary least squares (OLS) can yield biased and non-consistent estimates of the causal parameters. This is partially overcome by two-stage least squares (TSLS) estimators. These are, under weak assumptions, consistent but do not have desirable finite sample properties: in many models, for example, they do not have finite moments. The set of K-class estimators can be seen as a non-linear interpolation between OLS and TSLS and are known to have improved finite sample properties. Recently, in causal discovery, invariance properties such as the moment criterion which TSLS estimators leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent.




or

Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG])

Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks.

We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges.




or

CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion. (arXiv:2005.03288v1 [cs.LG])

Motion synthesis in a dynamic environment has been a long-standing problem for character animation. Methods using motion capture data tend to scale poorly in complex environments because of their larger capturing and labeling requirement. Physics-based controllers are effective in this regard, albeit less controllable. In this paper, we present CARL, a quadruped agent that can be controlled with high-level directives and react naturally to dynamic environments. Starting with an agent that can imitate individual animation clips, we use Generative Adversarial Networks to adapt high-level controls, such as speed and heading, to action distributions that correspond to the original animations. Further fine-tuning through the deep reinforcement learning enables the agent to recover from unseen external perturbations while producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigation modules over the entire process. We evaluate our approach by measuring the agent's ability to follow user control and provide a visual analysis of the generated motion to show its effectiveness.




or

An Empirical Study of Incremental Learning in Neural Network with Noisy Training Set. (arXiv:2005.03266v1 [cs.LG])

The notion of incremental learning is to train an ANN algorithm in stages, as and when newer training data arrives. Incremental learning is becoming widespread in recent times with the advent of deep learning. Noise in the training data reduces the accuracy of the algorithm. In this paper, we make an empirical study of the effect of noise in the training phase. We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error. Using Perceptron, Feed Forward Neural Network and Radial Basis Function Neural Network, we show that for the same percentage of error, the accuracy of the algorithm significantly varies with the location of error. Furthermore, our results show that the dependence of the accuracy with the location of error is independent of the algorithm. However, the slope of the degradation curve decreases with more sophisticated algorithms




or

On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO])

Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.




or

Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG])

People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods.




or

Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM])

This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets.




or

Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV])

The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems.




or

Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML])

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.




or

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




or

Convergence and inference for mixed Poisson random sums. (arXiv:2005.03187v1 [math.PR])

In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.




or

Model Reduction and Neural Networks for Parametric PDEs. (arXiv:2005.03180v1 [math.NA])

We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature.




or

MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML])

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities.

This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack.

Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.