lec

Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG])

People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods.




lec

Adaptive Invariance for Molecule Property Prediction. (arXiv:2005.03004v1 [q-bio.QM])

Effective property prediction methods can help accelerate the search for COVID-19 antivirals either through accurate in-silico screens or by effectively guiding on-going at-scale experimental efforts. However, existing prediction tools have limited ability to accommodate scarce or fragmented training data currently available. In this paper, we introduce a novel approach to learn predictors that can generalize or extrapolate beyond the heterogeneous data. Our method builds on and extends recently proposed invariant risk minimization, adaptively forcing the predictor to avoid nuisance variation. We achieve this by continually exercising and manipulating latent representations of molecules to highlight undesirable variation to the predictor. To test the method we use a combination of three data sources: SARS-CoV-2 antiviral screening data, molecular fragments that bind to SARS-CoV-2 main protease and large screening data for SARS-CoV-1. Our predictor outperforms state-of-the-art transfer learning methods by significant margin. We also report the top 20 predictions of our model on Broad drug repurposing hub.




lec

lmSubsets: Exact Variable-Subset Selection in Linear Regression for R

An R package for computing the all-subsets regression problem is presented. The proposed algorithms are based on computational strategies recently developed. A novel algorithm for the best-subset regression problem selects subset models based on a predetermined criterion. The package user can choose from exact and from approximation algorithms. The core of the package is written in C++ and provides an efficient implementation of all the underlying numerical computations. A case study and benchmark results illustrate the usage and the computational efficiency of the package.




lec

Structured object-oriented formal language and method : 9th International Workshop, SOFL+MSVL 2019, Shenzhen, China, November 5, 2019, Revised selected papers

SOFL+MSVL (Workshop) (9th : 2019 : Shenzhen, China)
9783030414184 (electronic bk.)




lec

Space information networks : 4th International Conference, SINC 2019, Wuzhen, China, September 19-20, 2019, Revised Selected Papers

SINC (Conference) (4th : 2019 : Wuzhen, China)
9789811534423 (electronic bk.)




lec

Semantic technology : 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25-27, 2019, Revised selected papers

Joint International Semantic Technology Conference (9th : 2019 : Hangzhou, China)
9789811534126 (electronic bk.)




lec

Regulation of cancer immune checkpoints : molecular and cellular mechanisms and therapy

9789811532665




lec

Pediatric allergy : a case-based collection with MCQs.

9783030182823 (electronic bk.)




lec

Molecular biology

9781493902637




lec

Molecular aspects of plant beneficial microbes in agriculture

9780128184707 (electronic bk.)




lec

Lectin in host defense against microbial infections

9789811515804 (electronic bk.)




lec

Insect sex pheromone research and beyond : from molecules to robots

9789811530821 (electronic bk.)




lec

Insect collection and identification : techniques for the field and laboratory

Gibb, Timothy J., author.
9780128165713 (ePub ebook)




lec

Hepatitis B virus infection : molecular virology to antiviral drugs

9789811391514 (electronic bk.)




lec

Handbook of optimization in electric power distribution systems

9783030361150




lec

Handbook of flexible and stretchable electronics

9781315112794 (electronic bk.)




lec

Handbook of biochemistry and molecular biology

9781315314433 (electronic bk.)




lec

Enterprise information systems : 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece, May 3-5, 2019, Revised Selected Papers

International Conference on Enterprise Information Systems (21st : 2019 : Ērakleion, Greece)
9783030407834 (electronic bk.)




lec

Encyclopedia of signaling molecules

9781461464389 (electronic bk.)




lec

Encyclopedia of molecular pharmacology

9783030215736 (electronic bk.)




lec

DNA beyond genes : from data storage and computing to nanobots, nanomedicine, and nanoelectronics

Demidov, Vadim V., author
9783030364342 (electronic bk.)




lec

Current microbiological research in Africa : selected applications for sustainable environmental management

9783030352967 (electronic bk.)




lec

Computer security : ESORICS 2019 International Workshops, IOSec, MSTEC, and FINSEC, Luxembourg City, Luxembourg, September 26-27, 2019, Revised Selected Papers

European Symposium on Research in Computer Security (24th : 2019 : Luxembourg, Luxembourg)
9783030420512 (electronic bk.)




lec

Brassica improvement : molecular, genetics and genomic perspectives

9783030346942 (electronic bk.)




lec

Basic Electrocardiography

Petty, Brent G. author. aut http://id.loc.gov/vocabulary/relators/aut
9783030328863 978-3-030-32886-3




lec

Uniformly valid confidence intervals post-model-selection

François Bachoc, David Preinerstorfer, Lukas Steinberger.

Source: The Annals of Statistics, Volume 48, Number 1, 440--463.

Abstract:
We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. ( Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures.




lec

Consistent selection of the number of change-points via sample-splitting

Changliang Zou, Guanghui Wang, Runze Li.

Source: The Annals of Statistics, Volume 48, Number 1, 413--439.

Abstract:
In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples.




lec

Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors

Kyoungjae Lee, Jaeyong Lee, Lizhen Lin.

Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.

Abstract:
In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods.




lec

A knockoff filter for high-dimensional selective inference

Rina Foygel Barber, Emmanuel J. Candès.

Source: The Annals of Statistics, Volume 47, Number 5, 2504--2537.

Abstract:
This paper develops a framework for testing for associations in a possibly high-dimensional linear model where the number of features/variables may far exceed the number of observational units. In this framework, the observations are split into two groups, where the first group is used to screen for a set of potentially relevant variables, whereas the second is used for inference over this reduced set of variables; we also develop strategies for leveraging information from the first part of the data at the inference step for greater power. In our work, the inferential step is carried out by applying the recently introduced knockoff filter, which creates a knockoff copy—a fake variable serving as a control—for each screened variable. We prove that this procedure controls the directional false discovery rate (FDR) in the reduced model controlling for all screened variables; this says that our high-dimensional knockoff procedure “discovers” important variables as well as the directions (signs) of their effects, in such a way that the expected proportion of wrongly chosen signs is below the user-specified level (thereby controlling a notion of Type S error averaged over the selected set). This result is nonasymptotic, and holds for any distribution of the original features and any values of the unknown regression coefficients, so that inference is not calibrated under hypothesized values of the effect sizes. We demonstrate the performance of our general and flexible approach through numerical studies, showing more power than existing alternatives. Finally, we apply our method to a genome-wide association study to find locations on the genome that are possibly associated with a continuous phenotype.




lec

Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem

James G. Scott, James O. Berger

Source: Ann. Statist., Volume 38, Number 5, 2587--2619.

Abstract:
This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Our first goal is to clarify when, and how, multiplicity correction happens automatically in Bayesian analysis, and to distinguish this correction from the Bayesian Ockham’s-razor effect. Our second goal is to contrast empirical-Bayes and fully Bayesian approaches to variable selection through examples, theoretical results and simulations. Considerable differences between the two approaches are found. In particular, we prove a theorem that characterizes a surprising aymptotic discrepancy between fully Bayes and empirical Bayes. This discrepancy arises from a different source than the failure to account for hyperparameter uncertainty in the empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-Bayes estimate converges asymptotically to the true variable-inclusion probability, the potential for a serious difference remains.




lec

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




lec

Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications

Li Zhu, Zhiguang Huo, Tianzhou Ma, Steffi Oesterreich, George C. Tseng.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2611--2636.

Abstract:
Variable selection is a pervasive problem in modern high-dimensional data analysis where the number of features often exceeds the sample size (a.k.a. small-n-large-p problem). Incorporation of group structure knowledge to improve variable selection has been widely studied. Here, we consider prior knowledge of a hierarchical overlapping group structure to improve variable selection in regression setting. In genomics applications, for instance, a biological pathway contains tens to hundreds of genes and a gene can be mapped to multiple experimentally measured features (such as its mRNA expression, copy number variation and methylation levels of possibly multiple sites). In addition to the hierarchical structure, the groups at the same level may overlap (e.g., two pathways can share common genes). Incorporating such hierarchical overlapping groups in traditional penalized regression setting remains a difficult optimization problem. Alternatively, we propose a Bayesian indicator model that can elegantly serve the purpose. We evaluate the model in simulations and two breast cancer examples, and demonstrate its superior performance over existing models. The result not only enhances prediction accuracy but also improves variable selection and model interpretation that lead to deeper biological insight of the disease.




lec

Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways

Federico Castelletti, Guido Consonni.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2289--2311.

Abstract:
A signalling pathway is a sequence of chemical reactions initiated by a stimulus which in turn affects a receptor, and then through some intermediate steps cascades down to the final cell response. Based on the technique of flow cytometry, samples of cell-by-cell measurements are collected under each experimental condition, resulting in a collection of interventional data (assuming no latent variables are involved). Usually several external interventions are applied at different points of the pathway, the ultimate aim being the structural recovery of the underlying signalling network which we model as a causal Directed Acyclic Graph (DAG) using intervention calculus. The advantage of using interventional data, rather than purely observational one, is that identifiability of the true data generating DAG is enhanced. More technically a Markov equivalence class of DAGs, whose members are statistically indistinguishable based on observational data alone, can be further decomposed, using additional interventional data, into smaller distinct Interventional Markov equivalence classes. We present a Bayesian methodology for structural learning of Interventional Markov equivalence classes based on observational and interventional samples of multivariate Gaussian observations. Our approach is objective, meaning that it is based on default parameter priors requiring no personal elicitation; some flexibility is however allowed through a tuning parameter which regulates sparsity in the prior on model space. Based on an analytical expression for the marginal likelihood of a given Interventional Essential Graph, and a suitable MCMC scheme, our analysis produces an approximate posterior distribution on the space of Interventional Markov equivalence classes, which can be used to provide uncertainty quantification for features of substantive scientific interest, such as the posterior probability of inclusion of selected edges, or paths.




lec

Principal nested shape space analysis of molecular dynamics data

Ian L. Dryden, Kwang-Rae Kim, Charles A. Laughton, Huiling Le.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2213--2234.

Abstract:
Molecular dynamics simulations produce huge datasets of temporal sequences of molecules. It is of interest to summarize the shape evolution of the molecules in a succinct, low-dimensional representation. However, Euclidean techniques such as principal components analysis (PCA) can be problematic as the data may lie far from in a flat manifold. Principal nested spheres gives a fundamentally different decomposition of data from the usual Euclidean subspace based PCA [ Biometrika 99 (2012) 551–568]. Subspaces of successively lower dimension are fitted to the data in a backwards manner with the aim of retaining signal and dispensing with noise at each stage. We adapt the methodology to 3D subshape spaces and provide some practical fitting algorithms. The methodology is applied to cluster analysis of peptides, where different states of the molecules can be identified. Also, the temporal transitions between cluster states are explored.




lec

Robust elastic net estimators for variable selection and identification of proteomic biomarkers

Gabriela V. Cohen Freue, David Kepplinger, Matías Salibián-Barrera, Ezequiel Smucler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2065--2090.

Abstract:
In large-scale quantitative proteomic studies, scientists measure the abundance of thousands of proteins from the human proteome in search of novel biomarkers for a given disease. Penalized regression estimators can be used to identify potential biomarkers among a large set of molecular features measured. Yet, the performance and statistical properties of these estimators depend on the loss and penalty functions used to define them. Motivated by a real plasma proteomic biomarkers study, we propose a new class of penalized robust estimators based on the elastic net penalty, which can be tuned to keep groups of correlated variables together in the selected model and maintain robustness against possible outliers. We also propose an efficient algorithm to compute our robust penalized estimators and derive a data-driven method to select the penalty term. Our robust penalized estimators have very good robustness properties and are also consistent under certain regularity conditions. Numerical results show that our robust estimators compare favorably to other robust penalized estimators. Using our proposed methodology for the analysis of the proteomics data, we identify new potentially relevant biomarkers of cardiac allograft vasculopathy that are not found with nonrobust alternatives. The selected model is validated in a new set of 52 test samples and achieves an area under the receiver operating characteristic (AUC) of 0.85.




lec

Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics

Ying Chen, J. S. Marron, Jiejie Zhang.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.

Abstract:
Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods.




lec

Fast dynamic nonparametric distribution tracking in electron microscopic data

Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1537--1563.

Abstract:
In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches.




lec

Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines

Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.

Abstract:
It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work.




lec

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




lec

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




lec

Willie Neville Majoribank Chester manuscript collection, 5 November 1915 - 22 December 1918




lec

A Loss-Based Prior for Variable Selection in Linear Regression Methods

Cristiano Villa, Jeong Eun Lee.

Source: Bayesian Analysis, Volume 15, Number 2, 533--558.

Abstract:
In this work we propose a novel model prior for variable selection in linear regression. The idea is to determine the prior mass by considering the worth of each of the regression models, given the number of possible covariates under consideration. The worth of a model consists of the information loss and the loss due to model complexity. While the information loss is determined objectively, the loss expression due to model complexity is flexible and, the penalty on model size can be even customized to include some prior knowledge. Some versions of the loss-based prior are proposed and compared empirically. Through simulation studies and real data analyses, we compare the proposed prior to the Scott and Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for informative scenarios.




lec

Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior

Qingpo Cai, Jian Kang, Tianwei Yu.

Source: Bayesian Analysis, Volume 15, Number 1, 79--102.

Abstract:
Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA).




lec

Variance Prior Forms for High-Dimensional Bayesian Variable Selection

Gemma E. Moran, Veronika Ročková, Edward I. George.

Source: Bayesian Analysis, Volume 14, Number 4, 1091--1119.

Abstract:
Consider the problem of high dimensional variable selection for the Gaussian linear model when the unknown error variance is also of interest. In this paper, we show that the use of conjugate shrinkage priors for Bayesian variable selection can have detrimental consequences for such variance estimation. Such priors are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work, however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators can result from inducing dependence between parameters a priori . In a similar way, we show that conjugate priors for linear regression, which induce prior dependence, can lead to such underestimation in the Bayesian high-dimensional regression setting. Following Jeffreys, we recommend as a remedy to treat regression coefficients and the error variance as independent a priori . Using such an independence prior framework, we extend the Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on simulated data. On the protein activity dataset of Clyde and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-validation error than alternative penalized likelihood methods, demonstrating the gains in predictive accuracy afforded by simultaneous error variance estimation. The unknown variance implementation of the Spike-and-Slab Lasso is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017).




lec

Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection

Mengyang Gu.

Source: Bayesian Analysis, Volume 14, Number 3, 877--905.

Abstract:
Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively.




lec

Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm

Quan Zhou, Yongtao Guan.

Source: Bayesian Analysis, Volume 14, Number 2, 573--594.

Abstract:
Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10–100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets.




lec

A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection

Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 2, 553--572.

Abstract:
In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence.




lec

Efficient Bayesian Regularization for Graphical Model Selection

Suprateek Kundu, Bani K. Mallick, Veera Baladandayuthapani.

Source: Bayesian Analysis, Volume 14, Number 2, 449--476.

Abstract:
There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse–Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example.




lec

Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy

Thomas Staudt, Timo Aspelmeier, Oskar Laitenberger, Claudia Geisler, Alexander Egner, Axel Munk.

Source: Statistical Science, Volume 35, Number 1, 92--111.

Abstract:
Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in (living) cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. In this article, we discuss state of the art methods to count such fluorophores and statistical challenges that come along with it. In particular, we suggest a modeling scheme for time series generated by single-marker-switching (SMS) microscopy that makes it possible to quantify the number of markers in a statistically meaningful manner from the raw data. To this end, we model the entire process of photon generation in the fluorophore, their passage through the microscope, detection and photoelectron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two timescales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore’s internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data.




lec

Statistical Methodology in Single-Molecule Experiments

Chao Du, S. C. Kou.

Source: Statistical Science, Volume 35, Number 1, 75--91.

Abstract:
Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments.