ali omalizumab (Xolair) By www.medicinenet.com Published On :: Fri, 15 Nov 2019 00:00:00 PDT Title: omalizumab (Xolair)Category: MedicationsCreated: 5/27/2004 12:00:00 AMLast Editorial Review: 11/15/2019 12:00:00 AM Full Article
ali After Teeth Are Pulled, Platelet-Rich Plasma May Speed Healing By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: After Teeth Are Pulled, Platelet-Rich Plasma May Speed HealingCategory: Health NewsCreated: 4/23/2010 12:10:00 PMLast Editorial Review: 4/26/2010 12:00:00 AM Full Article
ali Air Quality Better in Northeast, Midwest By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Air Quality Better in Northeast, MidwestCategory: Health NewsCreated: 4/28/2010 8:10:00 AMLast Editorial Review: 4/28/2010 12:00:00 AM Full Article
ali Artificial Legs Now a Reality for Pets By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Artificial Legs Now a Reality for PetsCategory: Health NewsCreated: 4/29/2010 4:10:00 PMLast Editorial Review: 4/30/2010 12:00:00 AM Full Article
ali Worst U.S. Air: Bakersfield Calif.; Best: Honolulu, Santa Fe By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Worst U.S. Air: Bakersfield Calif.; Best: Honolulu, Santa FeCategory: Health NewsCreated: 4/28/2011 11:01:00 AMLast Editorial Review: 4/28/2011 12:00:00 AM Full Article
ali More Evidence Bilingualism Aids Thinking Skills By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: More Evidence Bilingualism Aids Thinking SkillsCategory: Health NewsCreated: 4/30/2012 6:06:00 PMLast Editorial Review: 5/1/2012 12:00:00 AM Full Article
ali Analysis Finds Clinical Trials Often Small, of Poor Quality By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Analysis Finds Clinical Trials Often Small, of Poor QualityCategory: Health NewsCreated: 5/1/2012 6:05:00 PMLast Editorial Review: 5/2/2012 12:00:00 AM Full Article
ali Beastie Boy Adam Yauch Dies, Had Salivary Cancer By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Beastie Boy Adam Yauch Dies, Had Salivary CancerCategory: Health NewsCreated: 5/4/2012 5:32:00 PMLast Editorial Review: 5/4/2012 12:00:00 AM Full Article
ali Muhammad Ali's Daughter Champions Fight Against Parkinson's Disease By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Muhammad Ali's Daughter Champions Fight Against Parkinson's DiseaseCategory: Health NewsCreated: 5/3/2013 10:35:00 AMLast Editorial Review: 5/3/2013 12:00:00 AM Full Article
ali Smoke-Free Laws May Help Prevent COPD Hospitalizations By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Smoke-Free Laws May Help Prevent COPD HospitalizationsCategory: Health NewsCreated: 4/25/2014 2:35:00 PMLast Editorial Review: 4/28/2014 12:00:00 AM Full Article
ali ADHD Drug Ritalin Boosted Self-Control in Tests By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: ADHD Drug Ritalin Boosted Self-Control in TestsCategory: Health NewsCreated: 4/25/2014 12:35:00 PMLast Editorial Review: 4/28/2014 12:00:00 AM Full Article
ali Most Americans Turn to Prayer for Healing, Survey Finds By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Most Americans Turn to Prayer for Healing, Survey FindsCategory: Health NewsCreated: 4/22/2016 12:00:00 AMLast Editorial Review: 4/25/2016 12:00:00 AM Full Article
ali 1 in 4 Hospitalized Newborns Gets Heartburn Drugs, Despite Risks By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: 1 in 4 Hospitalized Newborns Gets Heartburn Drugs, Despite RisksCategory: Health NewsCreated: 4/27/2016 12:00:00 AMLast Editorial Review: 4/28/2016 12:00:00 AM Full Article
ali California Handgun Sales Spiked After 2 Mass Shootings By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: California Handgun Sales Spiked After 2 Mass ShootingsCategory: Health NewsCreated: 5/1/2017 12:00:00 AMLast Editorial Review: 5/2/2017 12:00:00 AM Full Article
ali U.S. Air Quality Improvements Are Lagging By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: U.S. Air Quality Improvements Are LaggingCategory: Health NewsCreated: 5/1/2018 12:00:00 AMLast Editorial Review: 5/1/2018 12:00:00 AM Full Article
ali New Saliva-Based COVID-19 Test an Easier Alternative By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: New Saliva-Based COVID-19 Test an Easier AlternativeCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/28/2020 12:00:00 AM Full Article
ali Cardiac Rehab Boosts Quality of Life After Heart Attack: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Cardiac Rehab Boosts Quality of Life After Heart Attack: StudyCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/28/2020 12:00:00 AM Full Article
ali Pneumonia More Deadly Than Hip Fractures for Hospitalized Seniors By www.medicinenet.com Published On :: Fri, 24 Apr 2020 00:00:00 PDT Title: Pneumonia More Deadly Than Hip Fractures for Hospitalized SeniorsCategory: Health NewsCreated: 4/23/2020 12:00:00 AMLast Editorial Review: 4/24/2020 12:00:00 AM Full Article
ali Cialis (tadalafil) vs. Viagra (sildenafil) By www.medicinenet.com Published On :: Wed, 12 Feb 2020 00:00:00 PDT Title: Cialis (tadalafil) vs. Viagra (sildenafil)Category: MedicationsCreated: 10/30/2017 12:00:00 AMLast Editorial Review: 2/12/2020 12:00:00 AM Full Article
ali Could Viagra, Cialis Work Largely by Placebo Effect? By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: Could Viagra, Cialis Work Largely by Placebo Effect?Category: Health NewsCreated: 3/26/2020 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
ali Kisqali (ribociclib) By www.medicinenet.com Published On :: Wed, 22 Apr 2020 00:00:00 PDT Title: Kisqali (ribociclib)Category: MedicationsCreated: 4/22/2020 12:00:00 AMLast Editorial Review: 4/22/2020 12:00:00 AM Full Article
ali Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 Long noncoding RNAs (lncRNA) have been found to play critical roles in tumorigenesis and the development of various cancers, including hepatocellular carcinoma (HCC). Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) has been identified as an oncogene and prognostic biomarker in HCC. Here, we demonstrated that MALAT1 expression was obviously high in sorafenib-resistant HCC cells. Furthermore, knockdown of MALAT1 increased sorafenib sensitivity in nonresponsive HCC cells, whereas forced expression of MALAT1 conferred sorafenib resistance to responsive HCC cells in vitro. In addition, loss/gain-of-function assays revealed that MALAT1 promoted cell proliferation, migration, and epithelial–mesenchymal transition in HCC cells. Mechanistically, MALAT1 regulated Aurora-A expression by sponging miR-140-5p, thus promoting sorafenib resistance in HCC cells. Moreover, MALAT1 inhibition enhanced the antitumor efficacy of sorafenib in vivo. Clinically, we found that MALAT1 expression was negatively correlated with miR-140-5p expression but positively correlated with Aurora-A expression in patients with HCC and that upregulated MALAT1 was closely correlated with poor survival outcomes in patients with HCC. These findings indicated that MALAT1 may be a novel target for prognosis prediction and therapeutic strategies in patients with HCC treated with sorafenib. Full Article
ali Oral Health-Related Quality of Life of Children: An Assessment of the Relationship between Child and Caregiver Reporting By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Oral and craniofacial conditions or diseases can impact an individual's health and quality of life. The purpose of this study was to assess the perceived oral health related quality of life (OHRQoL) of children, and evaluate the reported level of agreement between caregivers and their children.Methods: Purposive sampling was used to recruit children ages 8-15, and their caregivers from a dental clinic in a pediatric hospital for this descriptive, cross-sectional study. A modified version of a validated measure, Child Oral Health Impact Profile-Short Form (COHIP-SF), was used for a 22-item questionnaire encompassing three subscales: oral health, functional well-being, and social emotional well-being. Two additional items were included to assess child/caregiver's level of agreement. A dental chart review was also conducted to assess the child's overbite, overjet, and decayed surfaces. Data were analyzed through descriptive statistics and examined for assumptions of normality and linearity.Results: Sixty child/caregiver pairs (n=120) participated in this study. Overbite, overjet and decayed surfaces were not found to be related to any OHRQoL variable, including child/caregiver ratings and overall agreement (p>.05). Average OHRQoL scores for caregivers found to be more positive those of their children (p=.02). Agreement between caregivers and the child's gender was shown to be significant (p=.01). Female child scores differed significantly from males with respect to their caregiver responses (p=.02). Caregivers rated a higher OHRQoL for female children, thus overestimating their female child's reported OHRQoL.Conclusions: The moderate level of agreement found between children and caregivers reinforces the importance of including the child, as well as the caregiver, when assessing OHRQoL. Full Article
ali Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
ali Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
ali Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Each year, >180,000 infants become infected via mother-to-child transmission (MTCT) of HIV despite the availability of effective maternal antiretroviral treatments, underlining the need for a maternal HIV vaccine. We characterized 224 maternal HIV envelope (Env)-specific IgG monoclonal antibodies (MAbs) from seven nontransmitting and transmitting HIV-infected U.S. and Malawian mothers and examined their neutralization activities against nontransmitted autologous circulating viruses and infant-transmitted founder (infant-T/F) viruses. Only a small subset of maternal viruses, 3 of 72 (4%), were weakly neutralized by maternal linear V3 epitope-specific IgG MAbs, whereas 6 out of 6 (100%) infant-T/F viruses were neutralization resistant to these V3-specific IgG MAbs. We also show that maternal-plasma broadly neutralizing antibody (bNAb) responses targeting the V3 glycan supersite in a transmitting woman may have selected for an N332 V3 glycan neutralization-resistant infant-T/F virus. These data have important implications for bNAb-eliciting vaccines and passively administered bNAbs in the setting of MTCT. IMPORTANCE Efforts to eliminate MTCT of HIV with antiretroviral therapy (ART) have met little success, with >180,000 infant infections each year worldwide. It is therefore likely that additional immunologic strategies that can synergize with ART will be required to eliminate MTCT of HIV. To this end, understanding the role of maternal HIV Env-specific IgG antibodies in the setting of MTCT is crucial. In this study, we found that maternal-plasma broadly neutralizing antibody (bNAb) responses can select for T/F viruses that initiate infection in infants. We propose that clinical trials testing the efficacy of single bNAb specificities should not include HIV-infected pregnant women, as a single bNAb might select for neutralization-resistant infant-T/F viruses. Full Article
ali The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT The opportunistic bacterium Pseudomonas aeruginosa produces the fucose-specific lectin LecB, which has been identified as a virulence factor. LecB has a tetrameric structure with four opposing binding sites and has been shown to act as a cross-linker. Here, we demonstrate that LecB strongly binds to the glycosylated moieties of β1-integrins on the basolateral plasma membrane of epithelial cells and causes rapid integrin endocytosis. Whereas internalized integrins were degraded via a lysosomal pathway, washout of LecB restored integrin cell surface localization, thus indicating a specific and direct action of LecB on integrins to bring about their endocytosis. Interestingly, LecB was able to trigger uptake of active and inactive β1-integrins and also of complete α3β1-integrin–laminin complexes. We provide a mechanistic explanation for this unique endocytic process by showing that LecB has the additional ability to recognize fucose-bearing glycosphingolipids and causes the formation of membrane invaginations on giant unilamellar vesicles. In cells, LecB recruited integrins to these invaginations by cross-linking integrins and glycosphingolipids. In epithelial wound healing assays, LecB specifically cleared integrins from the surface of cells located at the wound edge and blocked cell migration and wound healing in a dose-dependent manner. Moreover, the wild-type P. aeruginosa strain PAO1 was able to loosen cell-substrate adhesion in order to crawl underneath exposed cells, whereas knockout of LecB significantly reduced crawling events. Based on these results, we suggest that LecB has a role in disseminating bacteria along the cell-basement membrane interface. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the leading causes of nosocomial infections. P. aeruginosa is able to switch between planktonic, intracellular, and biofilm-based lifestyles, which allows it to evade the immune system as well as antibiotic treatment. Hence, alternatives to antibiotic treatment are urgently required to combat P. aeruginosa infections. Lectins, like the fucose-specific LecB, are promising targets, because removal of LecB resulted in decreased virulence in mouse models. Currently, several research groups are developing LecB inhibitors. However, the role of LecB in host-pathogen interactions is not well understood. The significance of our research is in identifying cellular mechanisms of how LecB facilitates P. aeruginosa infection. We introduce LecB as a new member of the list of bacterial molecules that bind integrins and show that P. aeruginosa can move forward underneath attached epithelial cells by loosening cell-basement membrane attachment in a LecB-dependent manner. Full Article
ali Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient. IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically. Full Article
ali Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture. Full Article
ali Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery. IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients. Full Article
ali Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event. IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain. Full Article
ali Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model By mbio.asm.org Published On :: 2020-03-24T01:31:00-07:00 ABSTRACT Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action. IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex. Full Article
ali Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis. Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation. IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen. Full Article
ali Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass. IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex. Full Article
ali A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV. IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Full Article
ali Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome. IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex. Full Article
ali Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways. IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation. Full Article
ali EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections. IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen. Full Article
ali The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis. IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens. Full Article
ali Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair. Full Article
ali Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor. IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci. Full Article
ali Gathering Trauma Narratives: A Qualitative Study on the Impact of Self-Identified Traumas on People Living with HIV (PLWH) By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 BACKGROUND Trauma—emotional, physical, and psychological—is common and associated with increased risk behaviors, low rates of care engagement and viral suppression, and overall poor health outcomes for people living with HIV (PLWH). This article presents the results of 15 in-depth, semi-structured interviews with PLWH in the Southeastern United States in which participants identified a trauma and described its long-lasting impact on their lives. Participants' trauma narratives described a wide range of traumas, including childhood sexual abuse, the loss of a loved one, and their HIV diagnosis. METHODS Systematic qualitative analysis was used to delineate beliefs about causes, symptoms, treatments, quality of life, and health implications of trauma. RESULTS: Fifteen participants completed semi-structured interviews that lasted on average 32 minutes. Participants described a wide spectrum of personal trauma that occurred both prior and subsequent to their HIV diagnosis. The types of trauma identified included physical, sexual, and psychological abuse inflicted by intimate partners, family members, and/or strangers. LIMITATIONS A chief limitation of this study is selection bias. Additionally, the participant selection and content of the trauma narratives might have been affected by the surrounding context of the parent study centered on HIV, aging, and psychosocial stress. It is also difficult to interpret the distinction between discrete trauma experiences and the diagnosis of HIV, leading to potential information bias. CONCLUSION This study highlights the importance of social support in coping with trauma and the effect of trauma on health-related behaviors. It also illustrates the need for additional research on the topic of trauma and trauma-informed care for PLWH. Understanding how different types of trauma affect individuals' lives is necessary to inform recommendations to provide better care for PLWH. Full Article
ali N-Terminal Acetylation Stabilizes SIGMA FACTOR BINDING PROTEIN1 Involved in Salicylic Acid-Primed Cell Death By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants. Full Article
ali The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1 By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P. trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P. trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus x canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar. A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed. Full Article
ali SCFTIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ali Sulfotransferase1 Is the Enzymatic Hub of Sulfated Salicinoids in Poplar By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ali Gibberellin Signaling in Plants: Entry of a new MicroRNA Player By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ali "Detection of SV40 like viral DNA and viral antigens in malignant pleural mesothelioma." M. Ramael, J. Nagels, H. Heylen, S. De Schepper, J. Paulussen, M. De Maeyer and C. Van Haesendonck. Eur Respir J 1999; 14: 1381-1386. By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 Full Article
ali Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2. All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients. In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL–1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL–1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case–control study, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1 remained as predictors for high mortality from COVID-19 pneumonia. We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1. The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients. Full Article
ali Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7]. Full Article