lec Lecture Notes on Cluster Algebras By www.ams.org Published On :: Robert J. Marsh, University of Leeds - A publication of the European Mathematical Society, 2014, 122 pp., Softcover, ISBN-13: 978-3-03719-130-9, List: US$36, All AMS Members: US$28.80, EMSZLEC/19 Cluster algebras are combinatorially defined commutative algebras which were introduced by S. Fomin and A. Zelevinsky as a tool for studying the dual... Full Article
lec Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications. Full Article
lec Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity. Full Article
lec The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC. Full Article
lec Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy. Full Article
lec Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
lec Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens. Full Article
lec Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts. Full Article
lec X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition. Full Article
lec Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs. Full Article
lec Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation. Full Article
lec N{alpha}-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS–based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent “bind-and-release” contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence. Full Article
lec ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress. Full Article
lec Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA–binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases. Full Article
lec Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1–5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum. Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1. Full Article
lec Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections. Full Article
lec Forms for S1 discretionary places available for collection tomorrow By www.info.gov.hk Published On :: Wed, 04 Dec 2019 15:05:26 Full Article
lec Electricity relief details announced By www.news.gov.hk Published On :: Tue, 21 Apr 2020 00:00:00 +0800 Non-residential and residential electricity accounts are benefitting from government relief measures, the Environmental Bureau announced today. Under the measures, nearly 90% of non-residential electricity bills obtained a 75% subsidy for electricity charges in March, while 40% of residential electricity accounts enjoyed zero electricity charges in the first quarter of the year. The Government announced about $2.3 billion in provisions last December to provide an electricity charge subsidy to each eligible non-residential electricity account holder to cover 75% of their monthly electricity charges for four months, subject to a monthly cap of $5,000. The Budget further provided $2.9 billion to extend the subsidy period to eight months. According to the bills issued by the two power companies in March, 360,000 non-residential bills obtained a 75% subsidy. This is close to 90% of the total eligible non-residential tariff bills. To balance the impact on people's livelihood of the recent transition to cleaner electricity generating systems in Hong Kong, the bureau implemented the electricity charges relief scheme in January 2019. A monthly electricity charge relief of $50 has been granted to each eligible residential electricity account for 60 months. To help the public cope with the challenging economic environment, the Government implemented a new round of one-off electricity charge subsidy schemes in January. A subsidy of $160 will be credited to each residential electricity account from January to November, while $240 will be credited in December. From early this year, over 2.7 million households have been benefitting from both the electricity charges relief measures and the electricity charges subsidy. The bills of the two power companies indicated that 40% of residential electricity accounts, representing 1 million households, enjoyed zero electricity charges. The bureau called on the community to cherish environmental resources, including saving energy and electricity to mitigate climate change and improve air quality. Full Article
lec Interleukin-12 electroporation may sensitize 'cold' melanomas to immunotherapies By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (American Association for Cancer Research) Combining intratumoral electroporation of interleukin-12 (IL-12) DNA (tavokinogene telseplasmid, or TAVO) with the immune checkpoint inhibitor pembrolizumab (Keytruda) led to clinical responses in patients with immunologically quiescent advanced melanoma, according to results from a phase II trial. Full Article
lec Rutgers' Greg Moore elected to National Academy of Sciences By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (Rutgers University) Rutgers Professor Gregory W. Moore, a renowned physicist who seeks a unified understanding of the basic forces and fundamental particles in the universe, has been elected to the prestigious National Academy of Sciences. Full Article
lec FDA approves first at-home saliva collection test for coronavirus By www.eurekalert.org Published On :: Fri, 08 May 2020 00:00:00 EDT (Rutgers University) Rutgers' RUCDR Infinite Biologics received an amended emergency use authorization from the FDA late Thursday for the first SARS-CoV-2 coronavirus test that will allow people to collect their own saliva at home and send to a lab for results. The decision follows the FDA's recent emergency approval to RUCDR Infinite Biologics for the first saliva-based test, which involves health care workers collecting saliva from individuals at testing sites. Full Article
lec LECOM's Dr. James Lin named AGS Geriatrics Clinician of the Year By www.eurekalert.org Published On :: Fri, 08 May 2020 00:00:00 EDT (American Geriatrics Society) The American Geriatrics Society (AGS) today named James Lin, DO, MS, MHSA, president of the Lake Erie College of Osteopathic Medicine (LECOM) Institute for Successful Aging in Erie, Pa., its 2020 Clinician of the Year. Lin will be honored at the AGS 2021 Annual Scientific Meeting (#AGS21), May 13-15, 2021, in Chicago, Ill., following the cancellation of the AGS 2020 Annual Scientific Meeting due to COVID-19. Full Article
lec Dr. Ellen Flaherty, prestigious Henderson lecturer, sets sight on key priority for us all By www.eurekalert.org Published On :: Fri, 08 May 2020 00:00:00 EDT (American Geriatrics Society) The American Geriatrics Society (AGS) today announced that Ellen Flaherty, PhD, APRN, AGSF, an assistant professor at the Dartmouth Geisel School of Medicine and director of the Dartmouth Centers for Health & Aging, will deliver the society's prestigious Henderson State-of-the-Art Lecture. Dr. Flaherty will deliver her talk, Leveraging the Potential of Interprofessional Teams in Primary Care Practice, at the AGS 2021 Annual Scientific Meeting (#AGS21) in Chicago, Ill. (May 12-15, 2021). Full Article
lec Select Vitamins and Minerals in the Management of Diabetes By spectrum.diabetesjournals.org Published On :: 2001-08-01 Belinda S. OConnellAug 1, 2001; 14:Articles Full Article
lec Reonomy: Selecting a Growth Strategy in New York City’s Proptech Sector By www8.gsb.columbia.edu Published On :: Fri, 20 Mar 2020 14:19:42 +0000 What strategic path would lead Reonomy, a successful commercial real estate proptech startup, to future growth and profitability within a reasonable time frame? Full Article
lec Cyber Interference in Elections: Applying a Human Rights Framework By feedproxy.google.com Published On :: Thu, 25 Apr 2019 13:55:01 +0000 Invitation Only Research Event 7 May 2019 - 10:00am to 4:15pm Chatham House | 10 St James's Square | London | SW1Y 4LE The use of social media, including algorithms, bots and micro-targeted advertising, has developed rapidly while there has been a policy lag in identifying and addressing the challenges posed to democracy by the manipulation of voters through cyber activity. What role should international human rights law play in developing a normative framework to address potential harms caused by such cyber activity including the closing down of democratic space, the spread of disinformation and hate speech? This meeting will bring together a small group of academics and practitioners to explore the implications of applying a human rights framework to both the activities of social media companies and the activities of governments and international organizations in seeking to regulate their activity. The purpose of the meeting will be to inform a report that will provide an overview of the applicable law and recommendations for how that law might inform future policy and regulation. Attendance at this event is by invitation only. Event attributes Chatham House Rule Department/project International Law Programme, Rights, Accountability and Justice Full Article
lec Tackling Cyber Disinformation in Elections: Applying International Human Rights Law By feedproxy.google.com Published On :: Wed, 18 Sep 2019 10:30:02 +0000 Research Event Tackling Cyber Disinformation in Elections: Applying International Human Rights Law 6 November 2019 - 5:30pm to 7:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Susie Alegre, Barrister and Associate Tenant, Doughty Street ChambersEvelyn Aswad, Professor of Law and the Herman G. Kaiser Chair in International Law, University of OklahomaBarbora Bukovská, Senior Director for Law and Policy, Article 19Kate Jones, Director, Diplomatic Studies Programme, University of OxfordChair: Harriet Moynihan, Associate Fellow, International Law Programme, Chatham House Register Interest Cyber operations are increasingly used by political parties, their supporters and foreign states to influence electorates – from algorithms promoting specific messages to micro-targeting based on personal data and the creation of filter bubbles. The risks of digital tools spreading disinformation and polarizing debate, as opposed to deepening democratic engagement, have been highlighted by concerns over cyber interference in the UK’s Brexit referendum, the 2016 US presidential elections and in Ukraine. While some governments are adopting legislation in an attempt to address some of these issues, for example Germany’s ‘NetzDG’ law and France’s ‘Law against the manipulation of information’, other countries have proposed an independent regulator as in the case of the UK’s Online Harms white paper. Meanwhile, the digital platforms, as the curators of content, are under increasing pressure to take their own measures to address data mining and manipulation in the context of elections. How do international human rights standards, for example on freedom of thought, expression and privacy, guide the use of digital technology in the electoral context? What practical steps can governments and technology actors take to ensure policies, laws and practices are in line with these fundamental standards? And with a general election looming in the UK, will these steps come soon enough? This event brings together a wide range of stakeholders including civil society, the tech sector, legal experts and government, coincides with the publication of a Chatham House research paper on disinformation, elections and the human rights framework. Jacqueline Rowe Programme Assistant, International Law Programme 020 7389 3287 Email Department/project International Law Programme, Cyber, Sovereignty and Human Rights, Rights, Accountability and Justice Full Article
lec Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification By feedproxy.google.com Published On :: 2020-04-01 Lucía Trilla-FuertesApr 1, 2020; 19:690-700Research Full Article
lec Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation By feedproxy.google.com Published On :: 2020-04-14 Nora LinscheidApr 14, 2020; 0:RA119.001878v1-mcp.RA119.001878Research Full Article
lec Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments By feedproxy.google.com Published On :: 2020-03-31 Tsung-Heng TsaiMar 31, 2020; 0:RA119.001792v1-mcp.RA119.001792Research Full Article
lec Ana Alecsandru By feedproxy.google.com Published On :: Fri, 24 Jan 2020 13:50:37 +0000 Research Assistant, International Security Programme Biography Ana Alecsandru is a research assistant for the International Security programme, covering projects related to nuclear weapons policy and emerging technologies. She is also a PhD candidate at the University of Birmingham (awaiting Viva examination).Her doctoral research examined the relationship between trust and verification in nuclear arms control negotiations between the United States and Russia.Prior to joining Chatham House, she worked at the University of Birmingham on various projects concerning nuclear weapons policy while doing her PhD.Ana completed an internship in the Arms Control, Disarmament, and WMD Non-Proliferation Centre at NATO HQ in Brussels in 2014. She was also a research intern at the United Nations Office for Disarmament Affairs (UNODA) in New York in 2016.During her doctoral studies, she received full grants to participate in the 2017 IGCC’s Public Policy and Nuclear Threats Boot Camp hosted at UC San Diego and the 2017 Nuclear Safeguards and Non-Proliferation Training Course hosted by the European Commission’s Research Centre in Ispra.Ana holds an MA in Security Studies and an MA in Research Methods from the University of Birmingham. She completed her BSc (hons) in International Relations at the University of Bath. For her doctoral research, she was awarded a studentship by the UK Economic and Social Research Council. Areas of expertise Nuclear weapons policyNuclear arms control and strategic stabilityEmerging military technologiesEmotions in strategic decision-making Email @anaalecs LinkedIn Full Article
lec Rapid Brain Nicotine Uptake from Electronic Cigarettes By jnm.snmjournals.org Published On :: 2019-11-01T13:36:37-07:00 This study sought to determine brain nicotine kinetics from the use of increasingly popular electronic cigarettes (E-cigs). Methods: Brain uptake of nicotine following inhalation from E-cigs was directly assessed in 17 E-cig users (8 females), using 11C-nicotine and positron emission tomography. The brain nicotine kinetics parameters from E-cigs were compared with those from smoking combustible cigarettes (C-cigs). Results: After inhalation of a single puff of E-cig vapor, brain nicotine concentration rose quickly (mean T1/2 27 sec) with a peak amplitude 25% higher in females than males, resembling previous observations with C-cigs. Nonetheless, brain nicotine accumulation from E-cigs was smaller than that from C-cigs in both males and females (24% and 32%, respectively). Conclusion: E-cigs can deliver nicotine rapidly to the brain. Therefore, to the extent that rapid brain uptake promotes smoking reward, e-cigarettes might maintain a degree of nicotine dependence and also serve as non-combustible substitutes for cigarettes. Full Article
lec Does 2-FDG-PET Accurately Reflect Quantitative In vivo Glucose Utilization? By jnm.snmjournals.org Published On :: 2019-12-13T13:35:10-08:00 2-Deoxy-2-[18F]fluoro-D-glucose (2-FDG) with positron emission tomography (2-FDG-PET) is undeniably useful in the clinic, among other uses, to monitor change over time using the 2-FDG standardized uptake values (SUV) metric. This report suggests some potentially serious caveats for this and related roles for 2-FDG PET. Most critical is the assumption that there is an exact proportionality between glucose metabolism and 2-FDG metabolism, called the lumped constant, LC. This report describes that LC is not constant for a specific tissue and may be variable before and after disease treatment. The purpose of this work is not to deny the clinical value of 2-FDG PET; it is a reminder that when one extends the use of an appropriately qualified imaging method, new observations may arise and further validation would be necessary. Current understanding of glucose-based energetics in vivo is based on the quantification of glucose metabolic rates with 2-FDG PET, a method that permits the non-invasive assessment in various human disorders. However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs) but not for sodium-dependent glucose co-transporters (SGLTs), which have recently been shown to be distributed in multiple human tissues. Thus, the GLUT-mediated in vivo glucose utilization measured by 2-FDG PET would be blinded to the potentially substantial role of functional SGLTs in glucose transport and utilization. Therefore, in these circumstances the 2-FDG LC used to quantify in vivo glucose utilization should not be expected to remain constant. 2-FDG LC variations have been especially significant in tumors, particularly at different stages of cancer development, affecting the accuracy of quantitative glucose measures and potentially limiting the prognostic value of 2-FDG, as well as its accuracy in monitoring treatments. SGLT-mediated glucose transport can be estimated using α-methyl-4-deoxy-4-[18F]fluoro-D-glucopyranoside (Me-4FDG). Utilizing both 2-FDG and Me-4FDG should provide a more complete picture of glucose utilization via both GLUT and SGLT transporters in health and disease stages. Given the widespread use of 2-FDG PET to infer glucose metabolism, appreciating the potential limitations of 2-FDG as a surrogate for glucose metabolic rate and the potential reasons for variability in LC is relevant. Even when the readout for the 2-FDG PET study is only an SUV parameter, variability in LC is important, particularly if it changes over the course of disease progression (e.g., an evolving tumor). Full Article
lec What You See Is Not What You Get - On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Due to improvements in quantitative SPECT/CT, voxel-based dosimetry for radionuclide therapies has aroused growing interest as it promises the visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-based dosimetry of a 3D printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated. Methods: Both kidney compartments (70% cortex, 30% medulla) were filled with different activity concentrations and SPECT/CT imaging was performed. The images were reconstructed using varying reconstruction settings (iterations, subsets, and post-filtering). Based on these activity concentration maps, absorbed dose distributions were calculated with pre-calculated 177Lu voxel S values and an empirical kidney half-life. An additional set of absorbed doses was calculated after applying PETPVC for partial-volume correction of the SPECT reconstructions. Results: SPECT/CT imaging blurs the two discrete sub-organ absorbed dose values into a continuous distribution. While this effect is slightly improved by applying more iterations, it is enhanced by additional post-filtering. By applying PETPVC, the absorbed dose values are separated into 2 peaks. Although this leads to a better agreement between SPECT/CT-based and nominal values, considerable discrepancies remain. In contrast to the calculated nominal absorbed doses of 7.8/1.6 Gy (cortex/medulla), SPECT/CT-based voxel-level dosimetry resulted in mean absorbed doses ranging from 3.0-6.6 Gy (cortex) and 2.7-5.1 Gy (medulla). PETPVC led to improved ranges of 6.1-8.9 Gy (cortex) and 2.1-5.4 Gy (medulla). Conclusion: Our study shows that 177Lu quantitative SPECT/CT imaging leads to voxel-based dose distributions largely differing from the real organ distribution. SPECT/CT imaging and reconstruction deficiencies might directly translate into unrealistic absorbed dose distributions, thus questioning the reliability of SPECT-based voxel-level dosimetry. Therefore, SPECT/CT reconstructions should be adapted to ensure an accurate quantification of the underlying activity and, therefore, absorbed dose in a volume-of-interest of the expected object size (e.g. organs, organ sub-structures, lesions or voxels). As an example, PETPVC largely improves the match between SPECT/CT-based and nominal dose distributions. In conclusion, the concept of voxel-based dosimetry should be treated with caution. Specifically, it should be kept in mind that the absorbed dose distribution is mainly a convolved version of the underlying SPECT reconstruction. Full Article
lec PET/CT imaging with a 18F-labeled galactodendritic unit in a galectin-1 overexpressing orthotopic bladder cancer model By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Galectins are carbohydrate-binding proteins overexpressed in bladder cancer (BCa) cells. Dendritic galactose moieties have a high affinity for galectin-expressing tumor cells. We radiolabeled a dendritic galactose carbohydrate with fluorine-18 – 18F-labeled galactodendritic unit 4 – and examined its potential in imaging urothelial malignancies. Methods: The 18F-labeled 1st generation galactodendritic unit 4 was obtained from its tosylate precursor. We conducted in vivo studies in galectin-expressing UMUC3 orthotopic BCa model to determine the ability of 18F-labeled galactodendritic unit 4 to image BCa. Results: Intravesical administration of 18F-labeled galactodendritic unit 4 allowed specific accumulation of the carbohydrate radiotracer in galectin-1 overexpressing UMUC3 orthotopic tumors when imaged with PET. The 18F-labeled galactodendritic unit 4 was not found to accumulate in non-tumor murine bladders. Conclusion: The 18F-labeled galactodendritic unit 4 and similar analogs may be clinically relevant and exploitable for PET imaging of galectin-1 overexpressing bladder tumors. Full Article
lec 68Ga-PSMA guided bone biopsies for molecular diagnostics in metastatic prostate cancer patients By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 For individual treatment decisions in patients with metastatic prostate cancer (mPC), molecular diagnostics are increasingly used. Bone metastases are frequently the only source for obtaining metastatic tumor tissue. However, the success rate of computed tomography (CT)-guided bone biopsies for molecular analyses in mPC patients is only ~40%. Positron emission tomography (PET) using Gallium-68 prostate specific membrane antigen (68Ga-PSMA) is a promising tool to improve the harvest rate of bone biopsies for molecular analyses. Aim of this study was to determine the success rate of 68Ga-PSMA guided bone biopsies for molecular diagnostics in mPC patients. Methods: Within a prospective multicenter whole-genome sequencing trial (NCT01855477), 69 mPC patients underwent 68Ga-PSMA PET/CT prior to bone biopsy. Primary endpoint was success rate (tumor percentage ≥30%) of 68Ga-PSMA guided bone biopsies. At biopsy sites, 68Ga-PSMA uptake was quantified using rigid body image registration of 68Ga-PSMA PET/CT and interventional CT. Actionable somatic alterations were identified. Results: Success rate of 68Ga-PSMA guided biopsies for molecular analyses was 70%. At biopsy sites categorized as positive, inconclusive, or negative for 68Ga-PSMA uptake, 70%, 64%, and 36% of biopsies were tumor positive (≥30%), respectively (P = 0.0610). In tumor positive biopsies, 68Ga-PSMA uptake was significantly higher (P = 0.008), whereas radiodensity was significantly lower (P = 0.006). With an area under the curve of 0.84 and 0.70, both 68Ga-PSMA uptake (maximum standardized uptake value) and radiodensity (mean Hounsfield Units) were strong predictors for a positive biopsy. Actionable somatic alterations were detected in 73% of the sequenced biopsies. Conclusion: In patients with mPC, 68Ga-PSMA PET/CT improves the success rate of CT-guided bone biopsies for molecular analyses, thereby identifying actionable somatic alterations in more patients. Therefore, 68Ga-PSMA PET/CT may be considered for guidance of bone biopsies in both clinical practice and clinical trials. Full Article
lec The optimal imaging window for dysplastic colorectal polyp detection using c-Met targeted fluorescence molecular endoscopy By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 Rationale: Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met targeted fluorescent peptide, in a population at high-risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multi-diameter single-fiber reflectance, single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13mg/kg) at a one-, two- or three-hour dose-to-imaging interval (N = 3 patients per cohort). Two cohorts were expanded to six patients based on target-to-background ratios (TBR). Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly increased fluorescence in the colorectal lesions compared to surrounding tissue, with a TBR of 1.53, 1.66 and 1.74 respectively (mean intrinsic fluorescence (Q·μfa,x) = 0.035 vs. 0.023mm-1, P<0.0003; 0.034 vs. 0.021mm-1, P<0.0001; 0.033 vs. 0.019mm-1, P<0.0001). Fluorescence correlated to histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a one-to-three hour dose-to-imaging interval. No clinically significant differences were observed between the cohorts, although a one-hour dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies. Full Article
lec 18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score. Full Article
lec Molecular imaging of bone metastases and their response to therapy By jnm.snmjournals.org Published On :: 2020-04-03T15:14:37-07:00 Bone metastases are common, especially in more prevalent malignancies such as breast and prostate cancer. They cause significant morbidity and draw on healthcare resources. Molecular and hybrid imaging techniques, including single photon emission computed tomography with computed tomography (SPECT/CT), positron emission tomography / CT and whole-body MRI with diffusion-weighted imaging (WB-MRI), have improved diagnostic accuracy in staging the skeleton compared to previous standard imaging methods, allowing earlier tailored treatment. With the introduction of several effective treatment options, it is now even more important to detect and monitor response in bone metastases accurately. Conventional imaging, including radiographs, CT, MRI and bone scintigraphy, are recognized as being insensitive and non-specific for response monitoring in a clinically relevant time frame. Early reports of molecular and hybrid imaging techniques, as well as WB-MRI, promise earlier and more accurate prediction of response vs non-response but have yet to be adopted routinely in clinical practice. We summarize the role of new molecular and hybrid imaging methods including SPECT/CT, PET/CT and WB-MRI. These modalities are associated with improvements in diagnostic accuracy for staging and response assessment of skeletal metastases over standard imaging methods, being able to quantify biological processes related to the bone microenvironment as well as tumor cells. The described improvements in the imaging of bone metastases and their response to therapy have led to some being adopted into routine clinical practice in some centers and at the same time provide better methods to assess treatment response of bone metastases in clinical trials. Full Article
lec Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery By jnm.snmjournals.org Published On :: 2020-04-17T08:32:41-07:00 Gone are the days when medical imaging was used primarily to visualize anatomical structures. The emergence of molecular imaging, championed by radiolabeled fluorodeoxyglucose positron emission tomography (18FDG PET) has expanded the information content derived from imaging to include pathophysiological and molecular processes. Cancer imaging, in particular, has leveraged advances in molecular imaging agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of molecular imaging and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice. Full Article
lec The Changing Face of Nuclear Cardiology: Guiding Cardiovascular Care towards Molecular Medicine By jnm.snmjournals.org Published On :: 2020-04-17T08:32:41-07:00 Radionuclide imaging of myocardial perfusion, function, and viability has been established for decades and remains a robust, evidence-based and broadly available means for clinical workup and therapeutic guidance in ischemic heart disease. Yet, powerful alternative modalities have emerged for this purpose, and their growth has resulted in increasing competition. But the potential of the tracer principle goes beyond the assessment of physiology and function, towards the interrogation of biology and molecular pathways. This is a unique selling point of radionuclide imaging, which has been under-recognized in cardiovascular medicine until recently. Now, molecular imaging methods for the detection of myocardial infiltration, device infection and cardiovascular inflammation are successfully gaining clinical acceptance. This is further strengthened by the symbiotic quest of cardiac imaging and therapy for an increasing implementation of molecular-targeted procedures, where specific therapeutic interventions require specific diagnostic guidance towards the most suitable candidates. This review will summarize the current advent of clinical cardiovascular molecular imaging and highlight its transformative contribution to the evolution of cardiovascular therapy beyond mechanical interventions and broad "blockbuster" medication, towards a future of novel, individualized molecular targeted and molecular imaging-guided therapies. Full Article
lec Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192 By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels. Full Article
lec NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile. Full Article
lec Côte d'Ivoire’s 2020 Elections: Contestation and Change By feedproxy.google.com Published On :: Mon, 04 Nov 2019 10:20:01 +0000 Invitation Only Research Event 8 November 2019 - 12:00pm to 1:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Hon Guillaume Soro, Chairman, Rassemblement Pour la Côte d’Ivoire (RACI)Chair: Paul Melly, Consulting Fellow, Africa Programme, Chatham House As Côte d'Ivoire enters a critical final 12 months before presidential elections scheduled for October 2020, the political atmosphere remains highly uncertain, stoked by the fracturing of the RDR-PDCI alliance and the potential candidacy of a range of high-profile political names. While President Ouattara’s two terms in office have ushered in an improved business environment, with annual economic growth averaging 8 per cent since 2012, political instability over the next 12 months may pose a threat to recent progress and raises wider security concerns in light of the major post-election violence witnessed a decade previously.At this event, Ivorian presidential contender, and former prime minister and parliamentary speaker, Guillaume Soro, will assess the prime-election context in Côte d'Ivoire and the policies required to deliver inclusive growth and future stability for its citizens.Attendance at this event is by invitation only. Department/project Africa Programme, Elections and political systems, West Africa Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
lec Somalia's Electoral Road-Map and Federal Relations By feedproxy.google.com Published On :: Fri, 08 Nov 2019 12:25:01 +0000 Research Event 15 November 2019 - 10:30am to 11:30am Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Abdirahman Abdishakur Warsame, Leader, Wadajir Party, Federal Republic of SomaliaChair: Ahmed Soliman, Research Fellow, Africa Programme, Chatham House As Somalia heads into an electoral cycle, its political landscape and federal picture appear unstable. The federal government is seeking to implement a feasible electoral model that will further the country’s democratic transition ahead of elections set for late 2020 and early 2021. An expanded and more inclusive process will require an agreement on election modalities and approved electoral law, the completion of the constitutional review and improved security provision. Reconciliation and dialogue between the federal government and federal member states will be critical to making further progress on political, security and economic reforms. Recent contestations in the regions of Jubaland, Galmudug and Puntland do not bode well. Somalia’s political leaders are readying themselves for a tough contest with several opposition parties recently merging to form the Forum for National Parties (FNP), led by former President Sharif Sheikh Ahmed. At this event, the Abdirahman Warsame, leader of the Wadajir Party, will analyse the political and federal transition in Somalia and give his perspective on how to improve the often-fractious relationship between the centre and the regions. THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED. Department/project Africa Programme, Elections and political systems, Horn of Africa Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
lec Côte d'Ivoire’s 2020 Elections and Beyond: Ensuring Stability and Inclusion By feedproxy.google.com Published On :: Thu, 16 Jan 2020 10:10:01 +0000 Research Event 21 January 2020 - 11:30am to 12:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants HE Alassane Ouattara, President, Republic of Côte d'IvoireChair: Bob Dewar CMG, Associate Fellow, Africa Programme, Chatham House Please note, the second video on this page is from an interview with the president outside the event.HE Alassane Ouattara, president of Côte d'Ivoire, discusses governance and domestic priorities ahead of and beyond elections, as well as efforts to sustain stability and support an inclusive electoral process.Presidential elections in Côte d'Ivoire, the world’s top cocoa producer and the largest economy in the West African Economic and Monetary Union (WAEMU), will be held on 31st October 2020 against a backdrop of marked political dynamism in the country and wider region.Possible constitutional amendments and a newly announced major reform of the currency regime are among significant issues drawing focus.A credible and inclusive electoral process is critical for the improvement of socio-development outcomes and for the maintenance of a positive investment environment.But instability remains a serious risk and the stakes are high for Côte d'Ivoire and the wider region. Department/project Africa Programme, Elections and political systems, West Africa Full Article
lec Webinar: Implications of the COVID-19 Pandemic for African Elections and Democracy By feedproxy.google.com Published On :: Fri, 01 May 2020 15:10:01 +0000 Research Event 6 May 2020 - 2:30pm to 3:30pm Event participants Dr Christopher Fomunyoh, Senior Associate and Regional Director for Central and West Africa, National Democratic Institute (NDI)Chair: Elizabeth Donnelly, Deputy Director, Africa Programme, Chatham House 2020 was anticipated to be a year of landmark elections across Africa, including general elections scheduled in Somalia and Ethiopia – countries at critical junctures in their transitions to electoral democracy – as well as a re-run of annulled presidential elections in Malawi. The COVID-19 pandemic has created new challenges for African countries seeking to hold elections or further democratization – including the practicalities of adapting containment measures to electoral processes in the context of strained financial and logistical resources. It may also be used as a pretext for the pursuit of repressive legislation and constitutional amendments to preclude elections or bolster authoritarianism, compounded by new constraints on accountability mechanisms such as election observation missions. At this event, Dr Christopher Fomunyoh discusses the likely impact of the COVID-19 pandemic on elections and democracy in various African countries, as well as responses and measures to meet the multifaceted challenges posed. Department/project Africa Programme, Elections and political systems Hanna Desta Programme Assistant, Africa Programme Email Full Article
lec Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state. Full Article
lec Molecular Basis of the Mechanisms Controlling MASTL [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation. MASTL contains a non-conserved insertion of 550 residues within its activation loop, splitting the kinase domain, and making it unique. Here, we show that this non-conserved middle region (NCMR) of the protein is crucial for target specificity and activity. We performed a phosphoproteomic assay with different MASTL constructs identifying key phosphorylation sites for its activation and determining whether they arise from autophosphorylation or exogenous kinases, thus generating an activation model. Hydrogen/deuterium exchange data complements this analysis revealing that the C-lobe in full-length MASTL forms a stable structure, whereas the N-lobe is dynamic and the NCMR and C-tail contain few localized regions with higher-order structure. Our results indicate that truncated versions of MASTL conserving a cryptic C-Lobe in the NCMR, display catalytic activity and different targets, thus establishing a possible link with truncated mutations observed in cancer-related databases. Full Article
lec Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies [Reviews] By feedproxy.google.com Published On :: 2020-02-01T00:05:29-08:00 Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field. Full Article