ndi Condition Affecting Kids With COVID-19 Remains Very Rare, Heart Group Says By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Condition Affecting Kids With COVID-19 Remains Very Rare, Heart Group SaysCategory: Health NewsCreated: 5/7/2020 12:00:00 AMLast Editorial Review: 5/8/2020 12:00:00 AM Full Article
ndi Trending Clinical Topic: COVID Toes By www.webmd.com Published On :: Fri, 08 May 2020 14:20:45 EST Reports of new and unusual symptoms associated with COVID-19 resulted in this week's top trending clinical topic. Full Article
ndi For Kids With Genetic Condition, Statins May Be Lifesavers By www.medicinenet.com Published On :: Thu, 17 Oct 2019 00:00:00 PDT Title: For Kids With Genetic Condition, Statins May Be LifesaversCategory: Health NewsCreated: 10/16/2019 12:00:00 AMLast Editorial Review: 10/17/2019 12:00:00 AM Full Article
ndi Thrush (Oral Candidiasis) By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: Thrush (Oral Candidiasis)Category: Diseases and ConditionsCreated: 1/31/2005 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
ndi Blood Pressure Dips Upon Standing Might Not Be as Dangerous as Thought By www.medicinenet.com Published On :: Wed, 29 Jan 2020 00:00:00 PDT Title: Blood Pressure Dips Upon Standing Might Not Be as Dangerous as ThoughtCategory: Health NewsCreated: 1/28/2020 12:00:00 AMLast Editorial Review: 1/29/2020 12:00:00 AM Full Article
ndi Health Tip: Understanding the Menopausal Transition By www.medicinenet.com Published On :: Mon, 2 Dec 2019 00:00:00 PDT Title: Health Tip: Understanding the Menopausal TransitionCategory: Health NewsCreated: 12/2/2019 12:00:00 AMLast Editorial Review: 12/2/2019 12:00:00 AM Full Article
ndi Tracking a Global Threat: a New Genotyping Method for Candida auris By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Over the past decade, Candida auris has emerged as an urgent threat to public health. Initially reported from cases of ear infections in Japan and Korea, C. auris has since been detected around the world. While whole-genome sequencing has been extensively used to trace the genetic relationships of the global emergence and local outbreaks, a recent report in mBio describes a targeted genotyping method as a rapid and inexpensive method for classifying C. auris isolates (T. de Groot, Y. Puts, I. Berrio, A. Chowdhary, and J. F. Meis, mBio 11:e02971-19, https://doi.org/10.1128/mBio.02971-19, 2020). Full Article
ndi RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT During infection of human parvovirus B19 (B19V), one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter and is alternatively spliced and alternatively polyadenylated. Here, we identified a novel cis-acting sequence (5'-GUA AAG CUA CGG GAC GGU-3'), intronic splicing enhancer 3 (ISE3), which lies 72 nucleotides upstream of the second splice acceptor (A2-2) site of the second intron that defines the exon of the mRNA encoding the 11-kDa viral nonstructural protein. RNA binding motif protein 45 (RBM45) specifically binds to ISE3 with high affinity (equilibrium dissociation constant [KD] = 33 nM) mediated by its RNA recognition domain and 2-homo-oligomer assembly domain (RRM2-HOA). Knockdown of RBM45 expression or ectopic overexpression of RRM2-HOA in human erythroid progenitor cells (EPCs) expanded ex vivo significantly decreased the level of viral mRNA spliced at the A2-2 acceptor but not that of the mRNA spliced at A2-1 that encodes VP2. Moreover, silent mutations of ISE3 in an infectious DNA of B19V significantly reduced 11-kDa expression. Notably, RBM45 also specifically interacts in vitro with ISE2, which shares the octanucleotide (GGGACGGU) with ISE3. Taken together, our results suggest that RBM45, through binding to both ISE2 and ISE3, is an essential host factor for maturation of 11-kDa-encoding mRNA. IMPORTANCE Human parvovirus B19 (B19V) is a human pathogen that causes severe hematological disorders in immunocompromised individuals. B19V infection has a remarkable tropism with respect to human erythroid progenitor cells (EPCs) in human bone marrow and fetal liver. During B19V infection, only one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter of the viral genome and is alternatively spliced and alternatively polyadenylated, a process which plays a key role in expression of viral proteins. Our studies revealed that a cellular RNA binding protein, RBM45, binds to two intron splicing enhancers and is essential for the maturation of the small nonstructural protein 11-kDa-encoding mRNA. The 11-kDa protein plays an important role not only in B19V infection-induced apoptosis but also in viral DNA replication. Thus, the identification of the RBM45 protein and its cognate binding site in B19V pre-mRNA provides a novel target for antiviral development to combat B19V infection-caused severe hematological disorders. Full Article
ndi In Vitro Characterization of Protein Effector Export in the Bradyzoite Stage of Toxoplasma gondii By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The ubiquitous parasite Toxoplasma gondii exhibits an impressive ability to maintain chronic infection of its host for prolonged periods. Despite this, little is known regarding whether and how T. gondii bradyzoites, a quasi-dormant life stage residing within intracellular cysts, manipulate the host cell to maintain persistent infection. A previous proteomic study of the cyst wall, an amorphous layer of proteins that forms underneath the cyst membrane, identified MYR1 as a putative cyst wall protein in vitro. Because MYR1 is known to be involved in the translocation of parasite-derived effector proteins into the host cell, we sought to determine whether parasites transitioning toward the bradyzoite life stage retain the capacity to translocate proteins via this pathway. By epitope tagging the endogenous loci of four known effectors that translocate from the parasitophorous vacuole into the host cell nucleus, we show, by immunofluorescence assays, that most effectors accumulate in the host nucleus at early but not late time points after infection, during the tachyzoite-to-bradyzoite transition and when parasites further along the bradyzoite differentiation continuum invade a new host cell. We demonstrate that the suppression of interferon gamma signaling, which was previously shown to be mediated by the effector TgIST, also occurs in the context of prolonged infection with bradyzoites and that TgIST export is a process that occurs beyond the early stages of host cell infection. These findings have important implications regarding how this highly successful parasite maintains persistent infection of its host. IMPORTANCE Toxoplasma bradyzoites persist within tissue cysts and are refractory to current treatments, serving as a reservoir for acute complications in settings of compromised immunity. Much remains to be understood regarding how this life stage successfully establishes and maintains persistent infection. In this study, we investigated whether the export of parasite effector proteins into the host cell occurs during the development of in vitro tissue cysts. We quantified the presence of four previously described effectors in host cell nuclei at different time points after bradyzoite differentiation and found that they accumulated largely during the early stages of infection. Despite a decline in nuclear accumulation, we found that one of these effectors still mediated its function after prolonged infection with bradyzoites, and we provide evidence that this effector is exported beyond early infection stages. These findings suggest that effector export from within developing tissue cysts provides one potential mechanism by which this parasite achieves chronic infection. Full Article
ndi Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT Fungal infections are a major contributor to infectious disease-related deaths worldwide. Recently, global emergence of the fungal pathogen Candida auris has caused considerable concern because most C. auris isolates are resistant to fluconazole, the most commonly administered antifungal, and some isolates are resistant to drugs from all three major antifungal classes. To identify novel agents with bioactivity against C. auris, we screened 2,454 compounds from a diversity-oriented synthesis collection. Of the five hits identified, most shared a common rocaglate core structure and displayed fungicidal activity against C. auris. These rocaglate hits inhibited translation in C. auris but not in its pathogenic relative Candida albicans. Species specificity was contingent on variation at a single amino acid residue in Tif1, a fungal member of the eukaryotic initiation factor 4A (eIF4A) family of translation initiation factors known to be targeted by rocaglates. Rocaglate-mediated inhibition of translation in C. auris activated a cell death program characterized by loss of mitochondrial membrane potential, increased caspase-like activity, and disrupted vacuolar homeostasis. In a rocaglate-sensitized C. albicans mutant engineered to express translation initiation factor 1 (Tif1) with the variant amino acid that we had identified in C. auris, translation was inhibited but no programmed cell death phenotypes were observed. This surprising finding suggests divergence between these related fungal pathogens in their pathways of cellular responses to translation inhibition. From a therapeutic perspective, the chemical biology that we have uncovered reveals species-specific vulnerability in C. auris and identifies a promising target for development of new, mechanistically distinct antifungals in the battle against this emerging pathogen. IMPORTANCE Emergence of the fungal pathogen Candida auris has ignited intrigue and alarm within the medical community and the public at large. This pathogen is unusually resistant to antifungals, threatening to overwhelm current management options. By screening a library of structurally diverse molecules, we found that C. auris is surprisingly sensitive to translation inhibition by a class of compounds known as rocaglates (also known as flavaglines). Despite the high level of conservation across fungi in their protein synthesis machinery, these compounds inhibited translation initiation and activated a cell death program in C. auris but not in its relative Candida albicans. Our findings highlight a surprising divergence across the cell death programs operating in Candida species and underscore the need to understand the specific biology of a pathogen in attempting to develop more-effective treatments against it. Full Article
ndi Erratum for Dubrovsky et al., "Inhibition of HIV Replication by Apolipoprotein A-I Binding Protein Targeting the Lipid Rafts" By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 Full Article
ndi Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery. IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients. Full Article
ndi Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event. IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain. Full Article
ndi Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans. IMPORTANCE Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency. Full Article
ndi A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region By mbio.asm.org Published On :: 2020-03-24T01:31:00-07:00 ABSTRACT Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication. IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV. Full Article
ndi Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of Morgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae. We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity. IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions. Full Article
ndi Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL. IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies. Full Article
ndi X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Full Article
ndi "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes. Full Article
ndi Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris. IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Full Article
ndi Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes. Full Article
ndi Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans. However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1. In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1. In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies. IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans. Full Article
ndi Health Findings By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 Deaths caused by alcohol increasing Alcohol-related deaths in the U.S. are on the rise, a new study reports. Full Article
ndi Expanding the public health team: a cross-sector workforce By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 I’ve been talking a lot lately about the importance of working across sectors for public health — of not going it alone to tackle the imposing challenges before us. The ideal public health team is broad and includes not only public health professionals representing the essential services, but also professionals from other disciplines, the general public and students of all stripes. Full Article
ndi COVID-19: APHA serves as trusted voice on outbreak science, funding By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 Since December, when cases of a then-unknown respiratory disease were first reported in Wuhan, China, APHA has working to share information and ensure that public health has the resources it needs to address COVID-19. Full Article
ndi Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
ndi Indirect Evidence of Bourbon Virus (Thogotovirus, Orthomyxoviridae) Infection in North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 To the Editor—Bourbon virus (Thogotovirus, Orthomyxoviridae) was discovered in 2014 when a patient with history of multiple tick bites in Kansas died from an unknown infection [1]. Human infections from Bourbon virus have now been recognized in several states (i.e., Kansas, Oklahoma, Missouri). The virus was detected in collections of the lone star tick (Amblyomma americanum) in Missouri [2]. A serosurvey of domestic and wild mammals in Missouri noted the presence of Bourbon virus-neutralizing antibodies in serum samples collected from a variety of species, but most frequently in white-tailed deer (Odocoileus virginianus) and raccoon (Procyon lotor) [3]. We report here that neutralizing antibodies against Bourbon virus were detected in white-tailed deer in North Carolina, suggesting that the virus is present in the state. We screened 32 white-tailed deer for the presence of Bourbon virus-specific neutralizing antibodies. Of 20 plasma samples that reacted with the virus, 18 were confirmed with neutralizing antibody titers ranging from 10 to ≥ 320 for a seroprevalence rate of 56% (95% confidence interval 39%–72%). The seropositive samples were from deer killed during the 2014 hunting season from Stanly and New Hanover counties. The incidence of Bourbon virus infection in humans in North Carolina is unknown. However, given the abundance of the lone star tick in the state, and the notable proportion of deer with evidence of infection, human infections have likely gone unnoticed or possibly misdiagnosed. Human infection with Bourbon virus results in a nonspecific viral syndrome that includes fever, nausea, diarrhea, myalgia (muscle pain), arthralgia... Full Article
ndi Expanding the phenotype of MTOR-related disorders and the Smith-Kingsmore syndrome By ng.neurology.org Published On :: 2020-05-07T12:45:09-07:00 Heterozygous germline mutations in mammalian target of rapamycin (MTOR) (OMIM 601231) are known to underlie Smith-Kingsmore syndrome (SKS; OMIM 616638), an infrequent entity with autosomal dominant inheritance, also known as macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome (ORPHA 457485).1 Among the clinical features of SKS, the most common features include intellectual disability, macrocephaly, epilepsy, and facial dysmorphism. The aim of this case is to raise awareness of a distinct phenotypical presentation of SKS manifesting with bilateral cataracts and no history of seizures. Full Article
ndi N-Terminal Acetylation Stabilizes SIGMA FACTOR BINDING PROTEIN1 Involved in Salicylic Acid-Primed Cell Death By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants. Full Article
ndi The Unfolded Protein Response Modulates a Phosphoinositide-Binding Protein through the IRE1-bZIP60 Pathway By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Phosphoinositides function as lipid signals in plant development and stress tolerance by binding with partner proteins. We previously reported that Arabidopsis (Arabidopsis thaliana) phosphoinositide-specific phospholipase C2 functions in the endoplasmic reticulum (ER) stress response. However, the underlying molecular mechanisms of how phosphoinositides act in the ER stress response remain elusive. Here, we report that a phosphoinositide-binding protein, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB), is involved in the ER stress tolerance. SVB contains a DUF538 domain with unknown function; orthologs are exclusively found in Viridiplantae. We established that SVB is ubiquitously expressed in plant tissues and is localized to the ER, Golgi apparatus, prevacuolar compartment, and plasma membrane. The knockout mutants of svb showed enhanced tolerance to ER stress, which was genetically complemented by transducing genomic SVB. SVB showed time-dependent induction after tunicamycin-induced ER stress, which depended on IRE1 and bZIP60 but not bZIP17 and bZIP28 in the unfolded protein response (UPR). A protein–lipid overlay assay showed specific binding of SVB to phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. SVB is therefore suggested to be the plant-specific phosphoinositide-binding protein whose expression is controlled by the UPR through the IRE1-bZIP60 pathway in Arabidopsis. Full Article
ndi SCFTIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ndi Author response: Symptom burden among individuals with Parkinson disease: A national survey By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 We appreciate the readers' comments on the prevalence and impact of apathy on quality of life among individuals with Parkinson disease. In constructing our survey instrument, we discussed the inclusion of apathy as a symptom. However, we ultimately opted against inclusion because of concerns about the specificity of terminology in our online survey. Patients and care partners may not be familiar with the term "apathy,"and near-synonyms such as "reduced motivation" have substantial overlap with other nonmotor features. Still, as the readers point out, apathy is extremely common and under-recognized. Similar to many of the nonmotor symptoms identified in our study,1 we agree that clinicians should be screening for apathy among those with Parkinson disease. Full Article
ndi Reader response: Symptom burden among individuals with Parkinson disease: A national survey By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 We read with great interest the study by Tarolli et al.,1 which explored the burden of disease in Parkinson disease (PD) by evaluating the prevalence of nonmotor symptoms and their association with quality of life. The authors selected nonmotor symptoms based on literature review, expert opinions, and patient interviews. We note that apathy, which has major consequences for patients and carers, was not included as a relevant nonmotor symptom in their study. We performed a subcohort analysis of 60 patients from a study of pain in PD in 110 outpatients (PaCoMo-study, registered trial number: NL6311402917 [toetsingonline.nl]). We retrospectively reviewed the medical records to check whether the clinician identified apathy in these patients in the previous year, which was the case in 15% of the patients (n = 9). Blind to those results, patients were examined with the Apathy Scale (AS).2 In total, 63.3% (n = 38) of the patients scored positive on the AS. Only 18.4% of the patients who scored positive on the AS were also classified or mentioned with apathy in the medical records by clinicians. Full Article
ndi Serial 18F-FDG PET/CT findings in a patient with neurocutaneous melanosis By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 With high sensitivity in detecting acute brain events such as seizures, FDG PET can be used as an important tool for neurocutaneous melanosis disease monitoring. Full Article
ndi Unusual and important cause of acute neck pain: Longus colli calcific tendinitis By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Early recognition of longus colli calcific tendinitis can prevent unnecessary interventions including antibiotics and surgical procedures. Full Article
ndi Use of Standing Orders for Vaccination Among Pediatricians By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 OBJECTIVES: Standing orders are an effective way to increase vaccination rates, yet little is known about how pediatricians use this strategy for childhood immunizations. We assessed current use of, barriers to using, and factors associated with use of standing orders for vaccination among pediatricians. METHODS: Internet and mail survey from June 2017 to September 2017 among a nationally representative sample of pediatricians. In the principal component analysis of barrier items, we identified 2 factors: physician responsibility and concerns about office processes. A multivariable analysis that included barrier scales and physician and/or practice characteristics was used to identify factors associated with use of standing orders. RESULTS: The response rate was 79% (372 of 471); 59% of respondents reported using standing orders. The most commonly identified barriers among nonusers were concern that patients may mistakenly receive the wrong vaccine (68%), concern that patients prefer to speak with the physician about a vaccine before receiving it (62%), and belief that it is important for the physician to be the person who recommends a vaccine to patients (57%). These 3 items also made up the physician responsibility barrier factor. Respondents with higher physician responsibility scores were less likely to use standing orders (risk ratio: 0.59 [95% confidence interval: 0.53–0.66] per point increase). System-level decision-making about vaccines, suburban or rural location, and lower concerns about office processes scores were each associated with use of standing orders in the bivariate, but not the multivariable, analysis. CONCLUSIONS: Among pediatricians, use of standing orders for vaccination is far from universal. Interventions to increase use of standing orders should address physicians’ attitudinal barriers as well as organizational factors. Full Article
ndi The Genetics of Mating Song Evolution Underlying Rapid Speciation: Linking Quantitative Variation to Candidate Genes for Behavioral Isolation [Corrigendum] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Full Article
ndi Rif1 Functions in a Tissue-Specific Manner To Control Replication Timing Through Its PP1-Binding Motif [Genome Integrity and Transmission] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Replication initiation in eukaryotic cells occurs asynchronously throughout S phase, yielding early- and late-replicating regions of the genome, a process known as replication timing (RT). RT changes during development to ensure accurate genome duplication and maintain genome stability. To understand the relative contributions that cell lineage, cell cycle, and replication initiation regulators have on RT, we utilized the powerful developmental systems available in Drosophila melanogaster. We generated and compared RT profiles from mitotic cells of different tissues and from mitotic and endocycling cells of the same tissue. Our results demonstrate that cell lineage has the largest effect on RT, whereas switching from a mitotic to an endoreplicative cell cycle has little to no effect on RT. Additionally, we demonstrate that the RT differences we observed in all cases are largely independent of transcriptional differences. We also employed a genetic approach in these same cell types to understand the relative contribution the eukaryotic RT control factor, Rif1, has on RT control. Our results demonstrate that Rif1 can function in a tissue-specific manner to control RT. Importantly, the Protein Phosphatase 1 (PP1) binding motif of Rif1 is essential for Rif1 to regulate RT. Together, our data support a model in which the RT program is primarily driven by cell lineage and is further refined by Rif1/PP1 to ultimately generate tissue-specific RT programs. Full Article
ndi Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points ApoE was found in complex with C4d in RA patient SF. Deposited ApoE activates complement whereas ApoE in solution is inhibitory. Posttranslational modifications alter ApoE's capacity to bind FH and C4BP. Full Article
ndi The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine. Full Article
ndi Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections. Full Article
ndi Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion [Cellular Microbiology: Pat By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor. Full Article
ndi The Paralogous Transcription Factors Stp1 and Stp2 of Candida albicans Have Distinct Functions in Nutrient Acquisition and Host Interaction [Molecular Pathogenesis] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Nutrient acquisition is a central challenge for all organisms. For the fungal pathogen Candida albicans, utilization of amino acids has been shown to be critical for survival, immune evasion, and escape, while the importance of catabolism of host-derived proteins and peptides in vivo is less well understood. Stp1 and Stp2 are paralogous transcription factors (TFs) regulated by the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing system and have been proposed to have distinct, if uncertain, roles in protein and amino acid utilization. We show here that Stp1 is required for proper utilization of peptides but has no effect on amino acid catabolism. In contrast, Stp2 is critical for utilization of both carbon sources. Commensurate with this observation, we found that Stp1 controls a very limited set of genes, while Stp2 has a much more extensive regulon that is partly dependent on the Ssy1 amino acid sensor (amino acid uptake and catabolism) and partly Ssy1 independent (genes associated with filamentous growth, including the regulators UME6 and SFL2). The ssy1/ and stp2/ mutants showed reduced fitness in a gastrointestinal (GI) colonization model, yet induced greater damage to epithelial cells and macrophages in a manner that was highly dependent on the growth status of the fungal cells. Surprisingly, the stp1/ mutant was better able to colonize the gut but the mutation had no effect on host cell damage. Thus, proper protein and amino acid utilization are both required for normal host interaction and are controlled by an interrelated network that includes Stp1 and Stp2. Full Article
ndi GABARAPL2 Is Critical for Growth Restriction of Toxoplasma gondii in HeLa Cells Treated with Gamma Interferon [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Gamma interferon (IFN-)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN- stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that -aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN--treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN- -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN--dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response. Full Article
ndi Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa. Full Article
ndi Demographic science aids in understanding the spread and fatality rates of COVID-19 [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Governments around the world must rapidly mobilize and make difficult policy decisions to mitigate the coronavirus disease 2019 (COVID-19) pandemic. Because deaths have been concentrated at older ages, we highlight the important role of demography, particularly, how the age structure of a population may help explain differences in fatality rates... Full Article
ndi A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes [Immunology and Inflammation] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g.,... Full Article
ndi Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling [Cell Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with... Full Article
ndi Re: Primary Care Practices Implementation of Patient-Team Partnership: Findings from EvidenceNOW Southwest By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Full Article
ndi Prognostic Indices for Advance Care Planning in Primary Care: A Scoping Review By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Background: Patient identification is an important step for advance care planning (ACP) discussions. Objectives: We conducted a scoping review to identify prognostic indices potentially useful for initiating ACP. Methods: We included studies that developed and/or validated a multivariable prognostic index for all-cause mortality between 6 months and 5 years in community-dwelling adults. PubMed was searched in October 2018 for articles meeting our search criteria. If a systematic review was identified from the search, we checked for additional eligible articles in its references. We abstracted data on population studied, discrimination, calibration, where to find the index, and variables included. Each index was further assessed for clinical usability. Results: We identified 18 articles with a total of 17 unique prognostic indices after screening 9154 titles. The majority of indices (88%) had c-statistics greater than or equal to 0.70. Only 1 index was externally validated. Ten indices, 8 developed in the United States and 2 in the United Kingdom, were considered clinically usable. Conclusion: Of the 17 unique prognostic indices, 10 may be useful for implementation in the primary care setting to identify patients who may benefit from ACP discussions. An index classified as "clinically usable" may not be easy to use because of a large number of variables that are not routinely collected and the need to program the index into the electronic medical record. Full Article