lit

Peer Education: Reviews of the Literature (PERLs)




lit

Oral Health-Related Quality of Life of Children: An Assessment of the Relationship between Child and Caregiver Reporting

Purpose: Oral and craniofacial conditions or diseases can impact an individual's health and quality of life. The purpose of this study was to assess the perceived oral health related quality of life (OHRQoL) of children, and evaluate the reported level of agreement between caregivers and their children.Methods: Purposive sampling was used to recruit children ages 8-15, and their caregivers from a dental clinic in a pediatric hospital for this descriptive, cross-sectional study. A modified version of a validated measure, Child Oral Health Impact Profile-Short Form (COHIP-SF), was used for a 22-item questionnaire encompassing three subscales: oral health, functional well-being, and social emotional well-being. Two additional items were included to assess child/caregiver's level of agreement. A dental chart review was also conducted to assess the child's overbite, overjet, and decayed surfaces. Data were analyzed through descriptive statistics and examined for assumptions of normality and linearity.Results: Sixty child/caregiver pairs (n=120) participated in this study. Overbite, overjet and decayed surfaces were not found to be related to any OHRQoL variable, including child/caregiver ratings and overall agreement (p>.05). Average OHRQoL scores for caregivers found to be more positive those of their children (p=.02). Agreement between caregivers and the child's gender was shown to be significant (p=.01). Female child scores differed significantly from males with respect to their caregiver responses (p=.02). Caregivers rated a higher OHRQoL for female children, thus overestimating their female child's reported OHRQoL.Conclusions: The moderate level of agreement found between children and caregivers reinforces the importance of including the child, as well as the caregiver, when assessing OHRQoL.




lit

Measuring Oral Health Literacy of Refugees: Associations with Dental Care Utilization and Oral Health Self-Efficacy

Purpose: The purpose of this study was to analyze associations between the oral health literacy of refugees and two oral health outcomes: dental care utilization and oral health self-efficacy.Methods: A convenience sample of refugees in the greater Los Angeles area attending English as a second language (ESL) classes sponsored by two refugee assistance organizations was used for this cross-sectional, correlational study. Participants responded to a questionnaire using items from the Health Literacy in Dentistry (HeLD) scale, in addition to items concerning dental care utilization and oral health self-efficacy. Descriptive statistics, chi-square and Fisher's Exact tests were used to analyze results.Results: Sixty-two refugees volunteered to participate (n=62). A majority of the respondents were female from Iraq or Syria, and selected the item “with little difficulty” for all oral health literacy tasks. In regards to dental care utilization, more than half of the respondents were considered high utilizers (63%, n=34) meaning they had visited a dental office within the last year; while a little more than one-third (37%, n=20), were low utilizers, indicating they had either never been to a dental office or it had been more than one year since they had dental treatment. Statistical analysis showed associations between oral health literacy and dental care utilization. However, few associations between oral health literacy and oral health self-efficacy were identified (p=0.0045).Conclusions: Results support the provision of easily obtainable and understandable oral health information to increase oral health literacy and dental care utilization among refugee populations. Future research is needed to examine the oral health literacy among refugees resettling in the United States.




lit

Genetic and Chemical-Genetic Interactions Map Biogenesis and Permeability Determinants of the Outer Membrane of Escherichia coli

ABSTRACT

Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ~30, ~36, and ~40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability.

IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli. We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics.




lit

Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor {alpha} and {beta} Repertoires

ABSTRACT

Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.

IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.




lit

Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance

ABSTRACT

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.

IMPORTANCE Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.




lit

Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems

ABSTRACT

The recent discovery of complete ammonia oxidizers (comammox) contradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by two different microorganisms. However, our knowledge of the survival strategies of comammox in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Analyses of genomes and in situ transcriptomes of four comammox organisms from two full-scale WWTPs revealed that comammox were active and showed a surprisingly high metabolic versatility. A gene cluster for the utilization of urea and a gene encoding cyanase suggest that comammox may use diverse organic nitrogen compounds in addition to free ammonia as the substrates. The comammox organisms also encoded the genomic potential for multiple alternative energy metabolisms, including respiration with hydrogen, formate, and sulfite as electron donors. Pathways for the biosynthesis and degradation of polyphosphate, glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help comammox survive unfavorable conditions and facilitate switches between lifestyles in fluctuating environments. One of the comammox strains acquired from the anaerobic tank encoded and transcribed genes involved in homoacetate fermentation or in the utilization of exogenous acetate, both pathways being unexpected in a nitrifying bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase which has not yet been found in any other Nitrospira genome and might confer a selective advantage to this strain over other Nitrospira strains in anoxic conditions.

IMPORTANCE The discovery of comammox in the genus Nitrospira changes our perception of nitrification. However, genomes of comammox organisms have not been acquired from full-scale WWTPs, and very little is known about their survival strategies and potential metabolisms in complex wastewater treatment systems. Here, four comammox metagenome-assembled genomes and metatranscriptomic data sets were retrieved from two full-scale WWTPs. Their impressive and—among nitrifiers—unsurpassed ecophysiological versatility could make comammox Nitrospira an interesting target for optimizing nitrification in current and future bioreactor configurations.




lit

Metabolite Sequestration Enables Rapid Recovery from Fatty Acid Depletion in Escherichia coli

ABSTRACT

Microbes adapt their metabolism to take advantage of nutrients in their environment. Such adaptations control specific metabolic pathways to match energetic demands with nutrient availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular resources required for survival under the new nutritional conditions. Yet, little is known about the regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient depletion. Using the fatty acid catabolic pathway in Escherichia coli, here, we show that fast recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-sequestered complex. With a combination of mathematical modeling and experiments, we show that recovery dynamics depend critically on the rate of metabolite consumption and the exposure time to nutrients. We constructed strains with rewired transcriptional regulatory architectures that highlight the metabolic benefits of negative autoregulation over constitutive and positive autoregulation. Our results have wide-ranging implications for our understanding of metabolic adaptations, as well as for guiding the design of gene circuitry for synthetic biology and metabolic engineering.

IMPORTANCE Rapid metabolic recovery during nutrient shift is critical to microbial survival, cell fitness, and competition among microbiota, yet little is known about the regulatory mechanisms of rapid metabolic recovery. This work demonstrates a previously unknown mechanism where rapid release of a transcriptional regulator from a metabolite-sequestered complex enables fast recovery to nutrient depletion. The work identified key regulatory architectures and parameters that control the speed of recovery, with wide-ranging implications for the understanding of metabolic adaptations as well as synthetic biology and metabolic engineering.




lit

Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.

IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents.




lit

Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage

ABSTRACT

Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis. Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.

IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.




lit

Glycemic Variability in Diabetes Increases the Severity of Influenza

ABSTRACT

People with diabetes are two times more likely to die from influenza than people with no underlying medical condition. The mechanisms underlying this susceptibility are poorly understood. In healthy individuals, small and short-lived postprandial peaks in blood glucose levels occur. In diabetes mellitus, these fluctuations become greater and more frequent. This glycemic variability is associated with oxidative stress and hyperinflammation. However, the contribution of glycemic variability to the pathogenesis of influenza A virus (IAV) has not been explored. Here, we used an in vitro model of the pulmonary epithelial-endothelial barrier and novel murine models to investigate the role of glycemic variability in influenza severity. In vitro, a history of glycemic variability significantly increased influenza-driven cell death and destruction of the epithelial-endothelial barrier. In vivo, influenza virus-infected mice with a history of glycemic variability lost significantly more body weight than mice with constant blood glucose levels. This increased disease severity was associated with markers of oxidative stress and hyperinflammation both in vitro and in vivo. Together, these results provide the first indication that glycemic variability may help drive the increased risk of severe influenza in people with diabetes mellitus.

IMPORTANCE Every winter, people with diabetes are at increased risk of severe influenza. At present, the mechanisms that cause this increased susceptibility are unclear. Here, we show that the fluctuations in blood glucose levels common in people with diabetes are associated with severe influenza. These data suggest that glycemic stability could become a greater clinical priority for patients with diabetes during outbreaks of influenza.




lit

Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli

ABSTRACT

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.

IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.




lit

Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae

ABSTRACT

This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. The A. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.

IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus. Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.

Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus. Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.




lit

Erratum for Dai et al., "Autoantibody-Mediated Erythrophagocytosis Increases Tuberculosis Susceptibility in HIV Patients"




lit

A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies

ABSTRACT

Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.

IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed.




lit

Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae

ABSTRACT

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae.

IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.




lit

Human Serum Albumin Facilitates Heme-Iron Utilization by Fungi

ABSTRACT

A large portion of biological iron is found in the form of an iron-protoporphyrin IX complex, or heme. In the human host environment, which is exceptionally poor in free iron, heme iron, particularly from hemoglobin, constitutes a major source of iron for invading microbial pathogens. Several fungi were shown to utilize free heme, and Candida albicans, a major opportunistic pathogen, is able both to capture free heme and to extract heme from hemoglobin using a network of extracellular hemophores. Human serum albumin (HSA) is the most abundant host heme-scavenging protein. Tight binding of heme by HSA restricts its toxic chemical reactivity and could diminish its availability as an iron source for pathogenic microbes. We found, however, that rather than inhibiting heme utilization, HSA greatly increases availability of heme as an iron source for C. albicans and other fungi. In contrast, hemopexin, a low-abundance but high-affinity heme-scavenging serum protein, does inhibit heme utilization by C. albicans. However, inhibition by hemopexin is mitigated in the presence of HSA. Utilization of albumin-bound heme requires the same hemophore cascade as that which mediates hemoglobin-iron utilization. Accordingly, we found that the C. albicans hemophores are able to extract heme bound to HSA in vitro. Since many common drugs are known to bind to HSA, we tested whether they could interfere with heme-iron utilization. We show that utilization of albumin-bound heme by C. albicans can be inhibited by the anti-inflammatory drugs naproxen and salicylic acid.

IMPORTANCE Heme constitutes a major iron source for microorganisms and particularly for pathogenic microbes; to overcome the iron scarcity in the animal host, many pathogenic bacteria and fungi have developed systems to extract and take up heme from host proteins such as hemoglobin. Microbial heme uptake mechanisms are usually studied using growth media containing free heme or hemoglobin as a sole iron source. However, the animal host contains heme-scavenging proteins that could prevent this uptake. In the human host in particular, the most abundant serum heme-binding protein is albumin. Surprisingly, however, we found that in the case of fungi of the Candida species family, albumin promoted rather than prevented heme utilization. Albumin thus constitutes a human-specific factor that can affect heme-iron utilization and could serve as target for preventing heme-iron utilization by fungal pathogens. As a proof of principle, we identify two drugs that can inhibit albumin-stimulated heme utilization.




lit

Gathering Trauma Narratives: A Qualitative Study on the Impact of Self-Identified Traumas on People Living with HIV (PLWH)

BACKGROUND Trauma—emotional, physical, and psychological—is common and associated with increased risk behaviors, low rates of care engagement and viral suppression, and overall poor health outcomes for people living with HIV (PLWH). This article presents the results of 15 in-depth, semi-structured interviews with PLWH in the Southeastern United States in which participants identified a trauma and described its long-lasting impact on their lives. Participants' trauma narratives described a wide range of traumas, including childhood sexual abuse, the loss of a loved one, and their HIV diagnosis.

METHODS Systematic qualitative analysis was used to delineate beliefs about causes, symptoms, treatments, quality of life, and health implications of trauma.

RESULTS: Fifteen participants completed semi-structured interviews that lasted on average 32 minutes. Participants described a wide spectrum of personal trauma that occurred both prior and subsequent to their HIV diagnosis. The types of trauma identified included physical, sexual, and psychological abuse inflicted by intimate partners, family members, and/or strangers.

LIMITATIONS A chief limitation of this study is selection bias. Additionally, the participant selection and content of the trauma narratives might have been affected by the surrounding context of the parent study centered on HIV, aging, and psychosocial stress. It is also difficult to interpret the distinction between discrete trauma experiences and the diagnosis of HIV, leading to potential information bias.

CONCLUSION This study highlights the importance of social support in coping with trauma and the effect of trauma on health-related behaviors. It also illustrates the need for additional research on the topic of trauma and trauma-informed care for PLWH. Understanding how different types of trauma affect individuals' lives is necessary to inform recommendations to provide better care for PLWH.




lit

Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation

Objective

To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome.

Methods

We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity.

Results

The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance.

Conclusions

Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication.




lit

Phenotypic variability in chorea-acanthocytosis associated with novel VPS13A mutations

Objective

To perform a comprehensive characterization of a cohort of patients with chorea-acanthocytosis (ChAc) in Sweden.

Methods

Clinical assessments, targeted genetic studies, neuroimaging with MRI, [18F]-fluorodeoxyglucose (FDG) PET, and dopamine transporter with 123I FP-CIT (DaTscan) SPECT. One patient underwent magnetic resonance spectroscopy (MRS).

Results

Four patients living in Sweden but with different ethnical backgrounds were included. Their clinical features were variable. Biallelic VPS13A mutations were confirmed in all patients, including 3 novel mutations. All tested patients had either low or absent chorein levels. One patient had progressive caudate atrophy. Investigation using FDG-PET revealed severe bilateral striatal hypometabolism, and DaTscan SPECT displayed presynaptic dopaminergic deficiency in 3 patients. MRS demonstrated reduced N-acetylaspartate/creatine (Cr) ratio and mild elevation of both choline/Cr and combined glutamate and glutamine/Cr in the striatum in 1 case. One patient died during sleep, and another was treated with deep brain stimulation, which transiently attenuated feeding dystonia but not his gait disorder or chorea.

Conclusions

Larger longitudinal neuroimaging studies with different modalities, particularly MRS, are needed to determine their potential role as biomarkers for ChAc.




lit

Rupture geometries in anisotropic amphibolite recorded by pseudotachylytes in the Gairloch Shear Zone, NW Scotland

Recent earthquakes involving complex multi-fault rupture have increased our appreciation of the variety of rupture geometries and fault interactions that occur within the short duration of coseismic slip. Geometrical complexities are intrinsically linked with spatially heterogeneous slip and stress drop distributions, and hence need incorporating into seismic hazard analysis. Studies of exhumed ancient fault zones facilitate investigation of rupture processes in the context of lithology and structure at seismogenic depths. In the Gairloch Shear Zone, NW Scotland, foliated amphibolites host pseudotachylytes that record rupture geometries of ancient low-magnitude (≤MW 3) seismicity. Pseudotachylyte faults are commonly foliation parallel, indicating exploitation of foliation planes as weak interfaces for seismic rupture. Discordance and complexity are introduced by fault segmentation, stepovers, branching and brecciated dilational volumes. Pseudotachylyte geometries indicate that slip nucleation initiated simultaneously across several parallel foliation planes with millimetre and centimetre separations, leading to progressive interaction and ultimately linkage of adjacent segments and branches within a single earthquake. Interacting with this structural control, a lithological influence of abundant low disequilibrium melting-point amphibole facilitated coseismic melting, with relatively high coseismic melt pressure encouraging transient dilational sites. These faults elucidate controls and processes that may upscale to large active fault zones hosting major earthquake activity.

Supplementary material: Supplementary Figures 1 and 2, unannotated versions of field photographs displayed in Figures 4a and 5 respectively, are available at https://doi.org/10.6084/m9.figshare.c.4573256

Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research




lit

Hot on the Trail of DREB2A Protein Stability




lit

Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study

The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2.

All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients.

In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL–1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL–1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case–control study, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1 remained as predictors for high mortality from COVID-19 pneumonia.

We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1. The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients.




lit

Worldwide survey of neurologists on approach to autoimmune encephalitis

Objective

To explore practice differences in the diagnosis and management of autoimmune encephalitis (AE), which is complicated by issues with sensitivity/specificity of antibody testing, nonspecific MRI/EEG/CSF findings, and competing differential diagnoses.

Methods

We used a worldwide electronic survey with practice-related demographic questions and clinical questions about 2 cases: (1) a 20-year-old woman with a neuropsychiatric presentation strongly suspicious of AE and (2) a 40-year-old man with new temporal lobe seizures and cognitive impairment. Responses among different groups were compared using multivariable logistic regression.

Results

We received 1,333 responses from 94 countries; 12.0% identified as neuroimmunologists. Case 1: those treating >5 AE cases per year were more likely to send antibodies in both serum and CSF (adjusted odds ratio [aOR] vs 0 per year: 3.29, 95% CI 1.31–8.28, p = 0.011), pursue empiric immunotherapy (aOR: 2.42, 95% CI 1.33–4.40, p = 0.004), and continue immunotherapy despite no response and negative antibodies at 2 weeks (aOR: 1.65, 95% CI 1.02–2.69, p = 0.043). Case 2: neuroimmunologists were more likely to send antibodies in both serum and CSF (aOR: 1.80, 95% CI 1.12–2.90, p = 0.015). Those seeing >5 AE cases per year (aOR: 1.86, 95% CI 1.22–2.86, p = 0.004) were more likely to start immunotherapy without waiting for antibody results.

Conclusions

Our results highlight the heterogeneous management of AE. Neuroimmunologists and those treating more AE cases generally take a more proactive approach to testing and immunotherapy than peers. Results highlight the need for higher-quality cohorts and trials to guide empiric immunotherapy, and evidence-based guidelines aimed at both experts and nonexperts. Because the average AE patient is unlikely to be first seen by a neuroimmunologist, ensuring greater uniformity in our approach to suspected cases is essential to ensure that patients are appropriately managed.




lit

Children With Intellectual and Developmental Disabilities as Organ Transplantation Recipients

The demand for transplantable solid organs far exceeds the supply of deceased donor organs. Patient selection criteria are determined by individual transplant programs; given the scarcity of solid organs for transplant, allocation to those most likely to benefit takes into consideration both medical and psychosocial factors. Children with intellectual and developmental disabilities have historically been excluded as potential recipients of organ transplants. When a transplant is likely to provide significant health benefits, denying a transplant to otherwise eligible children with disabilities may constitute illegal and unjustified discrimination. Children with intellectual and developmental disabilities should not be excluded from the potential pool of recipients and should be referred for evaluation as recipients of solid organ transplants.




lit

Ames SG, Davis BS, Marin JR, L. Fink EL, Olson LM, Gausche-Hill M, Kahn JM. Emergency Department Pediatric Readiness and Mortality in Critically Ill Children. Pediatrics. 2019;144(3):e20190568




lit

{alpha}-Lipoic Acid (ALA) Improves Cystine Solubility in Cystinuria: Report of 2 Cases

Cystinuria is an autosomal recessive disorder characterized by excessive urinary excretion of cystine, resulting in recurrent cystine kidney stones, often presenting in childhood. Current treatment options for cystinuria include dietary and/or fluid measures and potassium citrate to reduce cystine excretion and/or increase solubility. Tiopronin and D-penicillamine are used in refractory cases to bind cystine in urine, albeit with serious side effects. A recent study revealed efficacy of nutritional supplement α-lipoic acid (ALA) treatment in preventing kidney stones in a mouse model of cystinuria. Here, we report 2 pediatric patients (6 and 15 years old) with cystinuria who received regular doses of ALA in addition to conventional therapy with potassium citrate. Both patients tolerated ALA without any adverse effects and had reduced frequency of symptomatic and asymptomatic kidney stones with disappearance of existing kidney stones in 1 patient after 2 months of ALA therapy. ALA treatment markedly improved laboratory markers of cystine solubility in urine with increased cystine capacity (–223 to –1 mg/L in patient 1 and +140 to +272 mg/L in patient 2) and decreased cystine supersaturation (1.7 to 0.88 in patient 1 and 0.64 to 0.48 in patient 2) without any changes in cystine excretion or urine pH. Our findings suggest that ALA improves solubility of cystine in urine and prevents stone formation in patients with cystinuria who do not respond to diet and citrate therapy.




lit

Rates and Stability of Mental Health Disorders in Children Born Very Preterm at 7 and 13 Years

OBJECTIVES:

Children born very preterm (VPT) are at an increased risk of developing mental health (MH) disorders. Our aim for this study was to assess rates of MH disorders in children born VPT and term at 13 years of age and stability of MH disorders between ages 7 and 13 years by using a diagnostic measure.

METHODS:

Participants were from the Victorian Infant Brain Study longitudinal cohort and included 125 children born VPT (<30 weeks’ gestational age and/or <1250 g) and 49 children born term (≥37 weeks’ gestational age) and their families. Participants were followed-up at both 7 and 13 years, and the Development and Well-Being Assessment was administered to assess for MH disorders.

RESULTS:

Compared with term peers, 13-year-olds born VPT were more likely to meet criteria for any MH disorder (odds ratio 5.9; 95% confidence interval 1.71–20.03). Anxiety was the most common disorder in both groups (VPT = 14%; term = 4%), whereas attention-deficit/hyperactivity disorder carried the greatest differential elevated risk (odds ratio 5.6; 95% confidence interval 0.71–43.80). Overall rates of MH disorders remained stable between 7 and 13 years, although at an individual level, many participants shifted in or out of diagnostic categories over time.

CONCLUSIONS:

Children born VPT show higher rates of MH disorders than their term peers, with changing trajectories over time. Findings highlight the importance of early identification and ongoing assessment to support those with MH disorders in this population.




lit

Breastfeeding and Mortality Under 2 Years of Age in Sub-Saharan Africa

BACKGROUND:

Several studies have investigated the association of breastfeeding status with offspring mortality in Africa, but most studies were from one center only or had limited statistical power to draw robust conclusions.

METHODS:

Data came from 75 nationally representative cross-sectional Demographic and Health Surveys in 35 countries in sub-Saharan Africa conducted between 2000 and 2016. Our study relied on 217 112 individuals aged 4 days to 23 months for breastfeeding pattern analysis, 161 322 individuals aged 6 to 23 months for breastfeeding history analysis, and 104 427 individuals aged 12 to 23 months for breastfeeding duration analysis.

RESULTS:

Compared with children aged 4 days to 23 months exclusively breastfed in the first 3 days of life, those not breastfed had a high risk of mortality at <2 years of age (odds ratio [OR] = 13.45; 95% confidence interval [CI] = 11.43–15.83). Young children who were predominantly breastfed or partially breastfed had moderately increased risk of mortality at <2 years of age (OR = 1.11, 95% CI = 1.03–1.21 for predominant pattern; OR = 1.12, 95% CI = 0.99–1.27 for partial pattern). Compared with children aged 6 to 23 months who were breastfed within the first 6 months of life, those not breastfed had a high risk of mortality (OR = 5.65; 95% CI = 4.27–7.47). Compared with children aged 12 to 23 months who were breastfed for ≥6 months, those who were breastfed for shorter periods had a higher risk of mortality (OR = 2.78, 95% CI = 1.45–5.32 for duration of <3 months; OR = 5.28, 95% CI = 3.24–8.61 for those who were not breastfed).

CONCLUSIONS:

Our findings support exclusive breastfeeding during the first 6 months of life and continued breastfeeding up to 2 years of age recommended by the World Health Organization for reducing mortality of children <2 years old in sub-Saharan Africa.




lit

Intramuscular Hematoma as a Manifestation of IgA Vasculitis

We describe an atypical pediatric case of immunoglobulin A vasculitis (IgAV), also referred to as Henoch-Schönlein purpura, in which formation of spontaneous hematoma of the paraspinal muscles developed. Spontaneous or unprovoked hematomas rarely occur in IgAV. These manifestations have not been described specifically in the pediatric literature as coinciding with IgAV. These findings are alarming for nonaccidental trauma, particularly in a patient without underlying blood dyscrasia. Our objective for this report is to highlight the possible association of muscular hematoma formation with IgAV and to help providers consider this association when trauma and hemophilia has been ruled out.




lit

B Cells Inhibit CD4+ T Cell-Mediated Immunity to Brucella Infection in a Major Histocompatibility Complex Class II-Dependent Manner [Microbial Immunity and Vaccines]

Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ~100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella. Using B and T cell-deficient Rag1–/– animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.




lit

Opinion: We need a global movement to transform ocean science for a better world [Sustainability Science]

The ocean is our planet’s largest life-support system. It stabilizes climate; stores carbon; produces oxygen; nurtures biodiversity; directly supports human well-being through food, mineral, and energy resources; and provides cultural and recreational services. The value of the ocean economy speaks to its importance: The Organization for Economic Cooperation and Development...




lit

Demographic science aids in understanding the spread and fatality rates of COVID-19 [Social Sciences]

Governments around the world must rapidly mobilize and make difficult policy decisions to mitigate the coronavirus disease 2019 (COVID-19) pandemic. Because deaths have been concentrated at older ages, we highlight the important role of demography, particularly, how the age structure of a population may help explain differences in fatality rates...




lit

Large H2O solubility in dense silica and its implications for the interiors of water-rich planets [Earth, Atmospheric, and Planetary Sciences]

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in H2O-rich setting at high pressures and temperatures (P−T) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between SiO2 and H2O as archetypal materials for rock...




lit

Infant behavioral inhibition predicts personality and social outcomes three decades later [Anthropology]

Does infant temperament predict adult personality and life-course patterns? To date, there is scant evidence examining relations between child temperament and adult outcomes, and extant research has relied on limited methods for measuring temperament such as maternal report. This prospective longitudinal study followed a cohort of infants (n = 165)...




lit

Reply to Schild et al.: Antisocial personality moderates the causal influence of costly punishment on trust and trustworthiness [Social Sciences]

A growing literature at the intersection of personality psychology and behavioral economics investigates the interplay between personality and decision making in social dilemmas (1, 2). Engelmann et al. (3) extend prior research in this area by investigating the role of antisocial personality in the context of a trust game with...




lit

Multiple antisocial personalities? [Social Sciences]

Engelmann et al. ask whether “personality traits [can] help us better understand economic behavior across strategic contexts” (ref. 1, p. 12781), and, as an answer to this, identify “an antisocial personality profile” (APP) (ref. 1, p. 12785). There is much to like about this investigation; in particular, it illustrates “that...




lit

E2F6-Mediated Downregulation of MIR22HG Facilitates the Progression of Laryngocarcinoma by Targeting the miR-5000-3p/FBXW7 Axis [Research Article]

Recently, abundant evidence has clarified that long noncoding RNAs (lncRNAs) play an oncogenic or anticancer role in the tumorigenesis and development of diverse human cancers. Described as a crucial regulator in some cancers, MIR22HG has not yet been studied in laryngocarcinoma and therefore the underlying regulatory role of MIR22HG in laryngocarcinoma is worth detecting. In this study, MIR22HG expression in laryngocarcinoma cells was confirmed to be downregulated, and upregulated MIR22HG expression led to suppressive effects on laryngocarcinoma cell proliferation and migration. Molecular mechanism assays revealed that MIR22HG sponges miR-5000-3p in laryngocarcinoma cells. Besides, decreased expression of miR-5000-3p suppressed laryngocarcinoma cell proliferation and migration. Moreover, the FBXW7 gene was reported to be a downstream target gene of miR-5000-3p in laryngocarcinoma cells. More importantly, rescue assays verified that FBXW7 depletion or miR-5000-3p upregulation countervailed the repressive effects of MIR22HG overexpression on laryngocarcinoma progression. In addition, E2F6 was proved to be capable of inhibiting MIR22HG transcription in laryngocarcinoma cells. To sum up, E2F6-induced downregulation of MIR22HG promotes laryngocarcinoma progression through the miR-5000-3p/FBXW7 axis.




lit

Eliminating Patient Identified Barriers to Decrease Medicaid Inpatient Admission Rates and Improve Quality of Care

Background and Objectives:

The goal of this study was to decrease admission and readmission rate for the 2296 Medicaid patients in our clinic. Our focus was to eliminate patient identified barriers to care that led to decreased quality of care. The identified barriers for our clinic included distance to care, poor same-day access, communication, and fragmented care. A team-based, collaborative approach using members from all aspects of patient care.

Methods:

An initial survey identified which barriers to care our patients felt obstructed their care. With this data, along with a national literature review, our team used biweekly quality team meetings with LEAN methodology and Plan-Do-Study-Act cycles to create a 4-phase quality improvement project. A home-visit program to decrease distance to care, walk-in clinic to improve same-day access, strengthened collaboration with outside care managers and clinic staff to improve communication, and the introduction of an in-house phlebotomist to improve fragmented care were created and studied between June 2015 and December 2018. Admission rate, avoidable readmission rate, as well as other quality of care measurements were assessed with electronic medical record reports and through North Carolina Medicaid data reports.

Results:

Overall Medicaid admissions decreased 32.7% from starting numbers, 40.2% below expected benchmarks. Avoidable readmissions decreased 41.8%, 53.8% below the expected benchmark. Improvements in same-day access numbers and lab completion rate were also seen.

Discussion:

The team-based approach to eliminating patient-identified barriers decreased both admissions and avoidable readmissions for our Medicaid patients. It also improved quality-of-care measures. This approach has been shown to be beneficial at our clinic and can easily be replicated in other settings.




lit

Increasing Article Visibility: JABFM and Author Responsibilities and Possibilities

JABFM seeks to widely disseminate its peer-reviewed publications, increasing article visibility for the purpose of advancing scientific knowledge. We describe the journal’s approach to dissemination and recommend a number of strategies for authors to implement, including press releases and social media. Providing the article’s digital object identifier (DOI) is most useful, compared with links that can break, or attaching the article PDF, which will depress reader metrics. All JABFM articles are freely accessible online worldwide.




lit

Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE]

Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson

The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction.




lit

An {alpha}7-related nicotinic acetylcholine receptor mediates the ciliary arrest response in pharyngeal gill slits of Ciona [RESEARCH ARTICLE]

Kei Jokura, Junko M. Nishino, Michio Ogasawara, and Atsuo Nishino

Ciliary movement is a fundamental process to support animal life, and the movement pattern may be altered in response to external stimuli under the control of nervous systems. Juvenile and adult ascidians have ciliary arrays around their pharyngeal gill slits (stigmata), and continuous beating is interrupted for seconds by mechanical stimuli on other parts of the body. Although it has been suggested that neural transmission to evoke ciliary arrest is cholinergic, its molecular basis has not yet been elucidated in detail. We herein attempted to clarify the molecular mechanisms underlying this neurociliary transmission in the model ascidian Ciona. Acetylcholinesterase histochemical staining showed strong signals on the laterodistal ciliated cells of stigmata, hereafter referred to as trapezial cells. The direct administration of acetylcholine (ACh) and other agonists of nicotinic ACh receptors (nAChRs) onto ciliated cells reliably evoked ciliary arrest that persisted for seconds in a dose-dependent manner. Only one isoform among all nAChR subunits encoded in the Ciona genome, called nAChR-A7/8-1, a relative of vertebrate α7 nAChRs, was expressed by trapezial cells. Exogenously expressed nAChR-A7/8-1 on Xenopus oocytes responded to ACh and other agonists with consistent pharmacological traits to those observed in vivo. Further efforts to examine signaling downstream of this receptor revealed that an inhibitor of phospholipase C (PLC) hampered ACh-induced ciliary arrest. We herein propose that homomeric α7-related nAChR-A7/8-1 mediates neurociliary transmission in Ciona stigmata to elicit persistent ciliary arrest by recruiting intracellular Ca2+ signaling.




lit

In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

Christopher T. Richards and Enrico A. Eberhard

Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




lit

Near equal compressibility of liver oil and seawater minimises buoyancy changes in deep-sea sharks and chimaeras [RESEARCH ARTICLE]

Imants G. Priede, Rhoderick W. Burgass, Manolis Mandalakis, Apostolos Spyros, Petros Gikas, Finlay Burns, and Jim Drewery

Whereas upper ocean pelagic sharks are negatively buoyant and must swim continuously to generate lift from their fins, deep-sea sharks float or swim slowly buoyed up by large volumes of low-density oils in their livers. Investigation of the Pressure, Volume, Temperature (PVT) relationships for liver oils of 10 species of deep-sea Chondrichthyes shows that the density difference between oil and seawater, remains almost constant with pressure down to full ocean depth (11 km, 1100 bar); theoretically providing buoyancy far beyond the maximum depth of occurrence (3700 m) of sharks. However, , does change significantly with temperature and we show that the combined effects of pressure and temperature can decrease buoyancy of oil by up to 10% between the surface and 3500 m depth across interfaces between warm southern and cold polar waters in the Rockall Trough in the NE Atlantic. This increases drag more than 10 fold compared with neutral buoyancy during horizontal slow swimming (0.1 m s–1) but the effect becomes negligible at high speeds. Chondrichthyes generally experience positive buoyancy change during ascent and negative buoyancy change during descent but contrary effects can occur at interfaces between waters of different densities. During normal vertical migrations buoyancy changes are small, increasing slow-speed drag by no more than 2–3 fold. Equations and tables of density, pressure and temperature are provided for squalene and liver oils of Chimaeriformes (Harriotta raleighana, Chimaera monstrosa, Chimaera monstrosa), Squaliformes (Centrophorus squamosus, Deania calcea, Centroscymnus coelolepis, Centroscyllium fabricii, Etmopterus spinax) and Carcharhiniformes (Apristurus laurussonii, Galeus murinus).




lit

Body temperature stability observed in the whale sharks, the world's largest fish [RESEARCH ARTICLE]

Itsumi Nakamura, Rui Matsumoto, and Katsufumi Sato

It is generally assumed that the body temperature of large animals is less likely to change due to their large body size, resulting in a high thermal inertia and a smaller surface area to volume ratio. The goal of this study was to investigate the stability of body temperature in large fish using data from field experiments. We measured the muscle temperatures of free-ranging whale sharks (Rhincodon typus), the largest extant fish globally, and investigated their ectothermic physiology and the stability of their body temperatures. The measured muscle temperature of the whale sharks changed substantially more slowly than the water temperature fluctuations associated with vertical movements, and the whole-body heat-transfer coefficients (HTC) of whale sharks estimated using heat-budget models were lower than those of any other fish species measured to date. The heat-budget models also showed that internal heat production does not contribute to changes in muscle temperature. A comparative analysis showed that the HTC at cooling in various fish species including both ectothermic and endothermic species ranging from 10–4 to 103 kg was proportional to body mass–0.63. This allometry was present regardless of whether the fish were ectothermic or endothermic, and was an extension of the relationship observed in previous studies on small fish. Thus, large fish have the advantage of body temperature stability while moving in environments with large temperature variations. Our results suggest that the large body size of whale sharks aids in preventing a decrease in body temperature during deep excursions to more than 1000 m depths without high metabolic costs of producing heat.




lit

Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE]

Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela Storch

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.




lit

Effect of Low-Sodium versus Conventional Sodium Dialysate on Left Ventricular Mass in Home and Self-Care Satellite Facility Hemodialysis Patients: A Randomized Clinical Trial

Background

Fluid overload in patients undergoing hemodialysis contributes to cardiovascular morbidity and mortality. There is a global trend to lower dialysate sodium with the goal of reducing fluid overload.

Methods

To investigate whether lower dialysate sodium during hemodialysis reduces left ventricular mass, we conducted a randomized trial in which patients received either low-sodium dialysate (135 mM) or conventional dialysate (140 mM) for 12 months. We included participants who were aged >18 years old, had a predialysis serum sodium ≥135 mM, and were receiving hemodialysis at home or a self-care satellite facility. Exclusion criteria included hemodialysis frequency >3.5 times per week and use of sodium profiling or hemodiafiltration. The main outcome was left ventricular mass index by cardiac magnetic resonance imaging.

Results

The 99 participants had a median age of 51 years old; 67 were men, 31 had diabetes mellitus, and 59 had left ventricular hypertrophy. Over 12 months of follow-up, relative to control, a dialysate sodium concentration of 135 mmol/L did not change the left ventricular mass index, despite significant reductions at 6 and 12 months in interdialytic weight gain, in extracellular fluid volume, and in plasma B-type natriuretic peptide concentration (ratio of intervention to control). The intervention increased intradialytic hypotension (odds ratio [OR], 7.5; 95% confidence interval [95% CI], 1.1 to 49.8 at 6 months and OR, 3.6; 95% CI, 0.5 to 28.8 at 12 months). Five participants in the intervention arm could not complete the trial because of hypotension. We found no effect on health-related quality of life measures, perceived thirst or xerostomia, or dietary sodium intake.

Conclusions

Dialysate sodium of 135 mmol/L did not reduce left ventricular mass relative to control, despite improving fluid status.

Clinical Trial registry name and registration number:

The Australian New Zealand Clinical Trials Registry, ACTRN12611000975998.




lit

Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes

Background

Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue.

Methods

We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11.

Results

Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm’s highly organized surface structure—essential for filtration—was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11.

Conclusions

Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling.




lit

Interaction between Epithelial Sodium Channel {gamma}-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct

Background

Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient.

Methods

To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression.

Results

Overexpression or silencing of the ENaC -subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC -subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance.

Conclusions

Our data reveal the specific coupling between ENaC -subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.




lit

Finding Best PEEP: A Little at a Time