en Pence press secretary tests positive for coronavirus By news.yahoo.com Published On :: Fri, 08 May 2020 18:23:49 -0400 The news comes shortly after a valet who served meals to President Trump also tested positive for the virus. Full Article
en Function-Specific Mixing Times and Concentration Away from Equilibrium By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright. Source: Bayesian Analysis, Volume 15, Number 2, 505--532.Abstract: Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice. Full Article
en Joint Modeling of Longitudinal Relational Data and Exogenous Variables By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Rajarshi Guhaniyogi, Abel Rodriguez. Source: Bayesian Analysis, Volume 15, Number 2, 477--503.Abstract: This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years. Full Article
en Bayesian Inference in Nonparanormal Graphical Models By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jami J. Mulgrave, Subhashis Ghosal. Source: Bayesian Analysis, Volume 15, Number 2, 449--475.Abstract: Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set. Full Article
en Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
en High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Xuan Cao, Kshitij Khare, Malay Ghosh. Source: Bayesian Analysis, Volume 15, Number 1, 241--262.Abstract: The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where $p$ is allowed to increase at a polynomial rate with $n$ or even at a sub-exponential rate with $n$ . Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings. Full Article
en Determinantal Point Process Mixtures Via Spectral Density Approach By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana. Source: Bayesian Analysis, Volume 15, Number 1, 187--214.Abstract: We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019). Full Article
en Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Antony Overstall, James McGree. Source: Bayesian Analysis, Volume 15, Number 1, 103--131.Abstract: A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison. Full Article
en Bayesian Estimation Under Informative Sampling with Unattenuated Dependence By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Matthew R. Williams, Terrance D. Savitsky. Source: Bayesian Analysis, Volume 15, Number 1, 57--77.Abstract: An informative sampling design leads to unit inclusion probabilities that are correlated with the response variable of interest. However, multistage sampling designs may also induce higher order dependencies, which are ignored in the literature when establishing consistency of estimators for survey data under a condition requiring asymptotic independence among the unit inclusion probabilities. This paper constructs new theoretical conditions that guarantee that the pseudo-posterior, which uses sampling weights based on first order inclusion probabilities to exponentiate the likelihood, is consistent not only for survey designs which have asymptotic factorization, but also for survey designs that induce residual or unattenuated dependence among sampled units. The use of the survey-weighted pseudo-posterior, together with our relaxed requirements for the survey design, establish a wide variety of analysis models that can be applied to a broad class of survey data sets. Using the complex sampling design of the National Survey on Drug Use and Health, we demonstrate our new theoretical result on multistage designs characterized by a cluster sampling step that expresses within-cluster dependence. We explore the impact of multistage designs and order based sampling. Full Article
en The Bayesian Update: Variational Formulations and Gradient Flows By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Nicolas Garcia Trillos, Daniel Sanz-Alonso. Source: Bayesian Analysis, Volume 15, Number 1, 29--56.Abstract: The Bayesian update can be viewed as a variational problem by characterizing the posterior as the minimizer of a functional. The variational viewpoint is far from new and is at the heart of popular methods for posterior approximation. However, some of its consequences seem largely unexplored. We focus on the following one: defining the posterior as the minimizer of a functional gives a natural path towards the posterior by moving in the direction of steepest descent of the functional. This idea is made precise through the theory of gradient flows, allowing to bring new tools to the study of Bayesian models and algorithms. Since the posterior may be characterized as the minimizer of different functionals, several variational formulations may be considered. We study three of them and their three associated gradient flows. We show that, in all cases, the rate of convergence of the flows to the posterior can be bounded by the geodesic convexity of the functional to be minimized. Each gradient flow naturally suggests a nonlinear diffusion with the posterior as invariant distribution. These diffusions may be discretized to build proposals for Markov chain Monte Carlo (MCMC) algorithms. By construction, the diffusions are guaranteed to satisfy a certain optimality condition, and rates of convergence are given by the convexity of the functionals. We use this observation to propose a criterion for the choice of metric in Riemannian MCMC methods. Full Article
en Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Matthew Moores, Geoff Nicholls, Anthony Pettitt, Kerrie Mengersen. Source: Bayesian Analysis, Volume 15, Number 1, 1--27.Abstract: The inverse temperature parameter of the Potts model governs the strength of spatial cohesion and therefore has a major influence over the resulting model fit. A difficulty arises from the dependence of an intractable normalising constant on the value of this parameter and thus there is no closed-form solution for sampling from the posterior distribution directly. There is a variety of computational approaches for sampling from the posterior without evaluating the normalising constant, including the exchange algorithm and approximate Bayesian computation (ABC). A serious drawback of these algorithms is that they do not scale well for models with a large state space, such as images with a million or more pixels. We introduce a parametric surrogate model, which approximates the score function using an integral curve. Our surrogate model incorporates known properties of the likelihood, such as heteroskedasticity and critical temperature. We demonstrate this method using synthetic data as well as remotely-sensed imagery from the Landsat-8 satellite. We achieve up to a hundredfold improvement in the elapsed runtime, compared to the exchange algorithm or ABC. An open-source implementation of our algorithm is available in the R package bayesImageS . Full Article
en Latent Nested Nonparametric Priors (with Discussion) By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez. Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.Abstract: Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data. Full Article
en Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine. Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.Abstract: We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day. Full Article
en Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
en Variance Prior Forms for High-Dimensional Bayesian Variable Selection By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Gemma E. Moran, Veronika Ročková, Edward I. George. Source: Bayesian Analysis, Volume 14, Number 4, 1091--1119.Abstract: Consider the problem of high dimensional variable selection for the Gaussian linear model when the unknown error variance is also of interest. In this paper, we show that the use of conjugate shrinkage priors for Bayesian variable selection can have detrimental consequences for such variance estimation. Such priors are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work, however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators can result from inducing dependence between parameters a priori . In a similar way, we show that conjugate priors for linear regression, which induce prior dependence, can lead to such underestimation in the Bayesian high-dimensional regression setting. Following Jeffreys, we recommend as a remedy to treat regression coefficients and the error variance as independent a priori . Using such an independence prior framework, we extend the Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on simulated data. On the protein activity dataset of Clyde and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-validation error than alternative penalized likelihood methods, demonstrating the gains in predictive accuracy afforded by simultaneous error variance estimation. The unknown variance implementation of the Spike-and-Slab Lasso is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017). Full Article
en On the Geometry of Bayesian Inference By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Miguel de Carvalho, Garritt L. Page, Bradley J. Barney. Source: Bayesian Analysis, Volume 14, Number 4, 1013--1036.Abstract: We provide a geometric interpretation to Bayesian inference that allows us to introduce a natural measure of the level of agreement between priors, likelihoods, and posteriors. The starting point for the construction of our geometry is the observation that the marginal likelihood can be regarded as an inner product between the prior and the likelihood. A key concept in our geometry is that of compatibility, a measure which is based on the same construction principles as Pearson correlation, but which can be used to assess how much the prior agrees with the likelihood, to gauge the sensitivity of the posterior to the prior, and to quantify the coherency of the opinions of two experts. Estimators for all the quantities involved in our geometric setup are discussed, which can be directly computed from the posterior simulation output. Some examples are used to illustrate our methods, including data related to on-the-job drug usage, midge wing length, and prostate cancer. Full Article
en A Bayesian Conjugate Gradient Method (with Discussion) By projecteuclid.org Published On :: Mon, 02 Dec 2019 04:00 EST Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, Mark Girolami. Source: Bayesian Analysis, Volume 14, Number 3, 937--1012.Abstract: A fundamental task in numerical computation is the solution of large linear systems. The conjugate gradient method is an iterative method which offers rapid convergence to the solution, particularly when an effective preconditioner is employed. However, for more challenging systems a substantial error can be present even after many iterations have been performed. The estimates obtained in this case are of little value unless further information can be provided about, for example, the magnitude of the error. In this paper we propose a novel statistical model for this error, set in a Bayesian framework. Our approach is a strict generalisation of the conjugate gradient method, which is recovered as the posterior mean for a particular choice of prior. The estimates obtained are analysed with Krylov subspace methods and a contraction result for the posterior is presented. The method is then analysed in a simulation study as well as being applied to a challenging problem in medical imaging. Full Article
en High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Joseph Antonelli, Giovanni Parmigiani, Francesca Dominici. Source: Bayesian Analysis, Volume 14, Number 3, 825--848.Abstract: In observational studies, estimation of a causal effect of a treatment on an outcome relies on proper adjustment for confounding. If the number of the potential confounders ( $p$ ) is larger than the number of observations ( $n$ ), then direct control for all potential confounders is infeasible. Existing approaches for dimension reduction and penalization are generally aimed at predicting the outcome, and are less suited for estimation of causal effects. Under standard penalization approaches (e.g. Lasso), if a variable $X_{j}$ is strongly associated with the treatment $T$ but weakly with the outcome $Y$ , the coefficient $eta_{j}$ will be shrunk towards zero thus leading to confounding bias. Under the assumption of a linear model for the outcome and sparsity, we propose continuous spike and slab priors on the regression coefficients $eta_{j}$ corresponding to the potential confounders $X_{j}$ . Specifically, we introduce a prior distribution that does not heavily shrink to zero the coefficients ( $eta_{j}$ s) of the $X_{j}$ s that are strongly associated with $T$ but weakly associated with $Y$ . We compare our proposed approach to several state of the art methods proposed in the literature. Our proposed approach has the following features: 1) it reduces confounding bias in high dimensional settings; 2) it shrinks towards zero coefficients of instrumental variables; and 3) it achieves good coverages even in small sample sizes. We apply our approach to the National Health and Nutrition Examination Survey (NHANES) data to estimate the causal effects of persistent pesticide exposure on triglyceride levels. Full Article
en Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli. Source: Bayesian Analysis, Volume 14, Number 3, 797--823.Abstract: We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset. Full Article
en Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT L. F. South, A. N. Pettitt, C. C. Drovandi. Source: Bayesian Analysis, Volume 14, Number 3, 773--796.Abstract: Sequential Monte Carlo (SMC) methods for sampling from the posterior of static Bayesian models are flexible, parallelisable and capable of handling complex targets. However, it is common practice to adopt a Markov chain Monte Carlo (MCMC) kernel with a multivariate normal random walk (RW) proposal in the move step, which can be both inefficient and detrimental for exploring challenging posterior distributions. We develop new SMC methods with independent proposals which allow recycling of all candidates generated in the SMC process and are embarrassingly parallelisable. A novel evidence estimator that is easily computed from the output of our independent SMC is proposed. Our independent proposals are constructed via flexible copula-type models calibrated with the population of SMC particles. We demonstrate through several examples that more precise estimates of posterior expectations and the marginal likelihood can be obtained using fewer likelihood evaluations than the more standard RW approach. Full Article
en Model Criticism in Latent Space By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Sohan Seth, Iain Murray, Christopher K. I. Williams. Source: Bayesian Analysis, Volume 14, Number 3, 703--725.Abstract: Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model's structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes. Full Article
en A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez. Source: Bayesian Analysis, Volume 14, Number 2, 649--675.Abstract: We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology. Full Article
en Alleviating Spatial Confounding for Areal Data Problems by Displacing the Geographical Centroids By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Marcos Oliveira Prates, Renato Martins Assunção, Erica Castilho Rodrigues. Source: Bayesian Analysis, Volume 14, Number 2, 623--647.Abstract: Spatial confounding between the spatial random effects and fixed effects covariates has been recently discovered and showed that it may bring misleading interpretation to the model results. Techniques to alleviate this problem are based on decomposing the spatial random effect and fitting a restricted spatial regression. In this paper, we propose a different approach: a transformation of the geographic space to ensure that the unobserved spatial random effect added to the regression is orthogonal to the fixed effects covariates. Our approach, named SPOCK, has the additional benefit of providing a fast and simple computational method to estimate the parameters. Also, it does not constrain the distribution class assumed for the spatial error term. A simulation study and real data analyses are presented to better understand the advantages of the new method in comparison with the existing ones. Full Article
en Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen. Source: Bayesian Analysis, Volume 14, Number 2, 595--622.Abstract: Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies. Full Article
en Constrained Bayesian Optimization with Noisy Experiments By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy. Source: Bayesian Analysis, Volume 14, Number 2, 495--519.Abstract: Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for efficiently optimizing multiple continuous parameters, but existing approaches degrade in performance when the noise level is high, limiting its applicability to many randomized experiments. We derive an expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Simulations with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real-world experiments conducted at Facebook: optimizing a ranking system, and optimizing server compiler flags. Full Article
en Efficient Bayesian Regularization for Graphical Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Suprateek Kundu, Bani K. Mallick, Veera Baladandayuthapani. Source: Bayesian Analysis, Volume 14, Number 2, 449--476.Abstract: There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse–Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example. Full Article
en Control of Type I Error Rates in Bayesian Sequential Designs By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Haolun Shi, Guosheng Yin. Source: Bayesian Analysis, Volume 14, Number 2, 399--425.Abstract: Bayesian approaches to phase II clinical trial designs are usually based on the posterior distribution of the parameter of interest and calibration of certain threshold for decision making. If the posterior probability is computed and assessed in a sequential manner, the design may involve the problem of multiplicity, which, however, is often a neglected aspect in Bayesian trial designs. To effectively maintain the overall type I error rate, we propose solutions to the problem of multiplicity for Bayesian sequential designs and, in particular, the determination of the cutoff boundaries for the posterior probabilities. We present both theoretical and numerical methods for finding the optimal posterior probability boundaries with $alpha$ -spending functions that mimic those of the frequentist group sequential designs. The theoretical approach is based on the asymptotic properties of the posterior probability, which establishes a connection between the Bayesian trial design and the frequentist group sequential method. The numerical approach uses a sandwich-type searching algorithm, which immensely reduces the computational burden. We apply least-square fitting to find the $alpha$ -spending function closest to the target. We discuss the application of our method to single-arm and double-arm cases with binary and normal endpoints, respectively, and provide a real trial example for each case. Full Article
en Maximum Independent Component Analysis with Application to EEG Data By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Ruosi Guo, Chunming Zhang, Zhengjun Zhang. Source: Statistical Science, Volume 35, Number 1, 145--157.Abstract: In many scientific disciplines, finding hidden influential factors behind observational data is essential but challenging. The majority of existing approaches, such as the independent component analysis (${mathrm{ICA}}$), rely on linear transformation, that is, true signals are linear combinations of hidden components. Motivated from analyzing nonlinear temporal signals in neuroscience, genetics, and finance, this paper proposes the “maximum independent component analysis” (${mathrm{MaxICA}}$), based on max-linear combinations of components. In contrast to existing methods, ${mathrm{MaxICA}}$ benefits from focusing on significant major components while filtering out ignorable components. A major tool for parameter learning of ${mathrm{MaxICA}}$ is an augmented genetic algorithm, consisting of three schemes for the elite weighted sum selection, randomly combined crossover, and dynamic mutation. Extensive empirical evaluations demonstrate the effectiveness of ${mathrm{MaxICA}}$ in either extracting max-linearly combined essential sources in many applications or supplying a better approximation for nonlinearly combined source signals, such as $mathrm{EEG}$ recordings analyzed in this paper. Full Article
en Statistical Inference for the Evolutionary History of Cancer Genomes By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury Lambert, Simon Tavaré. Source: Statistical Science, Volume 35, Number 1, 129--144.Abstract: Recent years have seen considerable work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time, genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the classical linear birth-death process. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing experiment, we can estimate for each site at which a novel somatic point mutation has arisen, the proportion of cells that carry that mutation. These numbers are then grouped into collections of sites which have similar mutant fractions. We examine how the SFS based on birth-death processes differs from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show that despite this, they are quantitatively comparable for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, and demonstrate how it may help in understanding the history of a tumor as well as the influence of data pre-processing. We illustrate the theory with applications to several examples from The Cancer Genome Atlas tumors. Full Article
en Data Denoising and Post-Denoising Corrections in Single Cell RNA Sequencing By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Divyansh Agarwal, Jingshu Wang, Nancy R. Zhang. Source: Statistical Science, Volume 35, Number 1, 112--128.Abstract: Single cell sequencing technologies are transforming biomedical research. However, due to the inherent nature of the data, single cell RNA sequencing analysis poses new computational and statistical challenges. We begin with a survey of a selection of topics in this field, with a gentle introduction to the biology and a more detailed exploration of the technical noise. We consider in detail the problem of single cell data denoising, sometimes referred to as “imputation” in the relevant literature. We discuss why this is not a typical statistical imputation problem, and review current approaches to this problem. We then explore why the use of denoised values in downstream analyses invites novel statistical insights, and how denoising uncertainty should be accounted for to yield valid statistical inference. The utilization of denoised or imputed matrices in statistical inference is not unique to single cell genomics, and arises in many other fields. We describe the challenges in this type of analysis, discuss some preliminary solutions, and highlight unresolved issues. Full Article
en Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Thomas Staudt, Timo Aspelmeier, Oskar Laitenberger, Claudia Geisler, Alexander Egner, Axel Munk. Source: Statistical Science, Volume 35, Number 1, 92--111.Abstract: Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in (living) cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. In this article, we discuss state of the art methods to count such fluorophores and statistical challenges that come along with it. In particular, we suggest a modeling scheme for time series generated by single-marker-switching (SMS) microscopy that makes it possible to quantify the number of markers in a statistically meaningful manner from the raw data. To this end, we model the entire process of photon generation in the fluorophore, their passage through the microscope, detection and photoelectron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two timescales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore’s internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data. Full Article
en Statistical Methodology in Single-Molecule Experiments By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Chao Du, S. C. Kou. Source: Statistical Science, Volume 35, Number 1, 75--91.Abstract: Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments. Full Article
en Quantum Science and Quantum Technology By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Yazhen Wang, Xinyu Song. Source: Statistical Science, Volume 35, Number 1, 51--74.Abstract: Quantum science and quantum technology are of great current interest in multiple frontiers of many scientific fields ranging from computer science to physics and chemistry, and from engineering to mathematics and statistics. Their developments will likely lead to a new wave of scientific revolutions and technological innovations in a wide range of scientific studies and applications. This paper provides a brief review on quantum communication, quantum information, quantum computation, quantum simulation, and quantum metrology. We present essential quantum properties, illustrate relevant concepts of quantum science and quantum technology, and discuss their scientific developments. We point out the need for statistical analysis in their developments, as well as their potential applications to and impacts on statistics and data science. Full Article
en Some Statistical Issues in Climate Science By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Michael L. Stein. Source: Statistical Science, Volume 35, Number 1, 31--41.Abstract: Climate science is a field that is arguably both data-rich and data-poor. Data rich in that huge and quickly increasing amounts of data about the state of the climate are collected every day. Data poor in that important aspects of the climate are still undersampled, such as the deep oceans and some characteristics of the upper atmosphere. Data rich in that modern climate models can produce climatological quantities over long time periods with global coverage, including quantities that are difficult to measure and under conditions for which there is no data presently. Data poor in that the correspondence between climate model output to the actual climate, especially for future climate change due to human activities, is difficult to assess. The scope for fruitful interactions between climate scientists and statisticians is great, but requires serious commitments from researchers in both disciplines to understand the scientific and statistical nuances arising from the complex relationships between the data and the real-world problems. This paper describes a small fraction of some of the intellectual challenges that occur at the interface between climate science and statistics, including inferences for extremes for processes with seasonality and long-term trends, the use of climate model ensembles for studying extremes, the scope for using new data sources for studying space-time characteristics of environmental processes and a discussion of non-Gaussian space-time process models for climate variables. The paper concludes with a call to the statistical community to become more engaged in one of the great scientific and policy issues of our time, anthropogenic climate change and its impacts. Full Article
en Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Zhixiang Lin, Mahdi Zamanighomi, Timothy Daley, Shining Ma, Wing Hung Wong. Source: Statistical Science, Volume 35, Number 1, 2--13.Abstract: Unsupervised methods, including clustering methods, are essential to the analysis of single-cell genomic data. Model-based clustering methods are under-explored in the area of single-cell genomics, and have the advantage of quantifying the uncertainty of the clustering result. Here we develop a model-based approach for the integrative analysis of single-cell chromatin accessibility and gene expression data. We show that combining these two types of data, we can achieve a better separation of the underlying cell types. An efficient Markov chain Monte Carlo algorithm is also developed. Full Article
en Statistical Theory Powering Data Science By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Junhui Cai, Avishai Mandelbaum, Chaitra H. Nagaraja, Haipeng Shen, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 669--691.Abstract: Statisticians are finding their place in the emerging field of data science. However, many issues considered “new” in data science have long histories in statistics. Examples of using statistical thinking are illustrated, which range from exploratory data analysis to measuring uncertainty to accommodating nonrandom samples. These examples are then applied to service networks, baseball predictions and official statistics. Full Article
en Larry Brown’s Contributions to Parametric Inference, Decision Theory and Foundations: A Survey By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST James O. Berger, Anirban DasGupta. Source: Statistical Science, Volume 34, Number 4, 621--634.Abstract: This article gives a panoramic survey of the general area of parametric statistical inference, decision theory and foundations of statistics for the period 1965–2010 through the lens of Larry Brown’s contributions to varied aspects of this massive area. The article goes over sufficiency, shrinkage estimation, admissibility, minimaxity, complete class theorems, estimated confidence, conditional confidence procedures, Edgeworth and higher order asymptotic expansions, variational Bayes, Stein’s SURE, differential inequalities, geometrization of convergence rates, asymptotic equivalence, aspects of empirical process theory, inference after model selection, unified frequentist and Bayesian testing, and Wald’s sequential theory. A reasonably comprehensive bibliography is provided. Full Article
en Comment: Statistical Inference from a Predictive Perspective By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Alessandro Rinaldo, Ryan J. Tibshirani, Larry Wasserman. Source: Statistical Science, Volume 34, Number 4, 599--603.Abstract: What is the meaning of a regression parameter? Why is this the de facto standard object of interest for statistical inference? These are delicate issues, especially when the model is misspecified. We argue that focusing on predictive quantities may be a desirable alternative. Full Article
en Comment: Models as (Deliberate) Approximations By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST David Whitney, Ali Shojaie, Marco Carone. Source: Statistical Science, Volume 34, Number 4, 591--598. Full Article
en Comment: Models Are Approximations! By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Anthony C. Davison, Erwan Koch, Jonathan Koh. Source: Statistical Science, Volume 34, Number 4, 584--590.Abstract: This discussion focuses on areas of disagreement with the papers, particularly the target of inference and the case for using the robust ‘sandwich’ variance estimator in the presence of moderate mis-specification. We also suggest that existing procedures may be appreciably more powerful for detecting mis-specification than the authors’ RAV statistic, and comment on the use of the pairs bootstrap in balanced situations. Full Article
en Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Roderick J. Little. Source: Statistical Science, Volume 34, Number 4, 580--583. Full Article
en Comment: Models as Approximations By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Nikki L. B. Freeman, Xiaotong Jiang, Owen E. Leete, Daniel J. Luckett, Teeranan Pokaprakarn, Michael R. Kosorok. Source: Statistical Science, Volume 34, Number 4, 572--574. Full Article
en Comment on Models as Approximations, Parts I and II, by Buja et al. By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Jerald F. Lawless. Source: Statistical Science, Volume 34, Number 4, 569--571.Abstract: I comment on the papers Models as Approximations I and II, by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zhao and K. Zhang. Full Article
en Models as Approximations I: Consequences Illustrated with Linear Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 523--544.Abstract: In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test. Full Article
en Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Pantelis Samartsidis, Shaun R. Seaman, Anne M. Presanis, Matthew Hickman, Daniela De Angelis. Source: Statistical Science, Volume 34, Number 3, 486--503.Abstract: Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research. Full Article
en User-Friendly Covariance Estimation for Heavy-Tailed Distributions By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, Wen-Xin Zhou. Source: Statistical Science, Volume 34, Number 3, 454--471.Abstract: We provide a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce elementwise and spectrumwise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key insight is that estimators should adapt to the sample size, dimensionality and noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate practical implementation, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods. Full Article
en The Geometry of Continuous Latent Space Models for Network Data By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Anna L. Smith, Dena M. Asta, Catherine A. Calder. Source: Statistical Science, Volume 34, Number 3, 428--453.Abstract: We review the class of continuous latent space (statistical) models for network data, paying particular attention to the role of the geometry of the latent space. In these models, the presence/absence of network dyadic ties are assumed to be conditionally independent given the dyads’ unobserved positions in a latent space. In this way, these models provide a probabilistic framework for embedding network nodes in a continuous space equipped with a geometry that facilitates the description of dependence between random dyadic ties. Specifically, these models naturally capture homophilous tendencies and triadic clustering, among other common properties of observed networks. In addition to reviewing the literature on continuous latent space models from a geometric perspective, we highlight the important role the geometry of the latent space plays on properties of networks arising from these models via intuition and simulation. Finally, we discuss results from spectral graph theory that allow us to explore the role of the geometry of the latent space, independent of network size. We conclude with conjectures about how these results might be used to infer the appropriate latent space geometry from observed networks. Full Article
en An Overview of Semiparametric Extensions of Finite Mixture Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Sijia Xiang, Weixin Yao, Guangren Yang. Source: Statistical Science, Volume 34, Number 3, 391--404.Abstract: Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed. Full Article
en Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Qingyuan Zhao, Jingshu Wang, Wes Spiller, Jack Bowden, Dylan S. Small. Source: Statistical Science, Volume 34, Number 2, 317--333.Abstract: Instrumental variable analysis is a widely used method to estimate causal effects in the presence of unmeasured confounding. When the instruments, exposure and outcome are not measured in the same sample, Angrist and Krueger ( J. Amer. Statist. Assoc. 87 (1992) 328–336) suggested to use two-sample instrumental variable (TSIV) estimators that use sample moments from an instrument-exposure sample and an instrument-outcome sample. However, this method is biased if the two samples are from heterogeneous populations so that the distributions of the instruments are different. In linear structural equation models, we derive a new class of TSIV estimators that are robust to heterogeneous samples under the key assumption that the structural relations in the two samples are the same. The widely used two-sample two-stage least squares estimator belongs to this class. It is generally not asymptotically efficient, although we find that it performs similarly to the optimal TSIV estimator in most practical situations. We then attempt to relax the linearity assumption. We find that, unlike one-sample analyses, the TSIV estimator is not robust to misspecified exposure model. Additionally, to nonparametrically identify the magnitude of the causal effect, the noise in the exposure must have the same distributions in the two samples. However, this assumption is in general untestable because the exposure is not observed in one sample. Nonetheless, we may still identify the sign of the causal effect in the absence of homogeneity of the noise. Full Article
en Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Nathan B. Cruze, Andreea L. Erciulescu, Balgobin Nandram, Wendy J. Barboza, Linda J. Young. Source: Statistical Science, Volume 34, Number 2, 301--316.Abstract: In the United States, county-level estimates of crop yield, production, and acreage published by the United States Department of Agriculture’s National Agricultural Statistics Service (USDA NASS) play an important role in determining the value of payments allotted to farmers and ranchers enrolled in several federal programs. Given the importance of these official county-level crop estimates, NASS continually strives to improve its crops county estimates program in terms of accuracy, reliability and coverage. In 2015, NASS engaged a panel of experts convened under the auspices of the National Academies of Sciences, Engineering, and Medicine Committee on National Statistics (CNSTAT) for guidance on implementing models that may synthesize multiple sources of information into a single estimate, provide defensible measures of uncertainty, and potentially increase the number of publishable county estimates. The final report titled Improving Crop Estimates by Integrating Multiple Data Sources was released in 2017. This paper discusses several needs and requirements for NASS county-level crop estimates that were illuminated during the activities of the CNSTAT panel. A motivating example of planted acreage estimation in Illinois illustrates several challenges that NASS faces as it considers adopting any explicit model for official crops county estimates. Full Article