en Oregon State's Destiny Slocum enters transfer portal By sports.yahoo.com Published On :: Thu, 02 Apr 2020 23:17:03 GMT Oregon State basketball player Destiny Slocum has opted to enter the transfer portal for her final season of eligibility. Slocum, a 5-foot-7 guard, averaged a team-best 14.9 points and had 4.7 assists a game this past season with the Beavers, who finished the season ranked No. 14 with a 23-9 record. In a statement released by the university on Thursday, Slocum thanked everyone who supported her in the decision. Full Article article Sports
en Oregon's Ionescu wins women's Naismith Player of the Year By sports.yahoo.com Published On :: Fri, 03 Apr 2020 17:27:00 GMT Already named The Associated Press women's player of the year, Ionescu was awarded the Naismith Trophy for the most outstanding women's basketball player on Friday. Ionescu, who won AP All-American honors three times, shattered the NCAA career triple-double mark with 26 and became the first player in college history to have 2,000 points, 1,000 rebounds and 1,000 assists. Ionescu averaged 17.5 points, 9.1 assists and 8.6 rebounds with eight triple-doubles as a senior this season. Full Article article Sports
en Texas women's basketball coach Karen Aston dismissed By sports.yahoo.com Published On :: Fri, 03 Apr 2020 19:35:13 GMT AUSTIN, Texas (AP) -- Texas dismissed women's basketball coach Karen Aston on Friday, ending an eight-year stint that included four straight trips to the NCAA Tournament Sweet 16 from 2015-2018. Full Article article Sports
en Top three Satou Sabally moments: Sharpshooter's 33-point game in Pullman was unforgettable By sports.yahoo.com Published On :: Fri, 03 Apr 2020 19:40:06 GMT Since the day she stepped on campus, Satou Sabally's game has turned heads — and for good reason. She's had many memorable moments in a Duck uniform, including a standout performance against the USA Women in Nov. 2019, a monster game against Cal in Jan. 2020 and a career performance in Pullman in Jan. 2019. Full Article video News
en Top three Ruthy Hebard moments: NCAA record for consecutive FGs etched her place in history By sports.yahoo.com Published On :: Fri, 03 Apr 2020 23:08:48 GMT Over four years in Eugene, Ruthy Hebard has made a name for herself with reliability and dynamic play. She's had many memorable moments in a Duck uniform. But her career day against Washington State (34 points), her moment reaching 2,000 career points and her NCAA record for consecutive made FGs (2018) tops the list. Against the Trojans, she set the record (30) and later extended it to 33. Full Article video Sports
en Sydney Wiese, recovering from coronavirus, continually talking with friends and family: 'Our world is uniting' By sports.yahoo.com Published On :: Mon, 06 Apr 2020 16:11:35 GMT Hear how former Oregon State guard and current member of the WNBA's LA Sparks Sydney Wiese is recovering from a COVID-19 diagnosis, seeing friends and family show support and love during a trying time. Full Article video Sports
en Clean sweep: Oregon's Sabrina Ionescu is unanimous Player of the Year after winning Wooden Award By sports.yahoo.com Published On :: Mon, 06 Apr 2020 21:21:52 GMT Sabrina Ionescu wins the Wooden Award for the second year in a row, becoming the fifth in the trophy's history to win in back-to-back seasons. With the honor, she completes a complete sweep of the national postseason player of the year awards. As a senior, Ionescu matched her own single-season mark with eight triple-doubles in 2019-20, and she was incredibly efficient from the field with a career-best 51.8 field goal percentage. Full Article video Sports
en New women's coach Schaefer answering a 'calling' to Texas By sports.yahoo.com Published On :: Tue, 07 Apr 2020 01:57:53 GMT For Vic Schaefer, the decision to take over the Texas women's basketball program was profoundly personal. “It was a calling,” Schaefer said Monday, noting the old Austin hospital building where he was born is just across the street from where the Longhorns play at the Frank Erwin Center. Texas quickly snatched up Schaefer on Sunday, just two days after athletic director Chris Del Conte announced coach Karen Aston would not be retained after eight seasons. Full Article article Sports
en Gamecocks’ Boston wins Leslie Award as nation’s best center By sports.yahoo.com Published On :: Tue, 07 Apr 2020 03:32:53 GMT COLUMBIA, S.C. (AP) -- South Carolina freshman Aliyah Boston has won the Lisa Leslie Award given to the top center in women’s college basketball. Full Article article Sports
en WNBA Draft Profile: Transcendent guard Sabrina Ionescu projects as top pick By sports.yahoo.com Published On :: Thu, 09 Apr 2020 20:09:19 GMT After sweeping every national player of the year award, Sabrina Ionescu is off to the WNBA level where her skills will make an instant impact — not just to her new team but the league as a whole. She averaged 17.5 points, 8.6 rebounds and 9.1 assists for the Ducks in 2019-20, rewriting her own NCAA career triple-double record and becoming the first in college basketball history with at least 2,000 points, 1,000 rebounds and 1,000 assists. Full Article video Sports
en Aari McDonald on returning for her senior year at Arizona: 'We're ready to set the bar higher' By sports.yahoo.com Published On :: Fri, 10 Apr 2020 00:30:39 GMT Arizona's Aari McDonald and Pac-12 Networks' Ashley Adamson discuss the guard's decision to return for her senior season in Tucson and how she now has the opportunity to be the face of the league. McDonald, the Pac-12 Defensive Player of the Year, was one of the nation's top scorers in 2019-20, averaging 20.6 points per game. Full Article video Sports
en WNBA Draft Profile: Do-it-all OSU talent Mikayla Pivec has her sights set on a pro breakout By sports.yahoo.com Published On :: Fri, 10 Apr 2020 16:39:53 GMT Oregon State guard Mikayla Pivec is the epitome of a versatile player. Her 1,030 career rebounds were the most in school history, and she finished just one assist shy of becoming the first in OSU history to tally 1,500 points, 1,000 rebounds and 500 assists. She'll head to the WNBA looking to showcase her talents at the next level following the 2020 WNBA Draft. Full Article video Sports
en Mississippi State hires Nikki McCray-Penson as women's coach By sports.yahoo.com Published On :: Sat, 11 Apr 2020 19:32:26 GMT Mississippi State hired former Old Dominion women’s basketball coach Nikki McCray-Penson to replace Vic Schaefer as the Bulldogs’ head coach. Athletic director John Cohen called McCray-Penson “a proven winner who will lead one of the best programs in the nation” on the department’s website. McCray-Penson, a former Tennessee star and Women’s Basketball Hall of Famer, said it’s been a dream to coach in the Southeastern Conference and she’s “grateful and blessed for this incredible honor and opportunity.” Full Article article Sports
en Ruthy Hebard, Sabrina Ionescu 'represent everything that is great about basketball' By sports.yahoo.com Published On :: Tue, 14 Apr 2020 16:16:41 GMT Ruthy Hebard and Sabrina Ionescu have had a remarkable four years together in Eugene, rewriting the history books and pushing the Ducks into the national spotlight. Catch the debut of "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" at Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network. Full Article video News
en Tennessee adds graduate transfer Keyen Green from Liberty By sports.yahoo.com Published On :: Wed, 15 Apr 2020 23:06:59 GMT The Tennessee Lady Vols have added forward-center Keyen Green as a graduate transfer from Liberty. Coach Kellie Harper announced Wednesday that Green has signed a scholarship for the upcoming season. The 6-foot-1 Green spent the past four seasons at Liberty and graduated in May 2019. Full Article article Sports
en Kentucky women add guards Massengill, Benton as transfers By sports.yahoo.com Published On :: Thu, 16 Apr 2020 00:04:47 GMT LEXINGTON, Ky. (AP) -- Sophomore guards Jazmine Massengill and Robyn Benton transferred to Kentucky from Southeastern Conference rivals Wednesday. Full Article article Sports
en Former Alabama prep star Davenport transfers to Georgia By sports.yahoo.com Published On :: Thu, 16 Apr 2020 01:40:32 GMT Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22. Full Article article Sports
en Dr. Michelle Tom shares journey from ASU women's hoops to treating COVID-19 patients By sports.yahoo.com Published On :: Thu, 16 Apr 2020 23:44:26 GMT Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients Winslow Indian Health Care Center and Little Colorado Medical Center in Eastern Arizona. Full Article video Sports
en Chicago State women's basketball coach Misty Opat resigns By sports.yahoo.com Published On :: Fri, 17 Apr 2020 17:37:52 GMT CHICAGO (AP) -- Chicago State women’s coach Misty Opat resigned Thursday after two seasons and a 3-55 record. Full Article article Sports
en Baylor women sign transfer point guard for 3rd year in row By sports.yahoo.com Published On :: Mon, 20 Apr 2020 18:27:10 GMT Baylor has signed a transfer point guard for the third year in a row, and this one can play multiple seasons with the Lady Bears. Jaden Owens is transferring from UCLA after signing a national letter of intent with Baylor, which had graduate transfers at point guard each of the past two seasons. The Texas native just completed her freshman season with the Bruins and has three seasons of eligibility remaining. Full Article article Sports
en 'A pioneer, a trailblazer' - Reaction to McGraw's retirement By sports.yahoo.com Published On :: Wed, 22 Apr 2020 21:42:02 GMT Notre Dame coach Muffet McGraw retired after 33 seasons Wednesday. What she did for me in those four years, I came in as a girl and left as a woman.'' - WNBA player Kayla McBride, who played for Notre Dame from 2010-14. Full Article article Sports
en Detroit Mercy hires Gilbert as women's basketball coach By sports.yahoo.com Published On :: Fri, 24 Apr 2020 20:51:14 GMT DETROIT (AP) -- Detroit Mercy hired AnnMarie Gilbert as women’s basketball coach. Full Article article Sports
en NCAA women's hoops committee moves away from RPI to NET By sports.yahoo.com Published On :: Mon, 04 May 2020 20:31:26 GMT The women's basketball committee will start using the NCAA Evaluation Tool instead of RPI to help evaluate teams for the tournament starting with the upcoming season. “It’s an exciting time for the game as we look to the future,” said Nina King, senior deputy athletics director and chief of staff at Duke, who chair the Division I Women’s Basketball Committee next season. “We felt after much analysis that the women’s basketball NET, which will be determined by who you played, where you played, how efficiently you played and the result of the game, is a more accurate tool and should be used by the committee going forward.” Full Article article Sports
en Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:09 GMT On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award. Full Article video Sports
en Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day By sports.yahoo.com Published On :: Fri, 08 May 2020 21:24:08 GMT Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell. Full Article video Sports
en The limiting behavior of isotonic and convex regression estimators when the model is misspecified By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Eunji Lim. Source: Electronic Journal of Statistics, Volume 14, Number 1, 2053--2097.Abstract: We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d} ightarrow mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),cdots ,(X_{n},Y_{n})$; our estimator $hat{g}_{n}$ is the minimizer of $sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $gin mathcal{G}$ for some set of functions $mathcal{G}$. We provide sufficient conditions on the metric entropy of $mathcal{G}$, under which $hat{g}_{n}$ converges to $g_{*}$ as $n ightarrow infty $, where $g_{*}$ is the minimizer of $|g-f_{*}| riangleq mathbb{E}(g(X)-f_{*}(X))^{2}$ over $gin mathcal{G}$. As corollaries of our theorem, we establish $|hat{g}_{n}-g_{*}| ightarrow 0$ as $n ightarrow infty $ when $mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $|hat{g}_{n}-g_{*}|$ and the metric entropy of $mathcal{G}$. As special cases of our finding, we compute the convergence rate of $|hat{g}_{n}-g_{*}|^{2}$ when $mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions. Full Article
en Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Laurent Gardes. Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.Abstract: The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018). Full Article
en Statistical convergence of the EM algorithm on Gaussian mixture models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Ruofei Zhao, Yuanzhi Li, Yuekai Sun. Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.Abstract: We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum. Full Article
en Generalised cepstral models for the spectrum of vector time series By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Maddalena Cavicchioli. Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.Abstract: The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market. Full Article
en On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Emanuel Ben-David, Bala Rajaratnam. Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.Abstract: The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture. Full Article
en Recovery of simultaneous low rank and two-way sparse coefficient matrices, a nonconvex approach By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Ming Yu, Varun Gupta, Mladen Kolar. Source: Electronic Journal of Statistics, Volume 14, Number 1, 413--457.Abstract: We study the problem of recovery of matrices that are simultaneously low rank and row and/or column sparse. Such matrices appear in recent applications in cognitive neuroscience, imaging, computer vision, macroeconomics, and genetics. We propose a GDT (Gradient Descent with hard Thresholding) algorithm to efficiently recover matrices with such structure, by minimizing a bi-convex function over a nonconvex set of constraints. We show linear convergence of the iterates obtained by GDT to a region within statistical error of an optimal solution. As an application of our method, we consider multi-task learning problems and show that the statistical error rate obtained by GDT is near optimal compared to minimax rate. Experiments demonstrate competitive performance and much faster running speed compared to existing methods, on both simulations and real data sets. Full Article
en Parseval inequalities and lower bounds for variance-based sensitivity indices By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Olivier Roustant, Fabrice Gamboa, Bertrand Iooss. Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.Abstract: The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy. Full Article
en Consistent model selection criteria and goodness-of-fit test for common time series models By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Jean-Marc Bardet, Kare Kamila, William Kengne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.Abstract: This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test. Full Article
en Univariate mean change point detection: Penalization, CUSUM and optimality By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Daren Wang, Yi Yu, Alessandro Rinaldo. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1917--1961.Abstract: The problem of univariate mean change point detection and localization based on a sequence of $n$ independent observations with piecewise constant means has been intensively studied for more than half century, and serves as a blueprint for change point problems in more complex settings. We provide a complete characterization of this classical problem in a general framework in which the upper bound $sigma ^{2}$ on the noise variance, the minimal spacing $Delta $ between two consecutive change points and the minimal magnitude $kappa $ of the changes, are allowed to vary with $n$. We first show that consistent localization of the change points is impossible in the low signal-to-noise ratio regime $frac{kappa sqrt{Delta }}{sigma }preceq sqrt{log (n)}$. In contrast, when $frac{kappa sqrt{Delta }}{sigma }$ diverges with $n$ at the rate of at least $sqrt{log (n)}$, we demonstrate that two computationally-efficient change point estimators, one based on the solution to an $ell _{0}$-penalized least squares problem and the other on the popular wild binary segmentation algorithm, are both consistent and achieve a localization rate of the order $frac{sigma ^{2}}{kappa ^{2}}log (n)$. We further show that such rate is minimax optimal, up to a $log (n)$ term. Full Article
en Asymptotics and optimal bandwidth for nonparametric estimation of density level sets By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Wanli Qiao. Source: Electronic Journal of Statistics, Volume 14, Number 1, 302--344.Abstract: Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($dgeq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies. Full Article
en Bayesian variance estimation in the Gaussian sequence model with partial information on the means By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Gianluca Finocchio, Johannes Schmidt-Hieber. Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.Abstract: Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study. Full Article
en Estimation of linear projections of non-sparse coefficients in high-dimensional regression By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT David Azriel, Armin Schwartzman. Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.Abstract: In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero. Full Article
en Efficient estimation in expectile regression using envelope models By projecteuclid.org Published On :: Thu, 23 Apr 2020 22:01 EDT Tuo Chen, Zhihua Su, Yi Yang, Shanshan Ding. Source: Electronic Journal of Statistics, Volume 14, Number 1, 143--173.Abstract: As a generalization of the classical linear regression, expectile regression (ER) explores the relationship between the conditional expectile of a response variable and a set of predictor variables. ER with respect to different expectile levels can provide a comprehensive picture of the conditional distribution of the response variable given the predictors. We adopt an efficient estimation method called the envelope model ([8]) in ER, and construct a novel envelope expectile regression (EER) model. Estimation of the EER parameters can be performed using the generalized method of moments (GMM). We establish the consistency and derive the asymptotic distribution of the EER estimators. In addition, we show that the EER estimators are asymptotically more efficient than the ER estimators. Numerical experiments and real data examples are provided to demonstrate the efficiency gains attained by EER compared to ER, and the efficiency gains can further lead to improvements in prediction. Full Article
en Nonparametric false discovery rate control for identifying simultaneous signals By projecteuclid.org Published On :: Thu, 23 Apr 2020 22:01 EDT Sihai Dave Zhao, Yet Tien Nguyen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 110--142.Abstract: It is frequently of interest to identify simultaneous signals, defined as features that exhibit statistical significance across each of several independent experiments. For example, genes that are consistently differentially expressed across experiments in different animal species can reveal evolutionarily conserved biological mechanisms. However, in some problems the test statistics corresponding to these features can have complicated or unknown null distributions. This paper proposes a novel nonparametric false discovery rate control procedure that can identify simultaneous signals even without knowing these null distributions. The method is shown, theoretically and in simulations, to asymptotically control the false discovery rate. It was also used to identify genes that were both differentially expressed and proximal to differentially accessible chromatin in the brains of mice exposed to a conspecific intruder. The proposed method is available in the R package github.com/sdzhao/ssa. Full Article
en Model-based clustering with envelopes By projecteuclid.org Published On :: Thu, 23 Apr 2020 22:01 EDT Wenjing Wang, Xin Zhang, Qing Mai. Source: Electronic Journal of Statistics, Volume 14, Number 1, 82--109.Abstract: Clustering analysis is an important unsupervised learning technique in multivariate statistics and machine learning. In this paper, we propose a set of new mixture models called CLEMM (in short for Clustering with Envelope Mixture Models) that is based on the widely used Gaussian mixture model assumptions and the nascent research area of envelope methodology. Formulated mostly for regression models, envelope methodology aims for simultaneous dimension reduction and efficient parameter estimation, and includes a very recent formulation of envelope discriminant subspace for classification and discriminant analysis. Motivated by the envelope discriminant subspace pursuit in classification, we consider parsimonious probabilistic mixture models where the cluster analysis can be improved by projecting the data onto a latent lower-dimensional subspace. The proposed CLEMM framework and the associated envelope-EM algorithms thus provide foundations for envelope methods in unsupervised and semi-supervised learning problems. Numerical studies on simulated data and two benchmark data sets show significant improvement of our propose methods over the classical methods such as Gaussian mixture models, K-means and hierarchical clustering algorithms. An R package is available at https://github.com/kusakehan/CLEMM. Full Article
en On the predictive potential of kernel principal components By projecteuclid.org Published On :: Wed, 15 Apr 2020 04:02 EDT Ben Jones, Andreas Artemiou, Bing Li. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1--23.Abstract: We give a probabilistic analysis of a phenomenon in statistics which, until recently, has not received a convincing explanation. This phenomenon is that the leading principal components tend to possess more predictive power for a response variable than lower-ranking ones despite the procedure being unsupervised. Our result, in its most general form, shows that the phenomenon goes far beyond the context of linear regression and classical principal components — if an arbitrary distribution for the predictor $X$ and an arbitrary conditional distribution for $Yvert X$ are chosen then any measureable function $g(Y)$, subject to a mild condition, tends to be more correlated with the higher-ranking kernel principal components than with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance then the tendency is explicitly quantified by exploring how unitary invariance relates to the Cauchy distribution. The most general results, for technical reasons, are shown for the case where the kernel space is finite dimensional. The occurency of this tendency in real world databases is also investigated to show that our results are consistent with observation. Full Article
en Posterior contraction and credible sets for filaments of regression functions By projecteuclid.org Published On :: Tue, 14 Apr 2020 22:01 EDT Wei Li, Subhashis Ghosal. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1707--1743.Abstract: A filament consists of local maximizers of a smooth function $f$ when moving in a certain direction. A filamentary structure is an important feature of the shape of an object and is also considered as an important lower dimensional characterization of multivariate data. There have been some recent theoretical studies of filaments in the nonparametric kernel density estimation context. This paper supplements the current literature in two ways. First, we provide a Bayesian approach to the filament estimation in regression context and study the posterior contraction rates using a finite random series of B-splines basis. Compared with the kernel-estimation method, this has a theoretical advantage as the bias can be better controlled when the function is smoother, which allows obtaining better rates. Assuming that $f:mathbb{R}^{2}mapsto mathbb{R}$ belongs to an isotropic Hölder class of order $alpha geq 4$, with the optimal choice of smoothing parameters, the posterior contraction rates for the filament points on some appropriately defined integral curves and for the Hausdorff distance of the filament are both $(n/log n)^{(2-alpha )/(2(1+alpha ))}$. Secondly, we provide a way to construct a credible set with sufficient frequentist coverage for the filaments. We demonstrate the success of our proposed method in simulations and one application to earthquake data. Full Article
en Random distributions via Sequential Quantile Array By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Annalisa Fabretti, Samantha Leorato. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1611--1647.Abstract: We propose a method to generate random distributions with known quantile distribution, or, more generally, with known distribution for some form of generalized quantile. The method takes inspiration from the random Sequential Barycenter Array distributions (SBA) proposed by Hill and Monticino (1998) which generates a Random Probability Measure (RPM) with known expected value. We define the Sequential Quantile Array (SQA) and show how to generate a random SQA from which we can derive RPMs. The distribution of the generated SQA-RPM can have full support and the RPMs can be both discrete, continuous and differentiable. We face also the problem of the efficient implementation of the procedure that ensures that the approximation of the SQA-RPM by a finite number of steps stays close to the SQA-RPM obtained theoretically by the procedure. Finally, we compare SQA-RPMs with similar approaches as Polya Tree. Full Article
en Asymptotic seed bias in respondent-driven sampling By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Yuling Yan, Bret Hanlon, Sebastien Roch, Karl Rohe. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1577--1610.Abstract: Respondent-driven sampling (RDS) collects a sample of individuals in a networked population by incentivizing the sampled individuals to refer their contacts into the sample. This iterative process is initialized from some seed node(s). Sometimes, this selection creates a large amount of seed bias. Other times, the seed bias is small. This paper gains a deeper understanding of this bias by characterizing its effect on the limiting distribution of various RDS estimators. Using classical tools and results from multi-type branching processes [12], we show that the seed bias is negligible for the Generalized Least Squares (GLS) estimator and non-negligible for both the inverse probability weighted and Volz-Heckathorn (VH) estimators. In particular, we show that (i) above a critical threshold, VH converge to a non-trivial mixture distribution, where the mixture component depends on the seed node, and the mixture distribution is possibly multi-modal. Moreover, (ii) GLS converges to a Gaussian distribution independent of the seed node, under a certain condition on the Markov process. Numerical experiments with both simulated data and empirical social networks suggest that these results appear to hold beyond the Markov conditions of the theorems. Full Article
en Nonconcave penalized estimation in sparse vector autoregression model By projecteuclid.org Published On :: Wed, 01 Apr 2020 04:00 EDT Xuening Zhu. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.Abstract: High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose. Full Article
en A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables By projecteuclid.org Published On :: Fri, 27 Mar 2020 22:00 EDT Ryoya Oda, Hirokazu Yanagihara. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.Abstract: We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large. Full Article
en Differential network inference via the fused D-trace loss with cross variables By projecteuclid.org Published On :: Tue, 24 Mar 2020 22:01 EDT Yichong Wu, Tiejun Li, Xiaoping Liu, Luonan Chen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1269--1301.Abstract: Detecting the change of biological interaction networks is of great importance in biological and medical research. We proposed a simple loss function, named as CrossFDTL, to identify the network change or differential network by estimating the difference between two precision matrices under Gaussian assumption. The CrossFDTL is a natural fusion of the D-trace loss for the considered two networks by imposing the $ell _{1}$ penalty to the differential matrix to ensure sparsity. The key point of our method is to utilize the cross variables, which correspond to the sum and difference of two precision matrices instead of using their original forms. Moreover, we developed an efficient minimization algorithm for the proposed loss function and further rigorously proved its convergence. Numerical results showed that our method outperforms the existing methods in both accuracy and convergence speed for the simulated and real data. Full Article
en Consistency and asymptotic normality of Latent Block Model estimators By projecteuclid.org Published On :: Mon, 23 Mar 2020 22:02 EDT Vincent Brault, Christine Keribin, Mahendra Mariadassou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1234--1268.Abstract: The Latent Block Model (LBM) is a model-based method to cluster simultaneously the $d$ columns and $n$ rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted problem. Although various estimation strategies have been proposed and are now well understood empirically, theoretical guarantees about their asymptotic behavior is rather sparse and most results are limited to the binary setting. We prove here theoretical guarantees in the valued settings. We show that under some mild conditions on the parameter space, and in an asymptotic regime where $log (d)/n$ and $log (n)/d$ tend to $0$ when $n$ and $d$ tend to infinity, (1) the maximum-likelihood estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models. This equivalence allows us to transfer the asymptotic consistency, and under mild conditions, asymptotic normality, to the maximum likelihood estimate under the observed model. Moreover, the variational estimator is also consistent and, under the same conditions, asymptotically normal. Full Article
en A general drift estimation procedure for stochastic differential equations with additive fractional noise By projecteuclid.org Published On :: Tue, 25 Feb 2020 22:00 EST Fabien Panloup, Samy Tindel, Maylis Varvenne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.Abstract: In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied. Full Article
en Conditional density estimation with covariate measurement error By projecteuclid.org Published On :: Wed, 19 Feb 2020 22:06 EST Xianzheng Huang, Haiming Zhou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.Abstract: We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2. Full Article