on

Tools and methods for processing microelectronic workpieces using process chamber designs that easily transition between open and closed modes of operation

Strategies for tool designs and their uses wherein the tools can operate in either closed or open modes of operation. The tools easily transition between open and closed modes on demand. According to one general strategy, environmentally controlled pathway(s) couple the ambient to one or more process chambers. Air amplification capabilities upstream from the process chamber(s) allow substantial flows of air to be introduced into the process chamber(s) on demand. Alternatively, the fluid pathways are easily closed, such as by simple valve actuation, to block egress to the ambient through these pathways. Alternative flows of nonambient fluids can then be introduced into the process chamber(s) via pathways that are at least partially in common with the pathways used for ambient air introduction. In other strategies, gap(s) between moveable components are sealed at least with flowing gas curtains rather than by relying only upon direct physical contact for sealing.




on

Low foam media cleaning detergent with nonionic surfactants

A detergent for cleaning media is provided. The detergent comprises deionized water, between about 1% and about 5% by weight of a nonionic surfactant having an hydrophile/lipophile balance (HLB) value between about 10 and about 20, and an ethoxylation level between about 5 and about 20, between about 1% and about 5% by weight of a dispersing agent, between about 3% and about 10% by weight of a chelating agent comprising phosphonic acid, and between about 2% and about 6% by weight of an inorganic salt.




on

Masonry block multi-splitting apparatus and method

An apparatus for splitting a plurality of masonry blocks is provided. The apparatus includes a plurality of first splitting blades that are configured to simultaneously move in a first direction, so as to split one of each of the plurality of masonry blocks into two or more sections during a single splitting operation. Each section has a first split surface. A plurality of second splitting blades is provided, where each is perpendicular and adjacent to one of the first splitting blades. Each of the second splitting blades is configured to form a second split surface on one of the masonry block sections that is perpendicular to at least one of the first split surfaces.




on

Saw for construction cutting work

A saw (1) being portable and/or wheeled, such as a wall saw, floor saw or masonry saw, comprising a rotatable circular saw blade (3), a drive motor (5) with an motor output shaft (9) for rotating the saw blade (3), and a transmission (20) for interconnecting the motor output shaft (9) to the rotatable saw blade (3) in order to change an unsuitable high speed and low torque combination of the motor output shaft (9) into a more useable lower speed and higher torque combination at the rotatable tool (3), wherein the transmission (20) comprises two adjustable friction saw protective clutches in parallel, which can be set at a desired predetermined value, so as to limit the maximum size of the forces that the teeth and gears of the transmission (20) are exposed to. No over dimensioning is necessary, and the transmission (20) will make out fine in rough environments. The transmission may be of single-speed or two-speed type.




on

Brazed diamond dressing tool

A dressing blade for finishing and reconditioning new and used abrasive grinding and cutting tools has a slab-shaped shank with an extension protruding longitudinally from the shank. Superabrasive grains are disposed on the surface of the extension and held in place by a brazed metal composition. This composition is formed by brazing a powdered mixture of brazing metal components and active metal components. Specific extension configurations are provided which allow aligning the superabrasive grains in single layer arrangement for precise dressing and simple fabrication of the tool. The novel dressing tool exhibits excellent wear characteristics.




on

Concrete saw system

A holding assembly is formed of a base having two primary support edges and two locking fingers. A cutting assembly is formed of a platform, a cutting band, and a plurality of rollers rotatable with respect to the platform for guiding the cutting band in a path of travel above the base. An advancement assembly is formed of rails coupled to and extending upwardly from the base. Slide blocks extend downwardly from the platform for advancing the platform and cutting band. Control components include pneumatic pivot pistons mounted on the base operable to move the fingers between operative and inoperative orientations, a pneumatic advancement piston for advancing and retracting the platform, and a hydraulic motor for rotating a roller to move the cutting band.




on

Apparatus, system and method for using a diamond-impregnated wire to cut an object

An apparatus, a system and a method may use a diamond-impregnated wire loop to cut an underwater pipeline. The apparatus may have a frame, a carriage attached to the frame and/or pulleys connected to the carriage. The diamond-impregnated wire loop may be connected to the pulleys. The carriage may move relative to the frame to direct the diamond-impregnated wire loop in a forward direction relative to the frame and/or through the pipeline.




on

Hydraulically-actuated, horizontal flush-cut radial concrete saw and trip hazard removal method

A concrete saw is disclosed having a rigid metal frame, a hydraulic drive system, a water-cooled hub, and an axially rotatable trigger assembly comprising a 12 volt switch. The saw may include a hydraulic pump operable to supply pressurized hydraulic fluid to the drive system. In some embodiments, the saw may includes a flow sharing valve fluidly coupled to the hydraulic drive system to distribute the pressurized hydraulic fluid from the a hydraulic pump in a portable power pack. A method of removing trip hazards with the saw is also disclosed.




on

Method for slicing a multiplicity of wafers from a crystal composed of semiconductor material

A method for slicing a plurality of wafers from a crystal includes providing a crystal of semiconductor material having a longitudinal axis, a cross section and at least one pulling edge. The crystal is fixed on a table and guided through a wire gang defined by sawing wire so as to form the wafers. The guiding is provided by a relative movement between the table and the wire gang such that entry sawing or exit sawing using the sawing wire occurs in a vicinity of the at least one pulling edge of the crystal.




on

Chop saw with dust collection system

A chop saw, grinding wheel, or like apparatus is disclosed herein also incorporated to an easily portable dust collection system. In a preferred embodiment, a worktable is provided with a center slot for receiving a circular saw blade. A negative pressure and resulting air flow is provided at the center slot to capture particulate matter as a byproduct of cutting the workpiece. Side slots are also disclosed to assist in particulate collection. A unique filter chamber having a cylindrical filter is additionally provided to remove dust from air and discharge the filtered air at a lateral side of the apparatus. A filter cleaning knob is additionally disclosed to assist in cleaning the filter. Of the beneficial aspects of the chop saw with dust collection system is its portability being one integral unit and the dust filter being easily cleaned and maintained.




on

Concrete saw

Presented is a concrete saw for sawing into concrete surfaces to provide expansion slots or joints. The concrete saw has powered front wheels and may optionally have powered rear wheels, so that with improved traction the full potential of the motor can be utilized in faster cutting of concrete.




on

Wire saw with tension detecting means and guide roller speed control

The present invention provides a wire saw which cuts a workpiece using a cutting wire and is capable of adjusting wire tension with high responsiveness. The wire saw includes first and second workpiece cutting units 1A and 1B. Each of the workpiece cutting units 1A and 1B includes a pair of guide rollers 10a and 10b around which a wire W is wound to form a workpiece-cutting wire group. The wire saw further includes a tension detector 18 which detects tension in the wire W between the workpiece cutting units 1A and 1B, and a control device 50. The control device 50 changes a rotational speed of the guide rollers 10a and 10b of at least one of the workpiece cutting units based on the tension detected by the tension detector 18 so as to keep the tension within an acceptable range.




on

Ductile mode machining methods for hard and brittle components of plasma processing apparatuses

A method of ductile mode machining a component of a plasma processing apparatus wherein the component is made of nonmetallic hard and brittle material wherein the method comprises single point turning the component with a diamond cutting tool causing a portion of the nonmetallic hard and brittle material to undergo a high pressure phase transformation to form a ductile phase portion of the hard and brittle material during chip formation wherein a turned surface is formed from a phase changed material and the turned surface is a grooved textured surface of phase changed material.




on

Masonry circular saw stabilizing and supporting shoe

A supporting and stabilizing shoe used with a masonry circular power saw. A shoe frame rigidly mounts to the saw's motor frame. A plate that is preferably substantially planar and bifurcated to form two substantially co-planar members with a gap therebetween pivotably mounts to the shoe frame. A spring biases the plate away from the blade, but can be overcome, and an adjustment knob tightens the plate in position relative to the blade. This provides for depth adjustment for the blade and keeps the blade at a desired angle, such as ninety degrees, to the workpiece surface. The plate extends longitudinally from the motor frame beneath the drive mechanism and the blade of the saw to provide a stable surface upon which the saw can rest during use or storage.




on

Cutting tool with blade made of fine-crystalline diamond

The present invention relates to a cutting tool, in particular in the form of a razor blade, a scalpel, a knife, a machine knife, scissors etc., which has a synthetic diamond layer with a cutting edge. The diamond layer thereby consists of fine-crystalline diamond.




on

Process for the manufacture of stone blocks

This invention relates to a process which may be automated for the manufacture of stone blocks for use as finished landscape stone blocks from quarry stone. The natural stone is quarried from the quarry and split into rectangular blocks, with squared ends and the top and bottom surfaces are ground with a plurality of grooves and ridges of varying heights. The ridges of varying heights are then removed thereby producing a surface having ridges of uniform height and grooves of uniform depth. The blocks may be used to form an architectural wall. The process is also applicable to pavers, steps and coping stones.




on

Hybrid concrete saw

A hybrid concrete saw includes a saw blade, an internal combustion engine having an output shaft operably connected to the saw blade, and an electric motor connectable to a battery for receiving power therefrom and having an output shaft operably connected to the saw blade. A transmission is connected to the output shaft of each of the engine and the electric motor and the saw blade. A clutch selectively decouples one of the engine and the electric motor from the transmission. A controller controls operation of the engine and the electric motor. The concrete saw is operable in a first mode where the saw blade is driven solely by the engine, a second mode where the saw blade is driven solely by the electric motor, and a third mode where the saw blade is driven by both the engine and the electric motor.




on

Method of dressing an abrasive wheel using a polycrystalline CVD synthetic diamond dresser and method of fabricating the same

A method of dressing a wheel using a polycrystalline CVD synthetic diamond dresser, the method comprising: rotating the wheel; and contacting a working surface of the wheel with a working surface of the polycrystalline CVD synthetic diamond dresser, wherein the polycrystalline CVD synthetic diamond dresser is oriented such that a leading edge of the working surface of the polycrystalline CVD synthetic diamond dresser is formed of larger grains than a trailing edge of the working surface of the polycrystalline CVD synthetic diamond dresser.




on

Method for shaping and slicing ingots using an aqueous phosphate solution

A method for slicing a workpiece into wafers in which a polyphosphate solution is applied to the workpiece during the slicing process. The method comprises the steps of positioning the workpiece, such as a silicon ingot, in the vicinity of a wire saw that can cut through the workpiece without the use of an abrasive slurry; causing an aqueous polyphosphate solution to contact the workpiece; and causing the wire saw to cut into the workpiece while the polyphosphate solution is in contact with the workpiece. After the workpiece has been cut into wafers, the polyphosphate solution is rinsed off of the wafers. Preferably, the wire saw used in this method is a diamond wire saw.




on

Systems and methods for connecting an ingot to a wire saw

Systems and methods are disclosed for connecting an ingot to a wire saw with an ingot holder, a bond beam, and a bar. The bar has an angled mating surface that engages a recessed surface formed in a slot of the bond beam. Mechanical fasteners are used to connect the tee bar to the ingot holder. The angle of the mating surface with respect to the recessed surface of the slot prevents deformation of the bond beam and prevents compromising the integrity of the adhesive bond between the ingot and the bond beam.




on

Method for cooling a workpiece made of semiconductor material during wire sawing

A method for cooling a cylindrical workpiece during wire sawing includes applying a liquid coolant to a surface of the workpiece. The workpiece is made of semiconductor material having a surface including two end faces and a lateral face. The method includes sawing the workpiece with a wire saw including a wire web having wire sections arranged in parallel by penetrating the wire sections into the workpiece by an oppositely directed relative movement of the wire sections and the workpiece. Wipers are disposed so as to bear on the surface of the workpiece. The temperature of the workpiece is controlled during the wire sawing using a liquid coolant applied onto the workpiece above the wipers so as to remove the liquid coolant with the wipers bearing on the workpiece surface.




on

Independently supported concrete saw apparatus and method

A saw apparatus for sawing paving slabs has a frame mounted on a ground contacting propulsion member such that the frame may move above a slab to be cut without touching the slab. A first saw support assembly disposes a blade of a saw in cutting engagement with the slab for a transverse cut. A second saw support assembly disposes a blade of another saw in cutting engagement with the slab for a longitudinal cut. The saws are mounted on the saw assemblies and the saw assemblies are mounted on the frame and the frame is mounted on the ground contact propulsion members such that no part of said frame need contact the slab during cutting.




on

Apparatus, system and method for using a diamond-impregnated wire to cut an object

An apparatus, a system and a method may use a diamond-impregnated wire loop to cut an underwater pipeline. The apparatus may have a frame, a carriage attached to the frame and/or pulleys connected to the carriage. The diamond-impregnated wire loop may be connected to the pulleys. The carriage may move relative to the frame to direct the diamond-impregnated wire loop in a forward direction relative to the frame and/or through the pipeline.




on

Arrangement and method for flow control of molten metal in a continuous casting process

An arrangement for a continuous casting process. The arrangement includes a vessel having a first opening for receiving molten metal in the vessel, a second opening for discharging the molten metal from the vessel, and a body extending between the first opening and the second opening, a first magnetic arrangement attached to the body, the first magnetic arrangement having a magnetic core with legs, and coils arranged around the legs, and a power system configured to provide an alternating current superimposed on a carrier current to each of the coils, each pair of alternating current and carrier current provided to a coil forming a flow control current, wherein flow control currents provided to adjacent coils are phase shifted relative each other, thereby creating a travelling magnetic field in molten metal in the vessel. A corresponding method is also presented herein.




on

Multi-alloy vertical semi-continuous casting method

The invention relates to a method for the vertical semi-continuous direct chill casting of composite billets or plates comprising at least two layers of aluminum alloys, using a separator which is in contact with the solidification front and which provides a seal between the two alloys during casting, said separator being vibrated while it is in contact with the solidification front, so that the separator is not frozen in and entrained by the solid metal. The invention also relates to a device that can be used to carry out said method.




on

Porosity detection

A computer executing a software algorithm may be used to detect a depression in a temperature profile. The temperature profile may be smoothed to eliminate noise. Next, the temperature profile's center may be extracted. A polynomial may be fitted to extracted data. An algorithm used to fit the polynomial may guarantee that the fitted curve's peak may be below the actual temperature data's peak. Next, residuals may be calculated by subtracting the fitted curve from the actual data. If there is a dip at the center, then the residuals in the center may be less than zero. The software algorithm executing on the computer may then make a decision based on a sign of the residuals. For example, residuals less than zero may indicate bar porosity. Residuals above zero may indicate no porosity. The magnitude of the residuals may then be used to classify a size of a detected defect.




on

Metal alloy injection molding protrusions

Metal alloy injection molding techniques are described. In one or more implementations, these techniques may also include adjustment of injection pressure, configuration of runners, and/or use of vacuum pressure, and so on to encourage flow of the metal alloy through a mold. Techniques are also described that utilize protrusions to counteract thermal expansion and subsequent contraction of the metal alloy upon cooling. Further, techniques are described in which a radius of edges of a feature is configured to encourage flow and reduce voids. A variety of other techniques are also described herein.




on

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques

Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.




on

Segmented receiving housing hole, sliding core, tensioning device and traction mechanism drive

A receiving housing of a hydraulic tensioning device for a traction mechanism drive in an internal combustion engine, having an opening that extends along a longitudinal axis for receiving a piston that is implemented for deflecting a tensioning rail of the traction mechanism drive. The receiving housing is a cast component, and the opening comprises an inner contour having an inner surface that comprises at least first segments and inclines for removing the workpiece from the mold in the opening. The second segments include surfaces that are directed into the inside of the opening and are aligned in parallel with the longitudinal axis. A sliding core is also provided that has an outer contour that is complementary to the inner contour of the opening of the receiving housing and fits into the opening. A traction mechanism drive and tensioning device having a receiving housing of this type are also included.




on

Method of fabricating micrometer scale components

A method for manufacturing micrometer scale components comprises depositing a first metal on a substrate, depositing a second metal in a mold, and alloying the first and second metals together to form the component.




on

Method of producing ingot with variable composition using planar solidification

Molten metal of a first composition is fed into a mold cavity, via a first control apparatus, wherein the control apparatus is open, wherein the feeding includes at least flowing out of a first feed chamber. The first control apparatus is closed. A second control apparatus is opened. Molten metal of a second composition is fed into the mold cavity, via the second control apparatus, wherein at least a portion of the metal of the first composition in the mold cavity is sufficiently molten so that an initial feed of molten metal of the second composition mixes with the molten metal of the first composition in the mold cavity, wherein the feeding includes at least flowing out of a second feed chamber, wherein the second composition is different from the first composition. An ingot is removed from the mold cavity, wherein the ingot as a top section, a middle section, and a bottom section, wherein the bottom section is composed of metal of the first composition, wherein the top section is composed of metal of the second composition, wherein the middle section is composed of a mixture of metal of the first composition and the second composition.




on

Bearing component for a rolling bearing or for a sliding bearing

The invention concerns a bearing component (Ia, Ib, 1, 7, 9) for a rolling (13, 14, 16) or sliding bearing (19), wherein the bearing component (Ia, Ib, 1, 7, 9) is one of an inner ring (Ia, 1), an outer ring (Ib, 7), a rolling element (9), a cage, or a guide ring. The bearing component (Ia, Ib, 1, 7, 9) comprises a first material (2), and a second material (3) joined to the first material (2), wherein the second material (3) and the first material (2) having been joined by a semi-solid metal process.




on

Method for continuous casting of a metal with improved mechanical strength and product obtained by said method

A new method for continuous casting of molten metal is provided that allows one to obtain an intermediate product such as slab, billet wire, etc. before subsequent thermomechanical treatment (e.g. lamination or annealing), such that its chemical composition is modified by the addition of elements in order to give it greater mechanical strength.




on

Non-electroslag remelting type clean metal ingot mold

A non-electroslag remelting type clean metal ingot mold includes an ingot mold body and a insulating riser arranged on the ingot mold body; an insulated heating and heat preservation device is vertically arranged in the ingot mold body and divides the space in the ingot mold body into a plurality of independent cavity units; and the cavity units are distributed in two rows in the ingot mold body. Because the insulated heating and heat preservation device is arranged in the ingot mold body and divides the space in the ingot mold body into a plurality of independent cavity units, most of impurities and segregates in liquid metals are enriched in the part in contact with the isolation and heat insulation mechanism during the directional solidification and crystallization of the liquid metals and the enriched alloy segregates, and the impurities can be easily eliminated by utilizing flame or other processing methods.




on

Aluminum-diamond composite and manufacturing method

Disclosed is an aluminum-diamond composite having both high thermal conductivity and thermal expansion coefficient close to those of semiconductor elements, which is improved in platability in the surface and surface roughness so that the composite becomes suitable for use as a heat sink of a semiconductor element of the like. Specifically disclosed is a plate-like aluminum-diamond composite containing diamond particles and a metal mainly composed of aluminum. The aluminum-diamond composite is composed of a composite part and surface layers formed on both sides of the composite part, and the surface layers are composed of a material containing a metal mainly composed of aluminum. The diamond particle content is 40-70% by volume of the entire aluminum-diamond composite.




on

Method of casting semi-liquid or semi-solid iron-based alloy and die for casting

A method of casting a semi-liquid or semi-solid iron-based alloy, the method including: applying, to a part or to the whole of an uppermost surface of an inner surface of a die, a lubricating die-release agent in which particles including at least one selected from molybdenum disulfide, graphite, tungsten disulfide, boron nitride, chrome oxide and boric oxide are dispersed in a solvent; and thereafter casting by using the die.




on

Method and installation for manufacturing thin metal strip

A method for manufacturing a thin metal strip by pouring and rapidly solidifying molten metal onto a cooling roll rotating at a high speed to form a thin metal strip having a width of 50˜350 mm, blowing compression gas from substantially a tangential direction of the cooling roll toward the thin metal strip to separate the thin metal strip from the cooling roll, adsorbing the separated thin metal strip with a permeable belt of a suction type belt conveyor, and transporting to a take-up reel to wind in form of a coil, the thin metal strip is adsorbed by the belt under conditions that a nearest approaching distance L between the cooling roll and the suction type belt conveyor is 2˜50 mm and a suction width S of a suction box arranged in the suction type belt conveyor is 1.2˜2.5 times of a width W of the thin metal strip.




on

Metal alloy injection molding overflows

Metal alloy injection molding techniques are described. In one or more implementations, these techniques may also include adjustment of injection pressure, configuration of runners, and/or use of vacuum pressure, and so on to encourage flow of the metal alloy through a mold. Techniques are also described that utilize protrusions to counteract thermal expansion and subsequent contraction of the metal alloy upon cooling. Further, techniques are described in which a radius of edges of a feature is configured to encourage flow and reduce voids. A variety of other techniques are also described herein.




on

Process and refractory metal core for creating varying thickness microcircuits for turbine engine components

The present disclosure is directed to a refractory metal core for use in forming varying thickness microcircuits in turbine engine components, a process for forming the refractory metal core, and a process for forming the turbine engine components. The refractory metal core is used in the casting of a turbine engine component. The core is formed by a sheet of refractory metal material having a curved trailing edge portion integrally formed with a leading edge portion.




on

Production of die cast rotors with copper bars for electric motors

A rotor core for an electric motor includes a stack of laminations having peripherally spaced openings receiving copper bars with opposite end portions projecting from the stack. The core is mounted on an arbor and is inserted into a mold on a vertical die cast press having a shot chamber. The mold has upper and lower mold members defining annular cavities receiving end portions of the bars. Molten copper or aluminum is poured into the shot chamber and forced upwardly by a shot piston through passages in the lower mold member and into the cavity around the lower end portions of the bars. The pressurized molten metal solidifies and shrinks around the bar end portions to form an endring for the rotor. The core, endring and arbor are inverted and confined in the mold, and the casting steps are repeated to form the opposite endring.




on

Aluminum alloy compositions and methods for die-casting thereof

Aluminum alloys are provided that have improved fluidity and elongation, as well as freedom of die soldering. The aluminum alloys are particularly suitable for die-casting of structural components. The aluminum alloy includes silicon at from about 8 weight % to about 11 weight %, manganese at from about 0.8 weight % to about 1.9 weight %, iron at from about 0.1 weight % to about 0.5 weight %, magnesium at from about 0.2 weight % to about 0.7 weight %, boron at from about 0.002 weight % to about 0.15 weight %, strontium at from about 0.006 weight % to about 0.017 weight %, less than about 0.25 weight % copper, less than about 0.35 weight % zinc, less than about 0.25 weight % titanium, and a balance of aluminum. Methods related to the aluminum alloys are also provided.




on

Method for producing a trailing arm of a twist beam axle in which a drive unit of an electrical drive close to the wheel, comprising an electrical engine and a transmission, is integrated

A method of producing a trailing arm of a torsion beam axle in which an integrated drive unit of a wheel-adjacent electric drive has an electric machine and a transmission. By using the method, the trailing arm is produced in the form of a casting with a box profile. The contours for producing the area that accommodates the transmission, the connection point to the vehicle body, the bore that receives the cross-member which connects the two trailing arms to one another, the U-profile of the trailing arm, the box profile and the area that accommodates the electric machine, are modeled by cores such that the contours for producing the connection point of the trailing arm to the vehicle body, the bore that receives the cross-member and the U-profile of the trailing arm are modeled by one core.




on

Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques

Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.




on

Fluid purification level control apparatuses and methods

Apparatuses and methods for level control in a fluid purification apparatus. The apparatuses and methods include a fluid purification apparatus and a level sensor that regulates operation of the fluid purification apparatus. The level sensor may further operate a bypass valve or a heater.




on

Bituminous froth inline steam injection processing

An inline bitumen froth steam heater system including steam injection and static mixing devices is provided. The system heats and de-aerates input bitumen froth without creating downstream processing problems with the bitumen froth such as emulsification or live steam entrainment. The system is a multistage unit that injects and thoroughly mixes steam with bitumen resulting in output bitumen material having temperature of about 190° F. The system conditions a superheated steam supply to obtain saturated steam at about 300° F. The saturated steam is contacted with bitumen froth flow and mixed in a static mixer stage. The static mixers provide surface area and rotating action that allows the injected steam to condense and transfer its heat to the bitumen froth. The mixing action and increase in temperature of the bitumen froth results in reduction in bitumen viscosity and allows the release of entrapped air from the bitumen froth.




on

Apparatus for removing a contaminant from a solvent separation process

The invention is a process and apparatus for removing a contaminant from an aromatic selective solvent. A feed stream comprising an aromatic hydrocarbon and a non-aromatic hydrocarbon is contacted with the aromatic selective solvent in an extractive distillation zone to produce a raffinate stream comprising the non-aromatic hydrocarbon, and a rich solvent stream comprising the aromatic hydrocarbon and the solvent. The rich solvent stream is separated in a second distillation zone to produce an extract stream comprising the aromatic hydrocarbon, and a lean solvent stream comprising the contaminant and the aromatic selective solvent. At least a portion of the lean solvent stream is washed with a non-aromatic hydrocarbon to produce a clean solvent stream, at least a portion of which is passed to at least one of the extractive distillation zone and the second distillation zone.




on

Carbon dioxide fractionalization process

A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.




on

Coal liquefaction

Systems and methods for coal liquefaction are provided. According to one embodiment, coal is introduced into a plasma furnace. A plasma energy field is generated within the plasma furnace by causing an electrical discharge between a pair of arc rods located within the plasma furnace and positioned above the coal. Hydrocarbons contained within the coal are separated from the coal by causing the plasma energy field to penetrate the coal and heat the coal to a temperature sufficient to liquefy the hydrocarbons by focusing and drawing the plasma energy field through the coal with a magnetic field created proximate to the coal. The liquefied hydrocarbons are then captured.




on

Treatment of hydrocarbon fluids with ozone

A system for separating contaminants from wellbore cuttings that includes a processing chamber, a heat source connected to the processing chamber adapted to vaporize hydrocarbons and other contaminants disposed on the material, a condenser operatively connected to an outlet of the process chamber and adapted to condense the vaporized hydrocarbons and other contaminants, and an ozone source operatively connected to the condenser.




on

Integrated hydrocarbon cracking and product olefin cracking

Processing scheme and arrangement for increasing the relative yield of light olefins involves integration of the cracking a heavy hydrocarbon feedstock to produce an effluent comprising a range of hydrocarbon products including C4-C7 olefins and the subsequent cracking at least a portion of the C4-C7 olefins to produce additional light olefins.