i

Developing a vaccine against Zika




i

How changes to drug prohibition could be good for the UK—an essay by Molly Meacher and Nick Clegg




i

The war on drugs has failed: doctors should lead calls for drug policy reform




i

Risks of duloxetine for stress incontinence outweigh benefits, say researchers




i

Chronic insomnia: diagnosis and non-pharmacological management




i

Babies with microcephaly in Brazil are struggling to access care




i

US adults are more likely to have poor health than those in 10 similar countries, survey finds




i

Supervised physiotherapy for mild or moderate ankle sprain




i

US must address addiction as an illness, not as a moral failing, Surgeon General says




i

Thiazide diuretics seem to protect against fracture




i

NHS spent 8% more on medicines last year




i

Zika related microcephaly may appear after birth, study finds




i

Should adults take vitamin D supplements to prevent disease?




i

Trial of novel leukaemia drug is stopped for second time after two more deaths




i

First case of Zika virus spread through sexual contact is detected in UK




i

UK clinics may be able to offer mitochrondrial donation next spring




i

Doctors face manslaughter charge for failing to raise alarm over killer nurse




i

Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis




i

Time for a detente in the war on the mechanism of cellular fatty acid uptake [Letters to the Editor]




i

Esterification of 4{beta}-hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT [Patient-Oriented and Epidemiological Research]

The acyltransferase LCAT mediates FA esterification of plasma cholesterol. In vitro studies have shown that LCAT also FA-esterifies several oxysterols, but in vivo evidence is lacking. Here, we measured both free and FA-esterified forms of sterols in 206 healthy volunteers and 8 individuals with genetic LCAT deficiency, including familial LCAT deficiency (FLD) and fish-eye disease (FED). In the healthy volunteers, the mean values of the ester-to-total molar ratios of the following sterols varied: 4β-hydroxycholesterol (4βHC), 0.38; 5,6α-epoxycholesterol (5,6αEC), 0.46; 5,6β-epoxycholesterol (5,6βEC), 0.51; cholesterol, 0.70; cholestane-3β,5α,6β-triol (CT), 0.70; 7-ketocholesterol (7KC), 0.75; 24S-hydroxycholesterol (24SHC), 0.80; 25-hydroxycholesterol (25HC), 0.81; 27-hydroxycholesterol (27HC), 0.86; and 7α-hydroxycholesterol (7αHC), 0.89. In the individuals with LCAT deficiency, the plasma levels of the FA-esterified forms of cholesterol, 5,6αEC, 5,6βEC, CT, 7αHC, 7KC, 24SHC, 25HC, and 27HC, were significantly lower than those in the healthy volunteers. The individuals with FLD had significantly lower FA-esterified forms of 7αHC, 24SHC, and 27HC than those with FED. It is of note that, even in the three FLD individuals with negligible plasma cholesteryl ester, substantial amounts of the FA-esterified forms of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC were present. We conclude that LCAT has a major role in the FA esterification of many plasma oxysterols but contributes little to the FA esterification of 4βHC. Substantial FA esterification of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC is independent of LCAT.




i

Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance [Research Articles]

Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3’s novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.




i

Generation and characterization of LPA-KIV9, a murine monoclonal antibody binding a single site on apolipoprotein (a) [Research Articles]

Lipoprotein (a) [Lp(a)] is a risk factor for CVD and a target of therapy, but Lp(a) measurements are not globally standardized. Commercially available assays generally use polyclonal antibodies that detect multiple sites within the kringle (K)IV2 repeat region of Lp(a) and may lead to inaccurate assessments of plasma levels. With increasing awareness of Lp(a) as a cardiovascular risk factor and the active clinical development of new potential therapeutic approaches, the broad availability of reagents capable of providing isoform independence of Lp(a) measurements is paramount. To address this issue, we generated a murine monoclonal antibody that binds to only one site on apo(a). A BALB/C mouse was immunized with a truncated version of apo(a) that contained eight total KIV repeats, including only one copy of KIV2. We generated hybridomas, screened them, and successfully produced a KIV2-independent monoclonal antibody, named LPA-KIV9. Using a variety of truncated apo(a) constructs to map its binding site, we found that LPA-KIV9 binds to KIV9 without binding to plasminogen. Fine peptide mapping revealed that LPA-KIV9 bound to the sequence 4076LETPTVV4082 on KIV9. In conclusion, the generation of monoclonal antibody LPA-KIV9 may be a useful reagent in basic research studies and in the clinical application of Lp(a) measurements.




i

Prognostic utility of triglyceride-rich lipoprotein-related markers in patients with coronary artery disease [Research Articles]

TG-rich lipoprotein (TRL)-related biomarkers, including TRL-cholesterol (TRL-C), remnant-like lipoprotein particle-cholesterol (RLP-C), and apoC-III have been associated with atherosclerosis. However, their prognostic values have not been fully determined, especially in patients with previous CAD. This study aimed to examine the associations of TRL-C, RLP-C, and apoC-III with incident cardiovascular events (CVEs) in the setting of secondary prevention of CAD. Plasma TRL-C, RLP-C, and total apoC-III were directly measured. A total of 4,355 participants with angiographically confirmed CAD were followed up for the occurrence of CVEs. During a median follow-up period of 5.1 years (interquartile range: 3.9–6.4 years), 543 (12.5%) events occurred. Patients with incident CVEs had significantly higher levels of TRL-C, RLP-C, and apoC-III than those without events. Multivariable Cox analysis indicated that a log unit increase in TRL-C, RLP-C, and apoC-III increased the risk of CVEs by 49% (95% CI: 1.16–1.93), 21% (95% CI: 1.09–1.35), and 40% (95% CI: 1.11–1.77), respectively. High TRL-C, RLP-C, and apoC-III were also independent predictors of CVEs in individuals with LDL-C levels ≤1.8 mmol/l (n = 1,068). The addition of RLP-C level to a prediction model resulted in a significant increase in discrimination, and all three TRL biomarkers improved risk reclassification. Thus, TRL-C, RLP-C, and apoC-III levels were independently associated with incident CVEs in Chinese CAD patients undergoing statin therapy.




i

ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images In Lipid Research]




i

The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase [Research Articles]

For three decades, the LPL–specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.




i

Different rates of flux through the biosynthetic pathway for long-chain versus very-long-chain sphingolipids [Research Articles]

The backbone of all sphingolipids (SLs) is a sphingoid long-chain base (LCB) to which a fatty acid is N-acylated. Considerable variability exists in the chain length and degree of saturation of both of these hydrophobic chains, and recent work has implicated ceramides with different LCBs and N-acyl chains in distinct biological processes; moreover, they may play different roles in disease states and possibly even act as prognostic markers. We now demonstrate that the half-life, or turnover rate, of ceramides containing diverse N-acyl chains is different. By means of a pulse-labeling protocol using stable-isotope, deuterated free fatty acids, and following their incorporation into ceramide and downstream SLs, we show that very-long-chain (VLC) ceramides containing C24:0 or C24:1 fatty acids turn over much more rapidly than long-chain (LC) ceramides containing C16:0 or C18:0 fatty acids due to the more rapid metabolism of the former into VLC sphingomyelin and VLC hexosylceramide. In contrast, d16:1 and d18:1 ceramides show similar rates of turnover, indicating that the length of the sphingoid LCB does not influence the flux of ceramides through the biosynthetic pathway. Together, these data demonstrate that the N-acyl chain length of SLs may not only affect membrane biophysical properties but also influence the rate of metabolism of SLs so as to regulate their levels and perhaps their biological functions.




i

Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease [Research Articles]

Sphingolipids have become established participants in the pathogenesis of obesity and its associated maladies. Sphingosine kinase 1 (SPHK1), which generates S1P, has been shown to increase in liver and adipose of obese humans and mice and to regulate inflammation in hepatocytes and adipose tissue, insulin resistance, and systemic inflammation in mouse models of obesity. Previous studies by us and others have demonstrated that global sphingosine kinase 1 KO mice are protected from diet-induced obesity, insulin resistance, systemic inflammation, and NAFLD, suggesting that SPHK1 may mediate pathological outcomes of obesity. As adipose tissue dysfunction has gained recognition as a central instigator of obesity-induced metabolic disease, we hypothesized that SPHK1 intrinsic to adipocytes may contribute to HFD-induced metabolic pathology. To test this, we depleted Sphk1 from adipocytes in mice (SK1fatKO) and placed them on a HFD. In contrast to our initial hypothesis, SK1fatKO mice displayed greater weight gain on HFD and exacerbated impairment in glucose clearance. Pro-inflammatory cytokines and neutrophil content of adipose tissue were similar, as were levels of circulating leptin and adiponectin. However, SPHK1-null adipocytes were hypertrophied and had lower basal lipolytic activity. Interestingly, hepatocyte triacylglycerol accumulation and expression of pro-inflammatory cytokines and collagen 1a1 were exacerbated in SK1fatKO mice on a HFD, implicating a specific role for adipocyte SPHK1 in adipocyte function and inter-organ cross-talk that maintains overall metabolic homeostasis in obesity. Thus, SPHK1 serves a previously unidentified essential homeostatic role in adipocytes that protects from obesity-associated pathology. These findings may have implications for pharmacological targeting of the SPHK1/S1P signaling axis.




i

Serum lipoprotein (a) associates with a higher risk of reduced renal function: a prospective investigation [Research Articles]

Lipoprotein (a) [Lp(a)] is a well-known risk factor for cardiovascular disease, but analysis on Lp(a) and renal dysfunction is scarce. We aimed to investigate prospectively the association of serum Lp(a) with the risk of reduced renal function, and further investigated whether diabetic or hypertensive status modified such association. Six thousand two hundred and fifty-seven Chinese adults aged ≤40 years and free of reduced renal function at baseline were included in the study. Reduced renal function was defined as estimated glomerular filtration rate <60 ml/min/1.73 m2. During a mean follow-up of 4.4 years, 158 participants developed reduced renal function. Each one-unit increase in log10-Lp(a) (milligrams per deciliter) was associated with a 1.99-fold (95% CI 1.15–3.43) increased risk of incident reduced renal function; the multivariable-adjusted odds ratio (OR) for the highest tertile of Lp(a) was 1.61 (95% CI 1.03–2.52) compared with the lowest tertile (P for trend = 0.03). The stratified analysis showed the association of serum Lp(a) and incident reduced renal function was more prominent in participants with prevalent diabetes [OR 4.04, 95% CI (1.42–11.54)] or hypertension [OR 2.18, 95% CI (1.22–3.89)]. A stronger association was observed in the group with diabetes and high Lp(a) (>25 mg/dl), indicating a combined effect of diabetes and high Lp(a) on the reduced renal function risk. An elevated Lp(a) level was independently associated with risk of incident reduced renal function, especially in diabetic or hypertensive patients.




i

Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice [Research Articles]

Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.




i

Accessibility of cholesterol at cell surfaces [Images In Lipid Research]




i

In Memoriam: Shozo Yamamoto (1933-2020) [Tribute]




i

Quantification of common and planar bile acids in tissues and cultured cells [Methods]

Bile acids (BAs) have been established as ubiquitous regulatory molecules implicated in a large variety of healthy and pathological processes. However, the scope of BA heterogeneity is often underrepresented in current literature. This is due in part to inadequate detection methods, which fail to distinguish the individual constituents of the BA pool. Thus, the primary aim of this study was to develop a method that would allow the simultaneous analysis of specific C24 BA species, and to apply that method to biological systems of interest. Herein, we describe the generation and validation of an LC-MS/MS assay for quantification of numerous BAs in a variety of cell systems and relevant biofluids and tissue. These studies included the first baseline level assessment for planar BAs, including allocholic acid, in cell lines, biofluids, and tissue in a nonhuman primate (NHP) laboratory animal, Macaca mulatta, in healthy conditions. These results indicate that immortalized cell lines make poor models for the study of BA synthesis and metabolism, whereas human primary hepatocytes represent a promising alternative model system. We also characterized the BA pool of M. mulatta in detail. Our results support the use of NHP models for the study of BA metabolism and pathology in lieu of murine models. Moreover, the method developed here can be applied to the study of common and planar C24 BA species in other systems.




i

A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome [Methods]

The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.




i

Genetic susceptibility, dietary cholesterol intake, and plasma cholesterol levels in a Chinese population [Patient-Oriented and Epidemiological Research]

Accompanied with nutrition transition, non-HDL-C levels of individuals in Asian countries has increased rapidly, which has caused the global epicenter of nonoptimal cholesterol to shift from Western countries to Asian countries. Thus, it is critical to underline major genetic and dietary determinants. In the current study of 2,330 Chinese individuals, genetic risk scores (GRSs) were calculated for total cholesterol (TC; GRSTC, 57 SNPs), LDL-C (GRSLDL-C, 45 SNPs), and HDL-C (GRSHDL-C, 65 SNPs) based on SNPs from the Global Lipid Genetics Consortium study. Cholesterol intake was estimated by a 74-item food-frequency questionnaire. Associations of dietary cholesterol intake with plasma TC and LDL-C strengthened across quartiles of the GRSTC (effect sizes: –0.29, 0.34, 2.45, and 6.47; Pinteraction = 0.002) and GRSLDL-C (effect sizes: –1.35, 0.17, 5.45, and 6.07; Pinteraction = 0.001), respectively. Similar interactions with non-HDL-C were observed between dietary cholesterol and GRSTC (Pinteraction = 0.001) and GRSLDL-C (Pinteraction = 0.004). The adverse effects of GRSTC on TC (effect sizes across dietary cholesterol quartiles: 0.51, 0.82, 1.21, and 1.31; Pinteraction = 0.023) and GRSLDL-C on LDL-C (effect sizes across dietary cholesterol quartiles: 0.66, 0.52, 1.12, and 1.56; Pinteraction = 0.020) were more profound in those having higher cholesterol intake compared with those with lower intake. Our findings suggest significant interactions between genetic susceptibility and dietary cholesterol intake on plasma cholesterol profiles in a Chinese population.




i

{beta}-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice [Research Articles]

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma β-carotene with atherosclerosis, and we recently showed that β-carotene oxygenase 1 (BCO1) activity, responsible for β-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact β-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr–/– mice, β-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr–/–/Bco1–/– mice despite accumulating β-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.




i

Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output [Research Articles]

N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.




i

Distinctive sphingolipid patterns in chronic multiple sclerosis lesions [Research Articles]

Multiple sclerosis (MS) is a CNS disease characterized by immune-mediated demyelination and progressive axonal loss. MS-related CNS damage and its clinical course have two main phases: active and inactive/progressive. Reliable biomarkers are being sought to allow identification of MS pathomechanisms and prediction of its course. The purpose of this study was to identify sphingolipid (SL) species as candidate biomarkers of inflammatory and neurodegenerative processes underlying MS pathology. We performed sphingolipidomic analysis by HPLC-tandem mass spectrometry to determine the lipid profiles in post mortem specimens from the normal-appearing white matter (NAWM) of the normal CNS (nCNS) from subjects with chronic MS (active and inactive lesions) as well as from patients with other neurological diseases. Distinctive SL modification patterns occurred in specimens from MS patients with chronic inactive plaques with respect to NAWM from the nCNS and active MS (Ac-MS) lesions. Chronic inactive MS (In-MS) lesions were characterized by decreased levels of dihydroceramide (dhCer), ceramide (Cer), and SM subspecies, whereas levels of hexosylceramide and Cer 1-phosphate (C1P) subspecies were significantly increased in comparison to NAWM of the nCNS as well as Ac-MS plaques. In contrast, Ac-MS lesions were characterized by a significant increase of major dhCer subspecies in comparison to NAWM of the nCNS. These results suggest the existence of different SL metabolic pathways in the active versus inactive phase within progressive stages of MS. Moreover, they suggest that C1P could be a new biomarker of the In-MS progressive phase, and its detection may help to develop future prognostic and therapeutic strategies for the disease.




i

Biogeography of microbial bile acid transformations along the murine gut [Research Articles]

Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.




i

Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS [Research Articles]

Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-B via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.




i

Harmonized procedures lead to comparable quantification of total oxylipins across laboratories [Research Articles]

Oxylipins are potent lipid mediators involved in a variety of physiological processes. Their profiling has the potential to provide a wealth of information regarding human health and disease and is a promising technology for translation into clinical applications. However, results generated by independent groups are rarely comparable, which increases the need for the implementation of internationally agreed upon protocols. We performed an interlaboratory comparison for the MS-based quantitative analysis of total oxylipins. Five independent laboratories assessed the technical variability and comparability of 133 oxylipins using a harmonized and standardized protocol, common biological materials (i.e., seven quality control plasmas), standard calibration series, and analytical methods. The quantitative analysis was based on a standard calibration series with isotopically labeled internal standards. Using the standardized protocol, the technical variance was within ±15% for 73% of oxylipins; however, most epoxy fatty acids were identified as critical analytes due to high variabilities in concentrations. The comparability of concentrations determined by the laboratories was examined using consensus value estimates and unsupervised/supervised multivariate analysis (i.e., principal component analysis and partial least squares discriminant analysis). Interlaboratory variability was limited and did not interfere with our ability to distinguish the different plasmas. Moreover, all laboratories were able to identify similar differences between plasmas. In summary, we show that by using a standardized protocol for sample preparation, low technical variability can be achieved. Harmonization of all oxylipin extraction and analysis steps led to reliable, reproducible, and comparable oxylipin concentrations in independent laboratories, allowing the generation of biologically meaningful oxylipin patterns.




i

Assessing the role of glycosphingolipids in the phenotype severity of Fabry disease mouse model [Research Articles]

Fabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb3 isoforms (various fatty acids) and lyso-Gb3 analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits. Total Gb3 and lyso-Gb3 levels in the heart, kidney, and dorsal root ganglion (DRG) were similar in the two strains. However, levels of the C20-fatty acid isoform of Gb3 and particular lyso-Gb3 analogs (+18, +34) were significantly higher in Fabry-B6/129 heart tissue when compared with Fabry-B6. By contrast, there was no difference in Gb3 and lyso-Gb3 isoforms/analogs in the kidneys and DRG between the two strains. Furthermore, using immunohistochemistry, we found that Gb3 massively accumulated in DRG mechanoreceptors, a sensory neuron subpopulation with preserved function in Fabry disease. However, Gb3 accumulation was not observed in nonpeptidergic nociceptors, the disease-relevant subpopulation that has remarkably increased isolectin-B4 (the marker of nonpeptidergic nociceptors) binding and enlarged cell size. These findings suggest that specific species of Gb3 or lyso-Gb3 may play major roles in the pathogenesis of Fabry disease, and that Gb3 and lyso-Gb3 are not responsible for the pathology in all tissues or cell types.




i

Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity [Research Articles]

Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.




i

Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer [Research Articles]

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.




i

Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice [Research Articles]

Adaptive thermogenesis is highly dependent on uncoupling protein 1 (UCP1), a protein expressed by thermogenic adipocytes present in brown adipose tissue (BAT) and white adipose tissue (WAT). Thermogenic capacity of human and mouse BAT can be measured by positron emission tomography-computed tomography quantifying the uptake of 18F-fluodeoxyglucose or lipid tracers. BAT activation is typically studied in response to cold exposure or treatment with β-3-adrenergic receptor agonists such as CL316,243 (CL). Currently, it is unknown whether cold-stimulated uptake of glucose or lipid tracers is a good surrogate marker of UCP1-mediated thermogenesis. In metabolic studies using radiolabeled tracers, we found that glucose uptake is increased in mildly cold-activated BAT of Ucp1–/– versus WT mice kept at subthermoneutral temperature. Conversely, lower glucose disposal was detected after full thermogenic activation achieved by sustained cold exposure or CL treatment. In contrast, uptake of lipoprotein-derived fatty acids into chronically activated thermogenic adipose tissues was substantially increased in UCP1-deficient mice. This effect is linked to higher sympathetic tone in adipose tissues of Ucp1–/– mice, as indicated by elevated levels of thermogenic genes in BAT and WAT. Thus, glucose and lipoprotein handling does not necessarily reflect UCP1-dependent thermogenic activity, but especially lipid uptake rather mirrors sympathetic activation of adipose tissues.




i

Chylomicronemia from GPIHBP1 autoantibodies [Reviews]

Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody–based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.




i

Novel contact sites between lipid droplets, early endosomes, and the endoplasmic reticulum [Images in Lipid Research]




i

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




i

A closer look at the mysterious HSD17B13 [Commentary]




i

Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort [Patient-Oriented and Epidemiological Research]

Familial LCAT deficiency (FLD) is a rare genetic disorder of HDL metabolism, caused by loss-of-function mutations in the LCAT gene and characterized by a variety of symptoms including corneal opacities and kidney failure. Renal disease represents the leading cause of morbidity and mortality in FLD cases. However, the prognosis is not known and the rate of deterioration of kidney function is variable and unpredictable from patient to patient. In this article, we present data from a follow-up of the large Italian cohort of FLD patients, who have been followed for an average of 12 years. We show that renal failure occurs at the median age of 46 years, with a median time to a second recurrence of 10 years. Additionally, we identify high plasma unesterified cholesterol level as a predicting factor for rapid deterioration of kidney function. In conclusion, this study highlights the severe consequences of FLD, underlines the need of correct early diagnosis and referral of patients to specialized centers, and highlights the urgency for effective treatments to prevent or slow renal disease in patients with LCAT deficiency.




i

LDL apheresis as an alternate method for plasma LPS purification in healthy volunteers and dyslipidemic and septic patients [Research Articles]

Lipopolysaccharide (LPS) is a key player for innate immunity activation. It is therefore a prime target for sepsis treatment, as antibiotics are not sufficient to improve outcome during septic shock. An extracorporeal removal method by polymyxin (PMX) B direct hemoperfusion (PMX-DHP) is used in Japan, but recent trials failed to show a significant lowering of circulating LPS levels after PMX-DHP therapy. PMX-DHP has a direct effect on LPS molecules. However, LPS is not present in a free form in the circulation, as it is mainly carried by lipoproteins, including LDLs. Lipoproteins are critical for physiological LPS clearance, as LPSs are carried by LDLs to the liver for elimination. We hypothesized that LDL apheresis could be an alternate method for LPS removal. First, we demonstrated in vitro that LDL apheresis microbeads are almost as efficient as PMX beads to reduce LPS concentration in LPS-spiked human plasma, whereas it is not active in PBS. We found that PMX was also adsorbing lipoproteins, although less specifically. Then, we found that endogenous LPS of patients treated by LDL apheresis for familial hypercholesterolemia is also removed during their LDL apheresis sessions, with both electrostatic-based devices and filtration devices. Finally, LPS circulating in the plasma of septic shock and severe sepsis patients with gram-negative bacteremia was also removed in vitro by LDL adsorption. Overall, these results underline the importance of lipoproteins for LPS clearance, making them a prime target to study and treat endotoxemia-related conditions.