en Novel Detection and Restorative Levodopa Treatment for Pre-Clinical Diabetic Retinopathy By diabetes.diabetesjournals.org Published On :: 2020-02-12T12:37:27-08:00 Diabetic retinopathy (DR) is diagnosed clinically by directly viewing retinal vascular changes during ophthalmoscopy or through fundus photographs. However, electroretinography (ERG) studies in humans and rodents have revealed that retinal dysfunction is demonstrable prior to the development of visible vascular defects. Specifically, delays in dark-adapted ERG oscillatory potential (OP) implicit times in response to dim flash stimuli (<-1.8 log cd·s/m2) occur prior to clinically-recognized diabetic retinopathy. Animal studies suggest that retinal dopamine deficiency underlies these early functional deficits. Here, we randomized persons with diabetes, without clinically detectable retinopathy, to treatment with either low or high dose Sinemet (levodopa plus carbidopa) for 2 weeks and compared their ERG findings with those of control (no DM) subjects. We assessed dim flash stimulated OP delays using a novel hand-held ERG system (RETeval) at baseline, 2 and 4 weeks. RETeval recordings identified significant OP implicit-time delays in persons with diabetes without retinopathy compared to age-matched controls (p<0.001). After two weeks of Sinemet treatment, OP implicit times were restored to control values, and these improvements persisted even after a two-week washout. We conclude that detection of dim flash OP delays could provide early detection of DR, and that Sinemet treatment may reverse retinal dysfunction. Full Article
en Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-like Protein 4 Expression in Mice By diabetes.diabetesjournals.org Published On :: 2020-02-12T14:26:05-08:00 To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF feeding (ppHF), which avoided the dietary effect during pregnancy. We found that maternal blood TG concentrations in ppHF dams were not only remarkably lower than control dams, but the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in iBAT of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4-/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gWAT and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice. Full Article
en Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin By diabetes.diabetesjournals.org Published On :: 2020-03-09T06:50:09-07:00 Despite considerable progress, development of glucose-responsive insulins (GRI) still largely depends on empirical knowledge and tedious experimentation – especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH), built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space, and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI’s clinical translation by connecting each candidate’s efficacies in rats, mice, and humans. The resultant mapping helps find GRIs which appear promising in rodents but underperform in humans (i.e. false-positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false-negatives). We condense such information onto a translatability grid as a straightforward, visual guide for GRI development. Full Article
en Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice By diabetes.diabetesjournals.org Published On :: 2020-03-09T12:48:09-07:00 Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has been recently shown to act as a neurotrophic factor to control the development of AP->NTS and ARC->PVN axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. To investigate the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR) was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment. Full Article
en Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-03-31T14:12:19-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
en Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-04-20T08:51:08-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
en Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response By diabetes.diabetesjournals.org Published On :: 2020-04-21T12:16:29-07:00 Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival. Full Article
en Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic {beta}-cells By diabetes.diabetesjournals.org Published On :: 2020-04-24T09:55:27-07:00 A sustained increase in intracellular Ca2+ concentration (referred to herein as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high fat diet (HFD) on Abcc8 knock-out mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation and mitochondrial biogenesis, and their key regulator Ppargc1a. Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure. Full Article
en Revisiting Proinsulin Processing: Evidence That Human {beta}-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 But Not PC2 By diabetes.diabetesjournals.org Published On :: 2020-04-24T11:09:35-07:00 Insulin is first produced in pancreatic β-cells as the precursor prohormone proinsulin. Defective proinsulin processing has been implicated in the pathogenesis of both type 1 and type 2 diabetes. Though there is substantial evidence that mouse β-cells process proinsulin using prohormone convertase 1/3 (PC1/3) then prohormone convertase 2 (PC2), this finding has not been verified in human β-cells. Immunofluorescence with validated antibodies reveals that there was no detectable PC2 immunoreactivity in human β-cells and little PCSK2 mRNA by in situ hybridization. Similarly, rat β-cells were not immunoreactive for PC2. In all histological experiments, PC2 immunoreactivity in neighbouring α-cells acts as a positive control. In donors with type 2 diabetes, β-cells had elevated PC2 immunoreactivity, suggesting that aberrant PC2 expression may contribute to impaired proinsulin processing in β-cells of patients with diabetes. To support histological findings using a biochemical approach, human islets were used for pulse-chase experiments. Despite inhibition of PC2 function by temperature blockade, brefeldin-A, chloroquine, and multiple inhibitors that blocked production of mature glucagon from proglucagon, β-cells retained the ability to produce mature insulin. Conversely, suppression of PC1/3 blocked processing of proinsulin but not proglucagon. By demonstrating that healthy human β-cells process proinsulin by PC1/3 but not PC2 we suggest that there is a need to revise the longstanding theory of proinsulin processing. Full Article
en Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival. Full Article
en Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity. Full Article
en Pathogenic Role of PPAR{alpha} Down-Regulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 The purpose of this study was to investigate the protective role of Peroxisome Proliferator-Activated Receptor-alpha (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from diabetic and non-diabetic human donors. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was down-regulated in the corneas of diabetic humans and rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which was partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα-/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα-/- mice relative to wild-type mice by nine months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy. Full Article
en Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:07:36-07:00 Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease. Full Article
en Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress. Full Article
en Elevated First-Trimester Neutrophil Count Is Closely Associated with the Development of Maternal Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Chronic low-grade inflammation plays a central role in the pathophysiology of gestational diabetes mellitus (GDM). In order to investigate the ability of different inflammatory blood cell parameters in predicting the development of GDM and pregnancy outcomes, 258 women with GDM and 1154 women without were included in this retrospective study. First-trimester neutrophil count outperformed white blood cell (WBC) count, and neutrophil-to-lymphocyte ratio (NLR) in the predictability for GDM. Subjects were grouped based on tertiles of neutrophil count during their first-trimester pregnancy. The results showed that as the neutrophil count increased, there was a step-wise increase in GDM incidence, as well as glucose and glycosylated hemoglobin (HbA1c) level, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), macrosomia incidence and newborn weight. Neutrophil count was positively associated with pre-pregnancy Body Mass Index (BMI), HOMA-IR and newborn weight. Additionally, neutrophil count was an independent risk factor for the development of GDM, regardless of the history of GDM. Spline regression showed that there was a significant linear association between GDM incidence and continuous neutrophil count when it exceeded 5.0 x 109/L. This work suggested that first-trimester neutrophil count is closely associated with the development of GDM and adverse pregnancy outcomes. Full Article
en Central {alpha}-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 α-Klotho is a circulating factor with well-documented anti-aging properties; however, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate NPY/AgRP neurons, energy balance, and glucose homeostasis. Intracerebroventricular (ICV) administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of Type I and II diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing mIPSC’s. Experiments in hypothalamic GT1-7 cells observed α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256, as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. PI3 kinase inhibition also abolished α-klotho’s ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease. Full Article
en Acute Hyperglycemia Increases Brain Pregenual Anterior Cingulate Cortex Glutamate Concentrations in Type 1 Diabetes Mellitus By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 The brain mechanisms underlying the association of hyperglycemia with depressive symptoms are unknown. We hypothesized that disrupted glutamate metabolism in pregenual anterior cingulate cortex (ACC) in type 1 diabetes (T1D) without depression affects emotional processing. Using proton magnetic resonance spectroscopy (MRS), we measured glutamate concentrations in ACC and occipital cortex (OCC) in 13 T1D without major depression (HbA1c=7.1±0.7% [54±7mmol/mol]) and 11 healthy non-diabetic controls (HbA1c=5.5±0.2% [37±3mmol/mol]) during fasting euglycemia (EU) followed by a 60-minute +5.5mmol/l hyperglycemic clamp (HG). Intrinsic neuronal activity was assessed using resting-state blood oxygen level dependent functional MRI to measure the fractional amplitude of low frequency fluctuations in slow-band 4 (fALFF4). Emotional processing and depressive symptoms were assessed using emotional tasks (Emotional-Stroop, Self-Referent-Encoding-Task SRET) and clinical ratings (HAM-D, SCL-90-R), respectively. During HG, ACC glutamate increased (1.2mmol/kg, +10%, p=0.014) while ACC fALFF4 was unchanged (-0.007, -2%, p=0.449) in T1D; in contrast, glutamate was unchanged (-0.2mmol/kg, -2%, p=0.578) while fALFF4 decreased (-0.05, -13%, p=0.002) in controls. OCC glutamate and fALFF4 were unchanged in both groups. T1D had longer SRET negative-word response-times (p=0.017) and higher depression-rating scores (HAM-D p=0.020; SCL-90-R-depression p=0.008). Higher glutamate change tended to associate with longer Emotional-Stroop response-times in T1D only. Brain glutamate must be tightly controlled during hyperglycemia due to the risk for neurotoxicity with excessive levels. Results suggest that ACC glutamate control mechanisms are disrupted in T1D, which affects glutamatergic neurotransmission related to emotional or cognitive processing. Increased prefrontal glutamate during acute hyperglycemic episodes could explain our previous findings of associations between chronic hyperglycemia, cortical thinning and depressive symptoms in T1D. Full Article
en Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4 By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islet (PI) β-cells by an as yet unknown mechanism. We found NADPH oxidase, isoform-4 (NOX4), to be the major producer of cytosolic H2O2, essential for GSIS, while the increase in ATP/ADP alone was insufficient. The fast GSIS phase was absent in PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (not NOX2KO), and NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations and the patch-clamped ATP-sensitive potassium channel (KATP) opened more frequently at high glucose. Mitochondrial H2O2, decreasing upon GSIS, provided an alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxide by electron-transport flavoprotein:Q-oxidoreductase. Unlike GSIS, this ceased with mitochondrial antioxidant SkQ1. Both NOX4KO and NOX4βKO strains exhibited impaired glucose tolerance and peripheral insulin resistance. Thus the redox signaling previously suggested to cause β-cell-self-checking – hypothetically induces insulin resistance when absent. In conclusion, ATP plus H2O2 elevations constitute an essential switch-on signal of insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (partly for fatty acids). Redox signaling could be impaired by cytosolic antioxidants, hence those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage. Full Article
en Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure. Full Article
en Central KATP Channels Modulate Glucose Effectiveness in Humans and Rodents By diabetes.diabetesjournals.org Published On :: 2020-04-24T19:07:13-07:00 Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (KATP channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D. Full Article
en Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment after Acute Myocardial Infarction in Patients with Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-24T19:07:13-07:00 Type 2 diabetes mellitus predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (n=1147, n=265 diabetic; n=882 non-diabetic) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF), global longitudinal, circumferential and radial strains (GLS, GCS and GRS), LA reservoir, conduit and booster pump strains, as well as infarct size, edema and microvascular obstruction. Predefined endpoints were major adverse cardiovascular events (MACE) within 12 months. Diabetic patients had impaired LA reservoir (19.8 vs. 21.2%, p<0.01) and conduit strains (7.6 vs. 9.0%, p<0.01) but not ventricular function or myocardial damage. They were at higher risk of MACE than non-diabetic patients (10.2% vs. 5.8%, p<0.01) with most MACE occurring in patients with LVEF≥35%. Whilst LVEF (p=0.045) and atrial reservoir strain (p=0.024) were independent predictors of MACE in non-diabetic patients, GLS was in diabetic patients (p=0.010). Considering patients with diabetes and LVEF≥35% (n=237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above LVEF. Full Article
en TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration By diabetes.diabetesjournals.org Published On :: 2020-04-24T20:01:59-07:00 Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration. Full Article
en Motifs of Three HLA-DQ Amino Acid Residues ({alpha}44, {beta}57, {beta}135) Capture Full Association with the Risk of Type 1 Diabetes in DQ2 and DQ8 Children By diabetes.diabetesjournals.org Published On :: 2020-04-24T20:01:59-07:00 HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1-18 year-old patients (n=962) and controls (n=636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically-organized haplotype (HOH) association analysis, allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster, included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (OR 3.29, p=2.38*10-85 ) and β57A (OR 3.44, p=3.80*10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage-disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, p=1.96*10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, p=3.80*10-84), the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, p=1.96*10-20). Two risk associations were related to GADA and IA-2A, but in opposite directions. "CAD" was positively associated with GADA (OR 1.56; p=6.35*10-8) but negatively with IA-2A (OR 0.59, p= 6.55*10-11). "QAD" was negatively associated with GADA (OR 0.88; p= 3.70*10-3) but positively with IA-2A (OR 1.64; p= 2.40*10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential TCR contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AA (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies. Full Article
en Myo-Inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulo-Interstitial Injury in Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-27T15:42:34-07:00 Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP-1, a transcription factor of ER stress response. Previous studies indicate that MIOX’s upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated if hyperglycemia leads to accentuation of oxidant and ER stress, while boosting each other’s activities and thereby augmenting tubulo-interstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and -knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2Akita to generate Ins2Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/DHE staining, perturbed NAD/NADH and GSH/GSSG ratios, increased NOX-4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP-1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers) and accelerated tubulo-interstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2Akita/KO mice, and likewise in vitro experiments with XBP1-siRNA. These findings suggest that MIOX expression accentuates while its deficiency shields kidneys from tubulo-interstitial injury by dampening oxidant and ER stress, which mutually enhance each other’s activity. Full Article
en Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells By diabetes.diabetesjournals.org Published On :: 2020-04-27T15:42:34-07:00 Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity. Full Article
en The Metabolic Responses to 24-h Fasting and Mild Cold Exposure in Overweight Individuals are Correlated and Accompanied by Changes in FGF21 Concentration By diabetes.diabetesjournals.org Published On :: 2020-04-27T16:35:54-07:00 A greater decrease in 24-h energy expenditure (24EE) during 24h fasting defines a thriftier metabolic phenotype prone to weight gain during overfeeding and resistant to weight loss during caloric restriction. As the thermogenic response to mild cold exposure (COLD) may similarly characterize this human phenotype identified by acute fasting conditions, we analyzed changes in 24EE and sleeping metabolic rate (SLEEP) in a whole-room indirect calorimeter during 24h fasting at thermoneutrality (24°C) and during energy balance both at thermoneutrality (24°C) and mild cold (19°C) in 20 healthy volunteers (80% male, age: 36.6±11.4y, percentage body fat: 34.8±10.5%). Greater decrease in 24EE during fasting (thriftier phenotype) was associated with less increase in 24EE during COLD, i.e. less cold-induced thermogenesis. Greater decreases in plasma fibroblast growth factor 21 (FGF21) after 24h fasting and after COLD were highly correlated and associated with greater decreases in SLEEP in both conditions. We conclude that the metabolic responses to short-term fasting and COLD are associated and mediated by the liver-derived hormone FGF21. Thus, the 24EE response to COLD further identifies the thrifty versus spendthrift phenotype, providing an additional setting to investigate the physiological mechanisms underlying the human metabolic phenotype and characterizing the individual susceptibility to weight change. Full Article
en Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration and their Defects in Diabetic Corneas By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Diabetic Keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by Resiniferatoxin severely impaired corneal wound healing and markedly up-regulated pro-inflammatory gene expression. Exogenous neuropeptides CGRP, SP, and VIP partially reversed Resiniferatoxin’s effects, with VIP specifically inducing IL-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIPR1 expression in normal (NL), but not diabetic (DM) mouse corneas. Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (SHH) in a VIP-dependent manner. Downregulating SHH expression in NL corneas decreased, while exogenous SHH in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of SHH signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in a SHH-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy. Full Article
en Integrated Pancreatic Blood Flow: Bi-Directional Microcirculation Between Endocrine and Exocrine Pancreas By diabetes.diabetesjournals.org Published On :: 2020-04-28T11:00:56-07:00 The pancreatic islet is a highly-vascularized endocrine micro-organ. The unique architecture of rodent islets, a so-called core-mantle arrangement seen in 2D images, led researchers to seek functional implications for islet hormone secretion. Three models of islet blood flow were previously proposed, all based on the assumption that islet microcirculation occurs in an enclosed structure. Recent electrophysiological and molecular biological studies using isolated islets also presumed uni-directional flow. Using intravital analysis of the islet microcirculation in mice, we find that islet capillaries are continuously integrated to those in the exocrine pancreas, which makes the islet circulation rather open, not self-contained. Similarly in human islets, the capillary structure was integrated with pancreatic microvasculature in its entirety. Thus, islet microcirculation has no relation to islet cytoarchitecture, which explains its well-known variability throughout species. Furthermore, tracking fluorescent-labeled red blood cells at the endocrine-exocrine interface revealed bi-directional blood flow, with similar variability in blood flow speed in both the intra- and extra-islet vasculature. To date, the endocrine and exocrine pancreas have been studied separately by different fields of investigators. We propose that the open circulation model physically links both endocrine and exocrine parts of the pancreas as a single organ through the integrated vascular network. Full Article
en Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With no Alteration in Insulin Sensitivity By diabetes.diabetesjournals.org Published On :: 2020-04-28T14:32:29-07:00 Previous studies show that 12-week of high-fat diet (HFD) consumption caused not only prediabetes, but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n=32) were fed with either normal diet (ND) or high-fat diet (HFD) for 20 weeks. At week 13, ND-fed rats were given a vehicle (n=8) and HFD-fed rats were randomly assigned into 3 subgroups (n=8/subgroup) with vehicle, nec-1 or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer’s protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, reduced hyperphosphorylated-tau and necroptosis in HFD-fed rats. Interestingly metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity. Full Article
en Genetic Causes of Severe Childhood Obesity: A Remarkably High Prevalence (>=49%) in an Inbred Population of Pakistan By diabetes.diabetesjournals.org Published On :: 2020-04-29T13:57:29-07:00 Monogenic forms of obesity have been identified in ≤10% of severely obese European patients. However, the overall spectrum of deleterious variants (point mutations and structural variants) responsible for childhood severe obesity remains elusive. In this study, we genetically screened 225 severely obese children from consanguineous Pakistani families through a combination of techniques including an in-house developed augmented whole-exome sequencing (CoDE-seq) enabling simultaneous detection of whole exome copy number variations (CNVs) and of point mutations in coding regions. We identified 110 probands (49%) carrying 55 different pathogenic point mutations and CNVs in 13 genes/loci responsible for non-syndromic and syndromic monofactorial obesity. CoDE-seq also identified 28 rare or novel CNVs associated with intellectual disability in 22 additional obese subjects (10%). Additionally, we highlight variants in candidate genes for obesity warranting further investigation. Altogether, 59% of the studied cohort are likely to have a discrete genetic cause with 13% of these due to CNVs demonstrating a remarkably higher prevalence of monofactorial obesity than hitherto reported and a plausible over lapping of obesity and intellectual disabilities in several cases. Finally, inbred populations with high prevalence of obesity, provide a unique genetically enriched material in quest of new genes/variants influencing energy balance. Full Article
en Is Type 2 Diabetes Mellitus Causally Associated with Cancer Risk? Evidence From a Two-Sample Mendelian Randomisation Study By diabetes.diabetesjournals.org Published On :: 2020-04-29T13:57:29-07:00 We conducted a two-sample Mendelian randomisation study to investigate the causal associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific cancers. Summary-level data for cancer were extracted from the Breast Cancer Association Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher odds of pancreatic, kidney, uterine and cervical cancer, lower odds of oesophageal cancer and melanoma, but not associated with 16 other site-specific cancers or overall cancer. The odds ratios (95% confidence interval) were 1.13 (1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, cervical, and oesophageal cancer and melanoma, respectively. The association between T2DM and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian randomisation study (odds ratio 1.08; 1.02, 1.14; p=0.009). There was limited evidence supporting causal associations between fasting glucose and cancer. Genetically predicted fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas and lung. The present study found causal detrimental effects of T2DM on several cancers. We suggested to reinforce the cancers screening in T2DM patients to enable the early detection of cancer. Full Article
en Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates By diabetes.diabetesjournals.org Published On :: 2020-04-30T07:18:52-07:00 Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n=5-8/group) and juvenile offspring (n=8/group). In vivo signaling was evaluated after an insulin bolus just prior to weaning (n=4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and post-weaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action suggesting earlier interventions may be warranted. Full Article
en Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 with Clostridia and Insulin Sensitivity in Humans By diabetes.diabetesjournals.org Published On :: 2020-05-04T10:07:04-07:00 Recent studies using mouse models suggest that interaction between the gut microbiome and IL-17/IL-22 producing cells plays a role in the development of metabolic diseases. We investigated this relationship in humans using data from the prediabetes study of the Integrated Human Microbiome Project (iHMP). Specifically, we addressed the hypothesis that early in the onset of metabolic diseases there is a decline in serum levels of IL-17/IL-22, with concomitant changes in the gut microbiome. Clustering iHMP study participants on the basis of longitudinal IL-17/IL-22 profiles identified discrete groups. Individuals distinguished by low levels of IL-17/IL-22 were linked to established markers of metabolic disease, including insulin sensitivity. These individuals also displayed gut microbiome dysbiosis, characterized by decreased diversity, and IL-17/IL-22-related declines in the phylum Firmicutes, class Clostridia, and order Clostridiales. This ancillary analysis of the iHMP data therefore supports a link between the gut microbiome, IL-17/IL-22 and the onset of metabolic diseases. This raises the possibility for novel, microbiome-related therapeutic targets that may effectively alleviate metabolic diseases in humans as they do in animal models. Full Article
en Erratum. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes 2019;68:441--456 By diabetes.diabetesjournals.org Published On :: 2020-05-06T12:11:43-07:00 Full Article
en MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress By diabetes.diabetesjournals.org Published On :: 2020-05-07T08:35:09-07:00 Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress–mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK. Full Article
en Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic {beta}-Cell By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493–1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress." Full Article
en Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Hepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription. For regulation of lipogenic gene transcription, various known lipogenic transcription factors, such as USF1, ChREBP, and LXR, interact with and recruit specific histone modifiers, directing specificity toward lipogenesis. Alteration or impairment of the functions of these histone modifiers can lead to dysregulation of lipogenesis and thus hepatosteatosis leading to insulin resistance and type 2 diabetes. Full Article
en Exercise Combats Hepatic Steatosis: Potential Mechanisms and Clinical Implications By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Hepatic steatosis, the excess storage of intrahepatic lipids, is a rampant clinical problem associated with the obesity epidemic. Hepatic steatosis is linked to increased risk for insulin resistance, type 2 diabetes, and cardiovascular and advanced liver disease. Accumulating evidence shows that physical activity, exercise, and aerobic capacity have profound effects on regulating intrahepatic lipids and mediating susceptibility for hepatic steatosis. Moreover, exercise can effectively reduce hepatic steatosis independent of changes in body mass. In this perspective, we highlight 1) the relationship between obesity and metabolic pathways putatively driving hepatic steatosis compared with changes induced by exercise; 2) the impact of physical activity, exercise, and aerobic capacity compared with caloric restriction on regulating intrahepatic lipids and steatosis risk; 3) the effects of exercise training (modalities, volume, intensity) for treatment of hepatic steatosis, and 4) evidence for a sustained protection against steatosis induced by exercise. Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis. Full Article
en The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC. Full Article
en Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy. Full Article
en Two- and three-color STORM analysis reveals higher-order assembly of leukotriene synthetic complexes on the nuclear envelope of murine neutrophils [Computational Biology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Over the last several years it has become clear that higher order assemblies on membranes, exemplified by signalosomes, are a paradigm for the regulation of many membrane signaling processes. We have recently combined two-color direct stochastic optical reconstruction microscopy (dSTORM) with the (Clus-DoC) algorithm that combines cluster detection and colocalization analysis to observe the organization of 5-lipoxygenase (5-LO) and 5-lipoxygenase–activating protein (FLAP) into higher order assemblies on the nuclear envelope of mast cells; these assemblies were linked to leukotriene (LT) C4 production. In this study we investigated whether higher order assemblies of 5-LO and FLAP included cytosolic phospholipase A2 (cPLA2) and were linked to LTB4 production in murine neutrophils. Using two- and three-color dSTORM supported by fluorescence lifetime imaging microscopy we identified higher order assemblies containing 40 molecules (median) (IQR: 23, 87) of 5-LO, and 53 molecules (62, 156) of FLAP monomer. 98 (18, 154) molecules of cPLA2 were clustered with 5-LO, and 77 (33, 114) molecules of cPLA2 were associated with FLAP. These assemblies were tightly linked to LTB4 formation. The activation-dependent close associations of cPLA2, FLAP, and 5-LO in higher order assemblies on the nuclear envelope support a model in which arachidonic acid is generated by cPLA2 in apposition to FLAP, facilitating its transfer to 5-LO to initiate LT synthesis. Full Article
en The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
en Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance. Full Article
en Catabolic degradation of endothelial VEGFA via autophagy [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo. Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer. Full Article
en Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3 [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin–Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor–like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies. Full Article
en The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
en Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
en SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes. Full Article
en A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells. Full Article
en A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates. Full Article