mod Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice By www.jlr.org Published On :: 1995-11-01 RK TangiralaNov 1, 1995; 36:2320-2328Articles Full Article
mod MicroRNA-98 reduces nerve growth factor expression in nicotine-induced airway remodeling [Gene Regulation] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 μg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 μg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo. Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98. Full Article
mod The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex [Enzymology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms. Full Article
mod Shared requirements for key residues in the antibiotic resistance enzymes ErmC and ErmE suggest a common mode of RNA recognition [Enzymology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Erythromycin-resistance methyltransferases are SAM dependent Rossmann fold methyltransferases that convert A2058 of 23S rRNA to m6 2A2058. This modification sterically blocks binding of several classes of antibiotics to 23S rRNA, resulting in a multidrug-resistant phenotype in bacteria expressing the enzyme. ErmC is an erythromycin resistance methyltransferase found in many Gram-positive pathogens, whereas ErmE is found in the soil bacterium that biosynthesizes erythromycin. Whether ErmC and ErmE, which possess only 24% sequence identity, use similar structural elements for rRNA substrate recognition and positioning is not known. To investigate this question, we used structural data from related proteins to guide site-saturation mutagenesis of key residues and characterized selected variants by antibiotic susceptibility testing, single turnover kinetics, and RNA affinity–binding assays. We demonstrate that residues in α4, α5, and the α5-α6 linker are essential for methyltransferase function, including an aromatic residue on α4 that likely forms stacking interactions with the substrate adenosine and basic residues in α5 and the α5-α6 linker that likely mediate conformational rearrangements in the protein and cognate rRNA upon interaction. The functional studies led us to a new structural model for the ErmC or ErmE-rRNA complex. Full Article
mod On properties of limits of solutions in the noncommutative sigma model By www.ams.org Published On :: Tue, 01 Oct 2024 14:21 EDT A. V. Domrina Trans. Moscow Math. Soc. 83 (), 201-215. Abstract, references and article information Full Article
mod Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics By www.ams.org Published On :: Tue, 01 Oct 2024 14:21 EDT A. Kh. Khachatryan, Kh. A. Khachatryan and A. Zh. Narimanyan Trans. Moscow Math. Soc. 83 (), 183-200. Abstract, references and article information Full Article
mod Mathematical model of the spread of a pandemic like COVID-19 By www.ams.org Published On :: Tue, 01 Oct 2024 14:21 EDT A. G. Sergeev, A. Kh. Khachatryan and Kh. A. Khachatryan Trans. Moscow Math. Soc. 83 (), 55-65. Abstract, references and article information Full Article
mod Decarbonizing Heat: A New Frontier for Technologies and Business Models By www.chathamhouse.org Published On :: Mon, 03 Dec 2018 14:15:01 +0000 Decarbonizing Heat: A New Frontier for Technologies and Business Models 27 February 2019 — 8:15AM TO 9:45AM Anonymous (not verified) 3 December 2018 Chatham House | 10 St James's Square | London | SW1Y 4LE Building space and water heating accounts for over 35 percent of global energy consumption - nearly double that of transport. However, there has been limited progress in decarbonizing the sector to date. International cooperation is required to ensure harmonized policies drag low carbon heating technologies down the cost curve to the extent that low carbon heating is cost competitive and affordable. The initial presentations and discussion focus on:Demand reduction technologies and policies that speed up transformation of the sector. The different challenges for energy efficiency of retrofitting as opposed to new build.The impact of electrification on GHG emissions and the power sector.The comparative role of national and city level initiatives.The meeting concludes by looking at the challenges and risks in accelerating the transformation of heating and the lessons that can be learned from other sectors. Full Article
mod An abstract approach to Marcinkiewicz-Zygmund inequalities for approximation and quadrature in modulation spaces By www.ams.org Published On :: Mon, 21 Oct 2024 15:01 EDT Martin Ehler and Karlheinz Gröchenig Math. Comp. 93 (), 2885-2919. Abstract, references and article information Full Article
mod Exploring Thermodynamics with Billiards By www.ams.org Published On :: Mon, 14 Feb 2022 14:38:14 -0400 Tim Chumley explains the connections between random billiards and the science of heat and energy transfer. If you've ever played billiards or pool, you've used your intuition and some mental geometry to plan your shots. Mathematicians have gone a step further, using these games as inspiration for new mathematical problems. Starting from the simple theoretical setup of a single ball bouncing around in an enclosed region, the possibilities are endless. For instance, if the region is shaped like a stadium (a rectangle with semicircles on opposite sides), and several balls start moving with nearly the same velocity and position, their paths in the region soon differ wildly: chaos. Mathematical billiards even have connections to thermodynamics, the branch of physics dealing with heat, temperature, and energy transfer. Full Article
mod Moduli Spaces and Vector Bundles—New Trends By www.ams.org Published On :: Mon, 01 Jul 2024 07:25 EDT Peter Gothen, Margarida Melo and Montserrat Teixidor i Bigas, editors. American Mathematical Society, 2024, CONM, volume 803, approx. 380 pp. ISBN: 978-1-4704-7296-2 (print), 978-1-4704-7646-5 (online). This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter... Full Article
mod On Jacobians of geometrically reduced curves and their Néron models By www.ams.org Published On :: Thu, 31 Oct 2024 16:22 EDT Otto Overkamp Trans. Amer. Math. Soc. 377 (), 5863-5903. Abstract, references and article information Full Article
mod Corgi Toys - Corgi Whizzwheels - Porsche 917 - Miniature Diecast Metal 1/43 Scale Model Motor Vehicle By www.flickr.com Published On :: Tue, 12 Nov 2024 06:13:47 -0800 firehouse.ie posted a photo: Full Article
mod Corgi Toys - Corgi Whizzwheels - Porsche 917 - Miniature Diecast Metal 1/43 Scale Model Motor Vehicle By www.flickr.com Published On :: Tue, 12 Nov 2024 06:13:47 -0800 firehouse.ie posted a photo: Full Article
mod Corgi Toys - Corgi Whizzwheels - Porsche 917 - Miniature Diecast Metal 1/43 Scale Model Motor Vehicle By www.flickr.com Published On :: Tue, 12 Nov 2024 06:13:47 -0800 firehouse.ie posted a photo: Full Article
mod Tekno - The Irish Collection - Ref. 258 - Scania Articulated Truck - Glynns, Galway - Miniature Diecast Metal Scale Model Heavy Goods Vehicle By www.flickr.com Published On :: Tue, 12 Nov 2024 06:44:08 -0800 firehouse.ie posted a photo: Full Article
mod Tekno - The Irish Collection - Ref. 258 - Scania Articulated Truck - Glynns, Galway - Miniature Diecast Metal Scale Model Heavy Goods Vehicle By www.flickr.com Published On :: Tue, 12 Nov 2024 06:44:07 -0800 firehouse.ie posted a photo: Full Article
mod The history of model railroading the the Walthers 1970 O Scale Catalog By www.flickr.com Published On :: Tue, 12 Nov 2024 07:38:05 -0800 Tangled Bank posted a photo: Full Article
mod The history of model railroading the the Walthers 1970 O Scale Catalog By www.flickr.com Published On :: Tue, 12 Nov 2024 07:38:03 -0800 Tangled Bank posted a photo: Full Article
mod The history of model railroading the the Walthers 1970 O Scale Catalog By www.flickr.com Published On :: Tue, 12 Nov 2024 07:38:01 -0800 Tangled Bank posted a photo: Full Article
mod Asymptotic normality of estimators for all parameters in the Vasicek model by discrete observations By www.ams.org Published On :: Tue, 05 Nov 2024 14:10 EST Olha Prykhodko and Kostiantyn Ralchenko Theor. Probability and Math. Statist. 111 (), 123-135. Abstract, references and article information Full Article
mod A Markovian Gauss inequality for asymmetric deviations from the mode of symmetric unimodal distributions By www.ams.org Published On :: Tue, 05 Nov 2024 14:10 EST Chris A.J. Klaassen Theor. Probability and Math. Statist. 111 (), 9-19. Abstract, references and article information Full Article
mod On Rankin-Cohen brackets of Hecke eigenforms and modular forms of half-integral weight By www.ams.org Published On :: Tue, 05 Nov 2024 15:05 EST YoungJu Choie, Winfried Kohnen and Yichao Zhang Proc. Amer. Math. Soc. 152 (), 5025-5037. Abstract, references and article information Full Article
mod A criterion for reflexivity of modules By www.ams.org Published On :: Tue, 05 Nov 2024 15:05 EST Naoki Endo and Shiro Goto Proc. Amer. Math. Soc. 152 (), 5007-5011. Abstract, references and article information Full Article
mod Associated varieties of minimal highest weight modules By www.ams.org Published On :: Tue, 12 Nov 2024 14:43 EST Zhanqiang Bai, Jia-Jun Ma, Wei Xiao and Xun Xie Represent. Theory 28 (), 498-513. Abstract, references and article information Full Article
mod Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria. Full Article
mod The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+ [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation. Full Article
mod A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications [Neurobiology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation. Full Article
mod Modeling PET Data Acquired During Nonsteady Conditions: What If Brain Conditions Change During the Scan? By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan. The end results are quantitative parameters that characterize the molecular processes. The most common kinetic modeling endpoints are estimates of volume of distribution or the binding potential of a tracer. If the steady state is violated during the scanning period, the standard kinetic models may not apply. To address this issue, time-variant kinetic models have been developed for the characterization of dynamic PET data acquired while significant changes (e.g., short-lived neurotransmitter changes) are occurring in brain processes. These models are intended to extract a transient signal from data. This work in the PET field dates back at least to the 1990s. As interest has grown in imaging nonsteady events, development and refinement of time-variant models has accelerated. These new models, which we classify as belonging to the first, second, or third generation according to their innovation, have used the latest progress in mathematics, image processing, artificial intelligence, and statistics to improve the sensitivity and performance of the earliest practical time-variant models to detect and describe nonsteady phenomena. This review provides a detailed overview of the history of time-variant models in PET. It puts key advancements in the field into historical and scientific context. The sum total of the methods is an ongoing attempt to better understand the nature and implications of neurotransmitter fluctuations and other brief neurochemical phenomena. Full Article
mod A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages By www.mcponline.org Published On :: 2020-12-01 Felicia GrassoDec 1, 2020; 19:1986-1996Research Full Article
mod CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics By www.mcponline.org Published On :: 2020-12-22 Weixian DengDec 22, 2020; 0:RA120.002411v1-mcp.RA120.002411Research Full Article
mod Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches By www.mcponline.org Published On :: 2020-11-17 Congcong LuNov 17, 2020; 0:R120.002257v1-mcp.R120.002257Review Full Article
mod PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results By www.mcponline.org Published On :: 2020-12-01 Daniel J. GeiszlerDec 1, 2020; 0:TIR120.002216v1-mcp.TIR120.002216Technological Innovation and Resources Full Article
mod Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy By www.mcponline.org Published On :: 2020-12-01 Tirsa L. E. van WesteringDec 1, 2020; 19:2047-2067Research Full Article
mod Protein modification characteristics of the malaria parasite Plasmodium falciparum and the infected erythrocytes By www.mcponline.org Published On :: 2020-11-04 Jianhua WangNov 4, 2020; 0:RA120.002375v1-mcp.RA120.002375Research Full Article
mod VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity. Full Article
mod Functions of Gle1 are governed by two distinct modes of self-association [Gene Regulation] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human gle1 disease mutants found in prenatally lethal forms of arthrogryposis. Full Article
mod Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner. Full Article
mod Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer. Full Article
mod Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis By www.jlr.org Published On :: 2020-12-01 Jiayan GuoDec 1, 2020; 61:1764-1775Research Articles Full Article
mod PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids By www.jlr.org Published On :: 2020-12-01 Hideaki KugeDec 1, 2020; 61:1747-1763Research Articles Full Article
mod rHDL modelling and the anchoring mechanism of LCAT activation By www.jlr.org Published On :: 2020-12-02 Tommaso LaurenziDec 2, 2020; 0:jlr.RA120000843v1-jlr.RA120000843Research Articles Full Article
mod Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome By www.jlr.org Published On :: 2020-11-17 Babunageswararao KanuriNov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101Research Articles Full Article
mod Multi-modal Functional Imaging of Brown Adipose Tissue By www.jlr.org Published On :: 2020-11-18 Amanda D.V. MacCannellNov 18, 2020; 0:jlr.ILR120001204v1-jlr.ILR120001204Images in Lipid Research Full Article
mod Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error By Published On :: Fri, 21 Aug 2020 09:34:11 EST When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for Full Article MMGROFR+SAS+Model+Manager
mod Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain [Thematic Reviews] By www.jlr.org Published On :: 2020-08-11T12:36:10-07:00 The cornea is densely innervated, mainly by sensory nerves of the ophthalmic branch of the trigeminal ganglia (TG). These nerves are important to maintain corneal homeostasis, and nerve damage can lead to a decrease in wound healing, an increase in corneal ulceration and dry eye disease (DED), and neuropathic pain. Pathologies, such as diabetes, aging, viral and bacterial infection, as well as prolonged use of contact lenses and surgeries to correct vision can produce nerve damage. There are no effective therapies to alleviate DED (a multifunctional disease) and several clinical trials using -3 supplementation show unclear and sometimes negative results. Using animal models of corneal nerve damage, we show that treating corneas with pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) increases nerve regeneration, wound healing, and tear secretion. The mechanism involves the activation of a calcium-independent phospholipase A2 (iPLA2) that releases the incorporated DHA from phospholipids and enhances the synthesis of docosanoids neuroprotectin D1 (NPD1) and a new resolvin stereoisomer RvD6i. NPD1 stimulates the synthesis of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and of semaphorin 7A (Sema7A). RvD6i treatment of injured corneas modulates gene expression in the TG resulting in enhanced neurogenesis; decreased neuropathic pain and increased sensitivity. Taken together, these results represent a promising therapeutic option to re-establish the homeostasis of the cornea. Full Article
mod Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles] By www.jlr.org Published On :: 2020-11-17T11:30:28-08:00 Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7. Full Article
mod Multi-modal Functional Imaging of Brown Adipose Tissue [Images in Lipid Research] By www.jlr.org Published On :: 2020-11-18T10:30:48-08:00 Full Article
mod rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles] By www.jlr.org Published On :: 2020-12-02T13:30:37-08:00 Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates. Full Article
mod Supervised physiotherapy for mild or moderate ankle sprain By www.bmj.com Published On :: Wednesday, November 16, 2016 - 23:31 Full Article