engine

Variable valve actuating apparatus for internal combustion engine

A variable valve actuating apparatus includes: a first rotary member which includes a rotor fixed to one of the inner cam shaft and the outer cam shaft, and a receiving chamber formed within the first rotary member, and which is arranged to be rotated in an advance angle direction or in a retard angle direction relative to the drive rotary member by a hydraulic pressure selectively supplied to or drained from the advance angle operation chamber and the retard angle operation chamber; and a second rotary member fixed to the other of the inner cam shaft and the outer cam shaft, rotatably received within the receiving chamber of the first rotary member, and arranged to be rotated relative to the first rotary member and the drive rotary member within a predetermined angle range.




engine

Variable valve actuating apparatus for internal combustion engine

A variable valve actuating apparatus includes: a first lock recessed portion; a first lock member; a second lock recessed portion formed in the second rotary member's side; a second lock member; a first lock passage arranged to supply the hydraulic fluid, and thereby to move the first lock member out of the first lock recessed portion; and a second lock passage arranged to supply the hydraulic fluid, and thereby to move the second lock member out of the second lock recessed portion, at least a part of the first lock recessed portion and at least a part of the second lock recessed portion being disposed at a position to be projected in an axial direction when the first lock member and the second lock member are in the lock state.




engine

Valve timing control device for internal combustion engine

A valve timing control device includes: a vane rotor having a plurality of vanes; a housing having the vane rotor inside so that an advance chamber is formed on one side of each vane and a retard chamber is formed on the other side; a lock pin inserted in a cylinder provided in the vane and moves to a lock position and to an unlock position; and a feeding passage for feeding oil into the cylinder from the retard chamber adjacent to the vane provided with the cylinder to make the lock pin move to the unlock position, and controls an oil supplying unit to supply oil to each retard chamber, wherein a flow passage cross sectional area of the branch passage connected with the retard chamber linking with the cylinder is larger than a flow passage cross sectional area of the branch passage connected with the other retard chamber.




engine

Valve timing control apparatus of internal combustion engine

In an electrically-driven valve timing control apparatus employing a housing and a cover member axially opposed to each other, a cylindrical-hollow motor output shaft is installed in the housing, and configured to rotate relative to the housing by electricity-feeding to the electric motor, and also configured such that lubricating oil is supplied into the motor output shaft. A plug is fitted to the inner periphery of an axial opening end of the motor output shaft for suppressing a leakage of lubricating oil from the motor output shaft to the outside. One of two opposing faces of the cover member and the plug is formed with a protruding portion configured to prevent the plug's slipping out of the axial opening end. A part of the inside face of the cover member, opposed to the plug, is formed integral with the protruding portion partially disposed within the axial opening end.




engine

Phase varying apparatus for automobile engine

A phase varying apparatus capable of smoothly varying the phase angle of a camshaft relative to a drive rotor by comprising: a drive rotor supported by a camshaft and driven by a crankshaft; a first control rotor integral with the camshaft; a first torquing mechanism for providing the first drive rotor with a torque in one direction, and a reverse rotation mechanism for proving the first control rotor with a torque in the opposite direction, wherein the reverse rotation mechanism comprises a first radius-decreasing guide groove formed in the control rotor, a crank member adapted to rotate about a position offset from the rotational axis of the drive rotor, and a first pin mechanism mounted on the crank member and movable in the radius-decreasing guide groove, and a second operative mechanism for rotating the first control rotor in the opposite rotational direction relative to the drive rotor.




engine

Advertisement delivery engine

A method includes receiving first information identifying profile information associated with a customer, habit information associated with the customer's television viewing habits, or Internet usage information associated with the customer. The method also includes receiving preference information from the customer, wherein the preference information identifies advertisements or types of advertisements that the customer would like to view or would not like to view. The method further includes identifying advertisements based on the received first information and the received preference information, inserting, by a service provider, the identified advertisements in a television programming data stream and providing the identified advertisements to the customer.




engine

Engine ignition-transmission shift interlock

A method for controlling a vehicle equipped with a manual transmission and engine includes automatically engaging a brake, locking the transmission in neutral and starting the engine, in response to a signal whose origin is remote from the vehicle representing a desired engine start; and automatically engaging a brake and locking the transmission in neutral in response to a second signal indicating that the driver has exited the vehicle while the engine is running.




engine

Method for controlling the engine of a motor vehicle having a manual transmission

In a motor vehicle having a manual transmission, for, in particular, limiting the engine speed during the start-up operation when fulfilling at least one permission criterion for the engine torque, the criterion depending on the driving state of the motor vehicle, a default engine torque is preset, which is specified according to at least one engine characteristic value and which can be reduced with regard to the set engine torque called for by the position of the accelerator pedal of the motor vehicle.




engine

Engine restart strategy

A method of controlling a vehicle, where the vehicle includes an internal combustion engine and a transmission having a neutral state and an engaged state, includes setting the state of the transmission. The state of the transmission is set as the neutral state or the engaged state based on a restart condition, where the restart condition is one of: (i) a no wheel torque restart condition, and (ii) a wheel torque restart condition. The method additionally includes starting the engine.




engine

Multi-speed transmission with an engine start/stop enabler

A transmission includes an input member, an output member, four planetary gear sets, and a plurality of torque transmitting mechanisms that are selectively engageable to establish at least ten forward speed ratios and at least one reverse speed ratio between the input member and the output member. The transmission further includes one or more locking mechanisms that engage one or more of the plurality of torque transmitting mechanisms during a start/stop event.




engine

Method and system for engine control

Methods and systems are provided for controlling an engine system with a variable cam timing device. In one example, the variable cam timing device is operated to adjust engine valve timing differently at engine stop based on whether the engine stop is in response to an operator request or in response to an automatic controller initiated engine stop without an operator request.




engine

Device for suspending a turbine engine from an airplane

A device for suspending a turbojet casing, the device including a shouldered pin extending through aligned orifices of two lugs of a clevis secured to the casing. A protection piece for providing protection against wear is mounted on each lug of the clevis and has the shouldered pin passing therethrough, the protection piece being prevented from moving in rotation on the lug by co-operating shapes.




engine

Turbocharger arrangement for an internal combustion engine

A turbocharger arrangement in an internal combustion engine is provided. The turbocharger arrangement includes a turbocharger housing surrounding a sealed inner space and a shaft extending through the turbocharger housing. The turbocharger arrangement further includes a turbine wheel arranged on the shaft and driving a compressor unit, a bearing arrangement mounting the shaft in the turbocharger housing, an oil supply device lubricating the bearing arrangement, and a pressure changing unit in fluidic communication with the sealed inner space configured to adjust the pressure in the sealed inner space based on engine operating conditions.




engine

Heat dissipation device of light engine with fan module and heat sink

A heat dissipation device of a light engine for a projector has a housing, a fan module, a light engine and a heat sink. The light engine is positioned in the housing and connected to the heat sink. The heat sink is positioned out of the housing. The housing has a fan-enclosed flow channel attached on an outer surface of the housing. The fan module is guided by the fan-enclosed flow channel to the heat sink to enhance heat dissipation efficiency of the light engine for the projector.




engine

Mutualistic engine controller communicating with printer non-volatile memory

A printing device includes at least one printing engine that has actuators and sensors. At least one engine controller is operatively connected to the printing engine, the engine controller uses software to control operations of the printing engine. At least one non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. Further, at least one adapter card is operatively connected to the non-volatile memory and to the actuators and sensors. The adapter card stores data and receives sensor feedback from the sensors. The adapter card uses the data and the sensor feedback to control the actuators by bypassing the engine controller when communicating with the actuators. The adapter card provides adapter card feedback to the non-volatile memory.




engine

Casting aluminum alloy and internal combustion engine cylinder head

Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.




engine

Spark plug for internal combustion engine and method for manufacturing same

The spark plug has a configuration satisfying the relationships of B≧0.7A and 0.3 mm≦A≦0.6 mm, where B is an axial thickness along the central axis line Q of the weld portion formed between the base material electrode and the noble-metal chip, and A is an axial distance along the central axis line Q between the intersection points P3 and X. The intersection point P3 is a point at which a phantom axis line radially distant from the central axis line Q by D/2 (D being a diameter of the noble-metal chip) intersects with the boundary line between the weld portion and the noble-metal chip. The intersection point X is a point at which an extension of the contour line of the base material electrode in the vicinity of the weld portion intersects with a boundary line between the weld portion and the base material electrode.




engine

Oxidation catalyst for treating the exhaust gas of a compression ignition engine

An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.




engine

Device for locking an opening part of a jet engine nacelle with respect to a fixed part, and nacelle equipped with such a device

This device for locking an opening part (9) of a jet engine nacelle with respect to a fixed part (7, 17) comprises: means (13, 16) for locking said opening part (9) with respect to said fixed part (7, 17), means for actuating (21) these locking means that are mounted such that they can move on said opening part (9) between a closed position, in which they enable said locking means (13, 16) to be immobilized, and an open position, in which they enable these locking means (13, 16) to be released. Said actuating means comprise gripping means (21). This device comprises means (41, 43) for immobilizing, in the open position, said gripping means (21) with respect to said opening part (9) at least in the direction of movement of said opening part (9).




engine

System and method for modifying a gas turbine engine in the field

A system and method for modifying a gas turbine engine in the field to drill a series of cooling holes in a turbine rotor disk made of a superalloy. A portable field repair system includes a stand configured to receive, support, and position a turbine rotor disk, a drill having a self-feeding spindle and configured to automatically drill a predetermined depth through a superalloy and to automatically stop upon completion, a drill guide configured to coordinate the drill with a plurality of radial axes associated with a precise hole pattern to be cut and a drill mount configured to mechanically couple the drill to the drill guide and to position the drill during the modification of the gas turbine engine turbine rotor disk.




engine

Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine

A seal assembly between a disc cavity and a turbine section hot gas path includes a stationary vane assembly and a rotating blade assembly downstream from the vane assembly and including a plurality of blades that are supported on a platform and rotate with a turbine rotor and the platform during operation of the engine. The platform includes a radially outwardly facing first surface, a radially inwardly facing second surface, a third surface, and a plurality of grooves extending into the third surface. The grooves are arranged such that a space is defined between adjacent grooves. During operation of the engine, the grooves guide purge air out of the disc cavity toward the hot gas path such that the purge air flows in a desired direction with reference to a direction of hot gas flow through the hot gas path.




engine

Retention device for a composite blade of a gas turbine engine

A liner for a composite blade of a gas turbine engine includes a metallic shoe, operable substantially to encase a blade root of a composite blade and defining an inner surface and an outer surface. The liner also includes a retention lug formed on the shoe and has inner and outer keys that project from opposed portions of the inner and outer surfaces. The keys engage corresponding recesses on a dovetail slot and a blade root to resist axial displacement of the composite blade.




engine

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




engine

Automatic start and stop of a portable engine driven power source

The present embodiments provide a control system and method that is able to automatically start and/or stop a portable engine-driven power source. For example, in one embodiment, a system includes an engine-driven power source having an engine, a compressor driven by the engine, a sensor configured to generate a first signal indicative of a demand for air pressure from the compressor and a second signal indicative of no demand for air pressure from the compressor. The engine-driven power source also includes a controller configured to stop the engine in response to the second signal.




engine

Generator drive system for an internal combustion engine

A generator drive system for the generator (3) of an internal combustion engine (1), including a flexible drive having a traction mechanism (5) which is guided across a generator pulley (6) driving the generator (3). The generator (3) is configured and electrically wired such that the generator (3) can be temporarily driven as a motor, and the generator (3) is coupled to the generator pulley (6) or the crankshaft pulley (7) is coupled to the crankshaft (8) via an overrunning clutch (4) which allows the generator (3), when operated as a motor, running faster than the generator pulley (6) or, taking into consideration a gear ratio, the crankshaft (8).




engine

System and method for thermal control in a gas turbine engine

A system includes a gas turbine engine that includes a compressor section configured to generate compressed air and a combustor coupled to the compressor section. The combustor is configured to combust a first mixture comprising the compressed air and a first fuel to generate a first combustion gas. The gas turbine engine also includes a turbine section coupled to the combustor. The turbine section is configured to expand the first combustion gas to generate an exhaust gas. The gas turbine engine also includes a boiler coupled to the turbine section. The boiler is configured to combust a second mixture comprising a portion of the first combustion gas and a second fuel to generate a second combustion gas that is routed to the turbine section. In addition, the boiler generates a first steam from heat exchange with the second combustion gas.




engine

Temperature grading for band gap engineering of photovoltaic devices

A method for fabricating a photovoltaic device includes depositing a p-type layer at a first temperature and depositing an intrinsic layer while gradually increasing a deposition temperature to a final temperature. The intrinsic layer deposition is completed at the final temperature. An n-type layer is formed on the intrinsic layer.




engine

Hydraulic engine with infinity drive

A system comprises a first piston comprising a first piston shaft and a first drive pin. A first piston cylinder comprises a first body and a first groove, wherein the first groove defines a first aperture, the first aperture oriented axially along the first body and configured to receive the first drive pin. The first body encloses the first piston and allows the first piston to travel axially within the first piston cylinder. A drive shaft comprises an axis, a drive groove, and a surface, wherein the drive groove forms a continuous channel along the surface and receives the first drive pin. In one embodiment, a first distribution wheel comprises a first face, a second face, a first inlet aperture, and a first outlet aperture. The first distribution wheel couples to the first piston cylinder and to the drive shaft at a first end of the drive shaft, and rotates axially with the drive shaft along the axis of the drive shaft. The first inlet aperture allows hydraulic fluid to pass through the first face and the second face and the first outlet aperture defines a groove on the second face.




engine

Thermal engine with an improved valve system

A radial thermal engine with an improved valve system is disclosed herein comprising intake and exhaust port valve assemblies fluidly connected to respective intake and exhaust ports contained within a cylinder head assembly. Each intake and each exhaust port valve assembly comprises at least one rotatable port cover having spaced apart openings which are periodically alignable to the intake and exhaust ports, respectively.




engine

Piston assembly for internal combustion engine

A piston assembly includes a piston having a crown with an upper combustion surface with a cylindrical outer surface extending downwardly from the upper combustion surface. A pair of pin bosses depends from the crown to a pair of pin bores having generally cylindrical bearing surfaces aligned along a pin bore axis with a top wall portion extending between the pin bosses. The top wall portion has a concave bearing surface forming a continuous concave bearing surface with the pin bores. A separate skirt is fixed to the piston against relative movement. At least one rib extends upwardly from the top wall portion of the piston on opposite sides of the pin bore axis to a lower wall surface of the crown. The at least one rib joins the crown to the top wall portion to provide structural support to the top wall portion against unwanted deflection.




engine

Methods and systems for managing a clearance gap in a piston engine

A piston engine may include a heat pipe capable of transferring heat away from a portion of the piston engine such as a combustion section. The heat pipe may be included as part of a piston assembly, a cylinder, or both. The heat pipe may be filled with a suitable heat pipe fluid that may undergo a phase change such as, for example, water, ethanol, ammonia, sodium, other fluids or combinations thereof. Boiling and condensing of the fluid within the heat pipe may utilize the latent heat of the fluid during heat transfer. Multiple heat pipes may be used in some instances.




engine

Piston for spark-ignition engine

The present invention provides a piston for a spark-ignition engine, comprising: a land part 18, an upper surface part of which has a crown part 26 forming a combustion chamber; a pair of skirt parts 20 extending downward from a peripheral part of the land part 18 and facing each other in a radial direction thereof; a pair of sidewall parts 19 coupling side end parts of the pair of skirt parts 20 to each other; and a pin boss part 21 that is formed in each of the sidewall parts 19. The present invention can inhibit the generation of HC produced at the time of combustion, while thermally protecting a top ring 30 fitted into a top ring groove 24a on an outer circumferential surface of the land part 18. The crown part 26 is configured by a flat base surface 27 and a bulging part 15 bulging upward above the base surface 27, and a thinned part 40 provided in the land part 18 is formed deep such that the deepest part thereof is positioned inside the bulging part 15.




engine

Method of controlling a group of engines, and an aircraft

A method of controlling a group (2) of engines developing a necessary power (Wnec) for driving a rotor (3), said group (2) of engines having at least one electrical member (4), electrical energy storage means (5), and a first number n of engines (6) that is greater than or equal to two. A processor unit (10) executes instructions for evaluating a main condition as to whether the group of engines can develop the necessary power while resting one engine, and if so for resting one engine and accelerating a second number engines not at rest, and for causing the electrical member to operate in motor mode, if necessary, the electrical member operating temporarily in electricity generator mode when the storage means are discharged.




engine

Wireless video for model railroad engines providing an engineer's view

An Engineer's View (EV) wireless video system for powered and unpowered model railroad engines is disclosed. The invention uses commercially available wireless spy cameras, powered by a custom power supply circuit which is compatible with either DC or DCC track systems. The present invention is compatible with all commercial model railroad gauge diesel engines including HO and N Gauge or may be factory installed. The EV system demonstrates a remarkably stable and realistic image of a model railroad layout. Moreover, the present invention may also provide a stable source of power to the engine where stalling could occur at points of track defects.




engine

Cast features for a turbine engine airfoil

A core assembly for a turbine engine blade includes a generally radially extending trunk interconnected to multiple generally axially extending tabs. The tabs are interconnected by a generally radially extending ligament. Multiple generally axially extending protrusions are interconnected to the ligament opposite the trunk. A mold is configured to define an exterior surface of an airfoil. The core is arranged within the mold and is configured such that the tabs and the ligament break through at the exterior surface.




engine

Spark plug for internal combustion engine and method of manufacturing the same

In a spark plug, a center electrode includes a base member and a discharge chip that has a higher melting point than the base member. The base member and the discharge chip are joined to each other by both a weld and a diffusion layer. The weld is formed, by fusion welding, along an outer periphery of an interface between the base member and the discharge chip into an annular shape. The weld is made up of those parts of the base member and the discharge chip which are molten and mixed together during the fusion welding and solidified after the fusion welding. The diffusion layer is formed radially inside the annular weld. The diffusion layer is made up of those parts of the base member and the discharge chip which are diffused into each other across the interface between the base member and the discharge chip.




engine

Gas turbine engine having dome panel assembly with bifurcated swirler flow

A gas turbine engine including a combustor with a combustion liner having inner and outer walls is disclosed herein. The gas turbine engine further includes a swirler system adapted to receive a fuel injector and a flow splitter operable to bifurcate an airflow exiting the swirler system into a first bifurcated flow and a second bifurcated flow. A shroud is positioned downstream of the flow splitter and is configured to deflect the first bifurcated flow in a first direction radially inward and the second bifurcated flow in a second direction radially outward. The second bifurcated flow cools both of the inner and outer walls of the combustor liner.




engine

Turbofan engine with variable area fan nozzle and low spool generator for emergency power generation and method for providing emergency power

A turbofan engine (10) employs a flow control device (41) that changes an effective exit nozzle area (40) associated with a bypass flow path (B) of the turbofan engine. A spool (14) couples a fan (20) to a generator (52). The turbofan emergency power system includes a controller (50) that communicates with the flow control device (41). Upon sensing an emergency condition, the controller manipulates the flow control device to reduce the effective nozzle exit area (40) of the bypass flow path, which chokes the flow through the bypass flow path thereby increasing the rotational speed of the fan. In this manner, the generator is driven at a higher rotational speed than if the flow through the bypass flow path was not choked, which enables a smaller generator to be utilized.




engine

Threaded seal for a gas turbine engine

A seal assembly includes a first component and a second component of a gas turbine engine. The first component has a threaded portion. The second component interfaces with the threaded portion and together the threaded portion and the second component form a seal that restricts fluid flow between a first cavity and a second cavity of the gas turbine engine.




engine

Engine

An engine in which an oil consumption and a leakage of blow-by gas can be stably reduced for a long period of time. The engine includes a first land (3), a first ring groove (4), a second land (5), a second ring groove (6), a third land (7), a third ring groove (8), and a piston skirt (9) formed on a piston peripheral wall (1) in the above-recited order from a side of a piston head (2). A first pressure ring (10) is fitted in the first ring groove (4). A second pressure ring (11) is fitted in the second ring groove (6), an oil ring (12) fitted in the third ring groove (8), and an indentation (13) is formed at the second land (5).




engine

AERO-ENGINE LOW PRESSURE PUMP

An aero-engine low pressure pump is provided for supplying fuel at a raised pressure to a high pressure pump. The low pressure pump has a pumping mechanism which raises the pressure of fuel flowing though the mechanism. The low pressure pump further has electrical motor which drives the pumping mechanism. The low pressure pump further has a variable frequency motor drive which supplies electrical power to the electrical motor. The variable frequency motor drive measures the electrical power supplied to the electrical motor. The low pressure pump further has a control unit which compares the measured electrical power to a reference power, and, when the measured electrical power is less than the reference power by a predetermined amount, controls the motor drive to increase the power supplied to the electrical motor thereby increasing the pressure rise produced by the pumping mechanism.




engine

LOW NOISE TURBINE FOR GEARED TURBOFAN ENGINE

A gas turbine engine has a fan section including a fan. A turbine section has a first turbine and a second turbine. A gear reduction between the fan and the first turbine includes an epicycle gear train. The gear reduction is configured to receive an input from the first turbine and to turn the fan at a lower speed than the first turbine in operation. The first turbine further includes a number of turbine blades in each of a plurality of rows of the first turbine. The first turbine blades operate at least some of the time at a rotational speed. The number of blades and the rotational speed is such that the following formula holds true for at least one of the blade rows of the first turbine: (number of blades×speed)/60≧5500. A turbine section is also disclosed.




engine

Oil supply device for an internal combustion engine

An oil supply device for a crankcase of an internal combustion engine feeds oil from a reservoir to a main oil duct of the crankcase. A filter switching device allows a selection from a plurality of oil filter units in the flow path of the oil to be selectively connected into the oil flow path, to set a proportion of the oil filter units to active and a proportion of the oil filter units to passive. A switching unit switches between the active and passive states and opens up a pressurized oil flow path to the active oil filter unit(s) and also a drainage flow path between the passive oil filter unit(s) and a drainage duct. An evacuation device drains or evacuates oil from the drainage duct which has accumulated at the passive oil filter unit(s).




engine

Integrated thermal management system and environmental control system for a gas turbine engine

A gas turbine engine includes a first and second pump driven by a spool. An Air-Oil Cooler downstream of the first pump. An air-air precooler is downstream of the second pump, the air-air precooler downstream of the Air-Oil Cooler.




engine

Apparatus and method for operating a gas turbine engine during windmilling

A gas turbine engine according to an exemplary aspect of the present disclosure includes a windmill pump driven by a spool. A first pump driven by said spool with an air-oil cooler is located downstream of the first pump. A second pump is also driven the spool with an air-air precooler located downstream of the second pump. A method of operating a gas turbine engine during a “windmilling” condition includes driving a windmill pump with a spool during a “windmilling ” condition. A lubricant is communicated to a geared architecture with the windmill pump. A first pump is driven by the spool and an air-oil cooler is located downstream of the first pump.




engine

Crankshaft having optimized crankpin lubrication, and related engine and method for producing the lubrication system

The invention relates to a crankshaft comprising at least: a journal; a first crankpin; a second crankpin; a first arm connecting the first crankpin to the journal; a second arm connecting the second crankpin to the journal; a first pipe extending away from the first crank pin toward the journal and leading onto the surface of the first crankpin on the transverse median plane thereof, and substantially passing to the center of the median plane of the second arm; and a second conduit extending away from the second crankpin toward the journal and leading onto the surface of the second crankpin on the transverse median plane thereof, and substantially passing to the center of the median plane of the second arm, characterized in that the shape of the crankshaft is such that it cannot also comprise a diametric pipe within the transverse median plane of the journal fluidly adjoining the first pipe and the second pipe, and the crankshaft comprises a third non-diametric pipe within the transverse median plan of the journal fluidly connecting the first pipe and the second pipe.




engine

Gas turbine engine oil buffering

A turbine engine includes a shaft, a fan, at least one bearing mounted on the shaft and rotationally supporting the fan, a fan drive gear system coupled to drive the fan, a bearing compartment around the at least one bearing and a source of pressurized air in communication with a region outside of the bearing compartment.




engine

Lubrication structure for engine

A lubrication structure is provided for supplying lubricating oil to a transmission of an engine. The engine includes a mission holder which includes a power transmission mechanism between a main shaft and a countershaft as a unit and is removably mounted in a mission chamber, and a clutch chamber having a clutch mechanism is provided adjacent the mission chamber for transmitting rotation of a crankshaft to the transmission. Two oil introduction ports are provided on the mission holder, which is between the clutch chamber and the mission chamber. The two oil introduction ports enable the two chambers to communicate with each other. Each of the oil introduction ports has an opening provided therein which opens upwardly on a clutch chamber side of the mission holder.




engine

Gas turbine engine buffer cooling system

A gas turbine engine includes a heat exchanger, a bearing compartment, and a nozzle assembly in fluid communication with the bearing compartment. The heat exchanger exchanges heat with a bleed airflow to provide a conditioned airflow. The bearing compartment is in fluid communication with the heat exchanger. A first passageway communicates the conditioned airflow from the heat exchanger to the bearing compartment. A second passageway communicates the conditioned airflow from the bearing compartment to the nozzle assembly.




engine

Geared architecture gas turbine engine with oil scavenge

A gas turbine engine includes a geared architecture with a multiple of intermediate gears, and a baffle with an oil scavenge scoop adjacent to each of the multiple of intermediate gears. A geared architecture and method are also disclosed.