lec

DEVICE, TELEVISION SYSTEM, AND ELECTRONIC DEVICE

To provide a novel device, a device with low power consumption, or a versatile device, the device includes a decoder, a driver circuit, and a display portion. The driver circuit includes a plurality of circuits. The display portion includes a plurality of display panels. The decoder has a function of generating a signal corresponding to an image displayed on the display portion. The decoder has a function of determining the necessity of rewriting an image of each of the display panels by detecting a change in the image of each of the display panels. The circuit has a function of outputting a signal to a display panel for which that image rewriting is determined to be necessary. The circuit has a function of stopping output of a signal to a display panel for which image rewriting is determined to be unnecessary.




lec

SEMICONDUCTOR DEVICE, DRIVER IC, AND ELECTRONIC DEVICE

A semiconductor device includes first to fourth terminals, a switch circuit, and an integrating circuit. The integrating circuit includes an amplifier circuit having a (−) terminal, a first (+) terminal, and a second (+) terminal. The integrating circuit is configured to integrate an input signal of the (−) terminal using an average voltage of a voltage of the first (+) terminal and a voltage of the second (+) terminal as a reference voltage. The switch circuit is configured to electrically connect the (−) terminal to the second terminal, the first (+) terminal to the first terminal, the second (+) terminal to the third terminal the (−) terminal to the third terminal, the first (+) terminal to the second terminal, and the second (+) terminal to the fourth terminal. The present semiconductor device is used as a semiconductor device sensing a current flowing through a pixel in a display panel.




lec

ELECTROOPTIC DEVICE AND ELECTRONIC APPARATUS

An electrooptic device includes a scan line; data lines; a scan line driving circuit that selects the scan line; a data line driving circuit that supplies data signals to the data lines; a TFT that includes a gate electrode receiving gate signals for selecting the data line and has one end connected to the data line and the other end connected to the data line driving circuit; and a TFT that includes a gate electrode receiving gate signals for selecting the data line and has one end connected to the data line and the other end connected to the data line driving circuit. The gate electrode of the TFT overlaps the data line.




lec

ELECTRONIC DEVICE HAVING SMALLER NUMBER OF DRIVE CHIPS

The present invention provides an electronic device (100) having smaller number of drive chips and including a timing controller (10), a gate and a source drive chips (20, 30), a pixel cells matrix (60) and a multiplexer (40). The multiplexer (40) includes a plurality of first signal outputs connected to the pixel cells matrix (60). The timing controller (10) might generate enable signals for the multiplexer (40). In this way, the multiplexer (40) could output scan signals to the pixel cells matrix by a corresponding signal end. The number of the drive chips could be reduced by the present invention.




lec

ELECTRONIC DEVICE FOR REPORTING INFORMATION, DISPLAY METHOD THEREFOR, AND RECORDING MEDIUM

A timepiece wrist terminal includes: a setting processing unit; a location information acquisition unit; a related information acquisition unit; a time difference calculation processing unit; and an output control unit. The setting processing unit acquires a first location. The location information acquisition unit acquires a second location that is different from the first location. The related information acquisition unit acquires information related to the first location. The related information acquisition unit also acquires information related to the second location. The time difference calculation processing unit generates differential information in accordance with the information related to the first location and the information related to the second location. The output control unit controls the output unit so as to display an object that represents the differential information, at least one of attributes of the object displayed being continuously varied in accordance with a differential amount representing the differential information.




lec

ORGANIC LIGHT-EMITTING DIODES TOUCH DISPLAY PANEL AND ELECTRONIC DEVICE USING SAME

An OLED touch display panel capable of detecting and reacting to touches on the display includes a signal sending element emitting ultrasonic signals, a driving layer configured to provide display driving signals, a light-emitting element configured to receive the display driving signals and emit light, and a signal receiving element configured for receiving reflected ultrasonic signals. The light-emitting element includes a plurality of light-emitting units and a plurality of black matrixes. Every two adjacent light-emitting units are separated from each other by one of the black matrixes. The signal receiving element includes a plurality of thin film transistor units arranged in a matrix. Each thin film transistor unit is formed on one of the black matrixes.




lec

LEVEL-SHIFT CIRCUIT, DRIVER IC, AND ELECTRONIC DEVICE

A level-shift circuit that operates stably is provided. The level-shift circuit has a function of boosting a first signal having an amplitude voltage between a first voltage and a second voltage to a second signal having an amplitude voltage between a third voltage and the second voltage. The level-shift circuit includes first to eighth transistors. Gates of the third and seventh transistors are electrically connected to a wiring for transmitting a third signal for controlling the amounts of current flowing into one of a source and a drain of the first transistor, one of a source and a drain of the second transistor, one of a source and a drain of the fifth transistor, and one of a source and a drain of the sixth transistor.




lec

Sortation conveyor with piezoelectric actuation

A sortation conveyor for transporting and diverting a plurality of articles includes a first conveying path and a second conveying path angularly positioned relative to the first conveying path. A plurality of pusher elements may be selectively diverted laterally across the first conveying path to divert articles to the second conveying path. A piezoelectric actuated switch assembly positioned adjacent to the second conveying path selectively engages the pusher elements to divert the selected article to the second conveying path.




lec

Electronic throttle control apparatus

An electronic throttle control apparatus has a construction which does not use a mechanical mechanism to restrict an operating angle of an electronic throttle valve, and continues motor control so as to prevent rapid opening and closing of the electronic throttle valve, even if an angle detection unit becomes abnormal. Upon detection of an abnormality, a control unit (1) controls, without using pieces of angle information (θ1, θ2) after the detection of the abnormality, a motor (2) for driving the electronic throttle valve (3) based on angle information (θb) before the angle detection unit (6) becomes abnormal, information of electric power supplied to the motor (2) before the angle detection unit (6) becomes abnormal, a period of time (Tbc) until the abnormality of the angle detection unit (6) is detected, and a preset rate of change of a throttle angle.




lec

Electromagnetically actuable valve

An electromagnetically actuable valve, e.g., a fuel injector for fuel-injection systems of internal combustion engines, includes an electromagnetically actuable actuating element having a solenoid coil, a fixed core, a valve jacket, and a movable armature for actuating a valve-closure element, which cooperates with a valve-seat surface provided on a valve-seat body. A sleeve-shaped guide element is introduced into an inner longitudinal bore of the armature and into an inner flow bore of the internal pole, the guide element being firmly fixed in place in the armature or the inner pole, and loosely guided in the respective other component.




lec

MAGNETIC ELEMENT, SKYRMION MEMORY, SKYRMION MEMORY-DEVICE, SOLID-STATE ELECTRONIC DEVICE, DATA-STORAGE DEVICE, DATA PROCESSING AND COMMUNICATION DEVICE

To provide a magnetic element capable of performing skyrmion transfer, a skyrmion memory to which this magnetic element is applied, and a shift register, for example, a magnetic element capable of performing skyrmion transfer is provided, the magnetic element providing a transverse transfer arrangement in which the skyrmion is transferred substantially perpendicular to a current between an upstream electrode and a downstream electrode, and including a plurality of stable positions in which the skyrmion exists more stably than in other regions of a magnet, and a skyrmion sensor that detects a position of the skyrmion.




lec

MAGNETIC ELEMENT, SKYRMION MEMORY, SOLID-STATE ELECTRONIC DEVICE, DATA-STORAGE DEVICE, DATA PROCESSING AND COMMUNICATION DEVICE

To provide a magnetic element which can generate a skyrmion, and a skyrmion memory which applies the magnetic element or the like. To provide a magnetic element with a chiral magnet for generating a skyrmion, the chiral magnet is made of a magnetic material having a β-Mn type crystal structure. Also, to provide a magnetic element with a chiral magnet for generating a skyrmion, the chiral magnet is made of a magnetic material having an Au4Al type crystal structure.




lec

MAGNETIC ELEMENT, SKYRMION MEMORY, SKYRMION MEMORY-DEVICE, SOLID-STATE ELECTRONIC DEVICE, DATA-STORAGE DEVICE, DATA PROCESSING AND COMMUNICATION DEVICE

A magnetic element capable of generating and erasing a skyrmion, including a magnet shaped as a thin layer and including a structure surrounded by a nonmagnetic material; a current path provided surrounding an end region including an end portion of the magnet, on one surface of the magnet; and a skyrmion sensor that detects the generation and erasing of the skyrmion. With Wm being width of the magnet and hm being height of the magnet, a size of the magnet, with the skyrmion of a diameter λ being generated, is such that 2λ>Wm>λ/2 and 2λ>hm>λ/2. With W being width of the end region in a direction parallel to the end portion of the magnet and h being height of the end region in a direction perpendicular to the end portion of the magnet, the end region is such that λ≧W>λ/4 and 2λ>h>λ/2.




lec

MAGNETIC ELEMENT, SKYRMION MEMORY, SKYRMION MEMORY DEVICE, SKYRMION-MEMORY EMBEDDED SOLID-STATE ELECTRONIC DEVICE, DATA STORAGE APPARATUS, DATA PROCESSING AND COMMUNICATION APPARATUS

Provided is a magnetic element capable of generating one skyrmion and erasing the one skyrmion. The magnetic element includes a magnet shaped like a substantially rectangular flat plate, an upstream electrode connected to the magnet in a width Wm direction of the magnet and made of a non-magnetic metal, a downstream electrode connected to the magnet in the width Wm direction to oppose the upstream electrode and made of a non-magnetic metal, and a skyrmion sensor configured to detect the skyrmion. Here, a width Wm of the substantially rectangular magnet is such that 3·λ>Wm≧λ, where λ denotes a diameter of the skyrmion, a length Hm of the substantially rectangular magnet is such that 2·λ>Hm≧λ, and the magnet has a notch structure at the edge between the upstream electrode and the downstream electrode.




lec

SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, AND SEMICONDUCTOR WAFER

A semiconductor device capable of stably holding data for a long time is provided. A transistor including a back gate is used as a writing transistor of a memory element. In the case where the transistor is an n-channel transistor, a negative potential is supplied to a back gate in holding memory. The supply of the negative potential is stopped while the negative potential is held in the back gate. In the case where an increase in the potential of the back gate is detected, the negative potential is supplied to the back gate.




lec

ELECTRONIC DEVICE AND METHOD FOR DRIVING THE SAME

An electronic device includes a semiconductor memory that includes: a memory cell coupled between a first line and a second line; a first selection block configured to select the first line; a second selection block configured to select the second line; an alternate current supply block configured to supply, during a read operation, an alternate current corresponding to a resistance state of the memory cell; and a sensing block configured to sense, during the read operation, at least one of a cell current flowing through the memory cell and the alternate current.




lec

ELECTRONIC APPARATUS AND ELECTROMAGNETIC WAVES CONTROL METHOD

According to one embodiment, an electronic apparatus includes an electromagnetic wave emitter, a wireless communication circuitry and a hardware processor. The electromagnetic wave emitter emits a first electromagnetic wave. The wireless communication circuitry communicates with another electronic apparatus according to a first standard, using a second electromagnetic wave. The first electromagnetic wave can be noise for a communication by the wireless communication circuitry. The hardware processor determines a period to be allowed to communicate with the another electronic apparatus according to the first standard. The electromagnetic wave emitter emits the first electromagnetic wave during the first period.




lec

Apparatus including an asymmetrical wedge-like member for controlling deflection in small diameter rolls of an open width stabilizer so as to create a straight line nip with uniform pressure across the nip

An improved apparatus for correcting deflection in small diameter feed and retard rolls of an open width stabilizer so as to create a straight line nip with uniform pressure across the nip. The improved apparatus provides apparatus for adjusting deflection of the rolls to thereby maintain a desired size to a passageway between them so as to optimize compaction of a fabric web material. A wedge-like member is disposed between, and in moving relationship to, feed and retard roller bearings. The wedge-like member is asymmetrical, has feed and retard sides that engage the feed and retard roller bearings, respectively, and exerts reaction forces against each of the respective bearings. Improvement resides in the reaction forces causing the rolls the rolls to not deflect downwardly.




lec

Machine, methods, and program product for electronic order entry

Systems, methods, and program product for facilitating electronic ordering of goods, services, or goods and services, or other products, through messaging over a financial services electronic payment network, are provided. A customer provides electronic order registration activation information for an electronic order transaction card. The customer is provided an electronic order card having a unique electronic payment network compatible electronic order card identifier including a non-financial transaction IIN and a customer number, and is provided a catalogue or list including product order codes each associated with a different product, to enable electronic ordering over the financial services electronic payment network. An electronic order card configured to interface with a conventional point-of-sale terminal can be used to facilitate the electronic ordering over the existing financial services electronic payment network when presented to the point-of-sale terminal with a product order code identifying a selected product.




lec

Process of preparing nanocrystalline powders of an electroactive alloy

There are described powders comprising agglomerated nanocrystals of an electroactive alloy and oxygen. The main component of the alloy can be of nickel, cobalt, iron or mixtures thereof while the alloying element is one or more transition metals such as Mo, W, V, the alloy also including oxygen. Preferably the nanocrystals will be made of an alloy of nickel, molybdenum and oxygen. An electrode which is used by compacting the powders is also disclosed. Also disclosed, is a process for producing the powders by providing particles of nickel, cobalt and iron or oxides thereof with particles of at least one transition metal, (Mo, W, V) or oxides thereof and subjecting the particles to high energy mechanical alloying such as ball milling under conditions which include oxygen and for a sufficient period of time to produce a nanocrystalline alloy. Electrodes produced from these powders have an electrocatalytic activity for the hydrogen evolution which is comparable or higher than the electrodes which are presently used in the electrochemical industry. Moreover, these materials present an excellent chemical, electrochemical and mechanical stability. When use as a cathode the powders are useful in water electrolyzers, in chlor-alkali or the like cells.




lec

Machine and method for the selection and the arrangement of staves

The present invention relates to a machine and method for selecting and organizing staves for making barrels. The machine includes an input unit, including a stave-measuring station, a storage assembly for storing the staves awaiting allocation and receiving the staves from the input and measuring unit, a calculation unit able to select staves from those measured in such a way as to form a collection of staves ready to assemble into a barrel, and an output unit, in relation with the storage assembly, equipped with a stave-reorientation system. Staves used by the machine and in the method may be asymmetric about a horizontal axis. The staves selected by the calculation unit are advantageously delivered to the output unit in an order and a configuration that make for easy assembly of the barrel.




lec

Transmission shift selector assembly

The present disclosure relates to various shift selector assemblies having a shift gate with a plurality of indentations corresponding to transmission shift selections. At least one of the indentations is configured to have a flexible depth so as to selectively restrict and accept a pawl pin, thereby mitigating shift position overshoot.




lec

Electromechanical actuator for an aircraft control surface, and an aircraft provided with such an actuator

An electromechanical actuator for a movable flight control surface of an aircraft, the actuator comprising an electric motor having an outlet shaft with first and second directions of rotation, a movement transmission arranged to connect the outlet shaft of the motor to the movable flight control surface, and a control unit for controlling the motor. The transmission incorporates a pawl device arranged to oppose the transmission of movement in the first direction of rotation, and the control unit is connected to a pawl declutching member for declutching the pawl and enabling movement to be transmitted in the first direction of rotation.




lec

Compact electronic device with built-in inclination sensor and correction method

An electronic device is provided with an inclination sensor for computing inclination, a control unit which conducts predetermined control based on a value computed by the inclination sensor, a case which has the inclination sensor and the control unit therein, and a suspension portion for suspending the case, and the control unit controls correction of the reference value of the inclination sensor based on a state where the case is suspended by the suspension portion and still.




lec

Multi-panel electronic device

A multi-panel electronic device and method are disclosed. In a particular embodiment, a method includes receiving first acceleration data from a first sensor coupled to a first portion of an electronic device. The method further includes receiving second acceleration data from a second sensor coupled to a second portion of the electronic device, where a position of the first portion is movable with respect to a position of the second portion. The method further includes determining a configuration of the electronic device at least partially based on the first acceleration data and the second acceleration data.




lec

Electronic device magnetic interference indication method

A method of indicating an interference magnetic field at an electronic device includes: displaying a first arrow indicating a direction of magnetic north on a display of the electronic device, the direction of the first arrow corrected to remove interference caused by an interference magnetic field; and displaying a second arrow indicating a direction of a source of the interference magnetic field on a display of the electronic device.




lec

Electronic caliper configured to generate power for measurement operations

An electronic caliper generates power for measurement operations. The caliper comprises a scale member, a slider, a signal processing portion configured to measure a displacement between the scale member and slider, a power generating arrangement attached to the slider comprising a gear assembly configured to rotate in response to a force provided through a power generating handle to the gear assembly by a user moving the power generating handle relative to the gear assembly, and a power generator coupled to the gear assembly and configured to rotate in response to force provided by the rotating gear assembly and provide power to the signal processing portion. The power generating arrangement generates power as the user moves the power generating handle, and the power generating arrangement contributes a motion resistance force component of at most 20N as the user moves the power generating handle with a maximum manual acceleration.




lec

SELECTABLE ONE-WAY CLUTCH

A selectable one-way clutch includes a pocket plate; a notch plate; engagement pieces housed in housing recesses of the pocket plate; elastic members biasing the engagement pieces; a selector plate switching states of the engagement pieces; and elastic bodies disposed at least in one of contact portions where contact are made between the engagement pieces and the notch plate and contact portions where contacts are made between the engagement pieces and the pocket plate.




lec

ELECTROMECHANICAL ACTUATOR COMPRISING A MECHANICAL ROLLER TORQUE LIMITER

An electromechanical actuator comprising a body and an electric motor driving at least one motion transmission element connected to the body via a brake device, a mechanical torque limiter with rollers, and a unidirectional transmission member, the brake device including an electrical activator member so that when the activator member is powered, the unidirectional transmission member is released relative to the body, and when the activator member is not powered, the unidirectional transmission member is secured to the body and opposes pivoting of the transmission element in one direction of rotation up to a maximum transmissible torque defined by the torque limiter.




lec

Electrowetting elements

A dye for a fluid of an electrowetting element, the dye having a general formula selected from the group consisting of: wherein Q has the general formula: -Het1R1 or -Het1R1R2;V has the general formula: -Het2R3 or -Het2R3R4;Het1 and Het2 are heteroatoms;R1 and R3 are H;R2 and R4 are any functional group;T and U are any functional group;W, X, Y and Z are H or an alkyl group; andF, G, L and M are H or an alkyl group, andwith the proviso that the dye does not have the general formula: The present invention further relates to a fluid comprising a dye of the present invention, an electrowetting element and an optical display device comprising the fluid, and a use of the dye to reduce photo-bleaching.




lec

Selective tinting method

The invention relates to a selective dyeing method used for dyeing a substrate (10), selectively within a first exposed surface portion (S1) of said substrate. For this purpose, the substrate consists of a material (2) that is impervious to a dye with the exception of the first portion of the exposed surface. In particular, the impervious material can form a layer which covers a base portion (3) of the substrate in a second portion (S2) of the exposed surface. The substrate is heated such that the dye (C) penetrates a pervious material (1) which constitutes the first portion of the exposed surface. The method is particularly useful for eliminating light diffused by the walls of a multilayer structure which is supported by means of ocular glass.




lec

ELECTRONIC SWITCH, AND CORRESPONDING DEVICE AND METHOD

A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.




lec

CLOCK GENERATION CIRCUIT AND SEMICONDUCTOR APPARATUS AND ELECTRONIC SYSTEM USING THE SAME

A clock generation circuit may include a reference clock generator configured to generate a pair of first reference clocks in an offset code generation mode, a correction code generator configured to generate a reference correction code according to a duty detection signal based on a phase difference between the pair of first reference clocks, and an offset code generator configured to generate an offset code based on the reference correction code and a preset reference code.




lec

Apparatus for Multiple-Input Power Architecture for Electronic Circuitry and Associated Methods

An apparatus includes an integrated circuit (IC). The IC includes a power controller, which includes a regulator and a controller. The regulator receives a plurality of input voltages and provides a regulated output voltage. The controller controls the regulator to generate the regulated output voltage from the plurality of input voltages. The power controller provides power to a load integrated in the IC from a set of arbitrary input voltages. The set of arbitrary input voltages includes the plurality of input voltages.




lec

Electronic Switching Device and System

The present invention is directed to an electronic switch device, the device including a housing assembly including a front cover assembly having a user accessible surface, a back body assembly, terminals configured to be coupled to an AC power source and the load; an antenna assembly including an antenna substrate disposed inside the housing assembly adjacent a portion of the front cover assembly, an antenna being disposed on the antenna substrate having a conductive grid structure; and a circuit assembly disposed inside the housing assembly coupled to the terminals, the circuit assembly comprising a printed circuit board, the printed circuit board including a ground plane, the circuit assembly being electrically connected to the antenna assembly via a conductor, the printed circuit board being separated from the antenna assembly by a predetermined distance, the circuit assembly including a relay switch having at least one solenoid winding connected to the circuit assembly and a set of contacts.




lec

CIRCUIT, LOGIC CIRCUIT, PROCESSOR, ELECTRONIC COMPONENT, AND ELECTRONIC DEVICE

A circuit suitable for data backup of a logic circuit is provided. The circuit includes first to fourth nodes, a capacitor, first to third transistors, and first and second circuits. Data can be loaded and stored between the circuit and the logic circuit. The first node is electrically connected to a data output terminal of the logic circuit. The second node is electrically connected to a data input terminal of the logic circuit. The capacitor is electrically connected to the third node. The first transistor controls electrical continuity between the first node and the third node. The second transistor controls electrical continuity between the second node and the third node. The third transistor controls electrical continuity between the second node and the fourth node. The first and second circuits have functions of raising gate voltage of the first transistor and raising gate voltage of the second transistor, respectively.




lec

CLOCK SELECTION CIRCUIT AND POWER SUPPLY DEVICE EQUIPPED WITH THE SAME

To provide a clock selection circuit capable of reducing clock omission generated when switching from a state of being synchronized with a first clock to a second clock. The clock selection circuit is equipped with a clock detection circuit which detects a first clock to output a detected signal, a switch which outputs the first clock when the detected signal is at a first level and outputs a second clock when the detected signal is at a second level different from the first level, and a one-shot circuit which outputs a one-shot pulse in response to switching of the detected signal from the first level to the second level. The output of the switch and the output of the one-shot circuit are added to be outputted as an output clock.




lec

HALF-BRIDGE CIRCUIT, H-BRIDGE CIRCUIT AND ELECTRONIC SYSTEM

A half-bridge circuit comprises a high supply contact and a low supply contact. A half-bridge output contact is connectable to drive a load and has a high-side between the high supply contact and the half-bridge output contact and a low-side between the half-bridge output contact and the low supply contact. A high-side bidirectional vertical power transistor at the high-side has a source connected to the high supply contact, and a low-side bidirectional vertical power transistor at the low-side, transistor has a source connected to the low supply contact. The high-side bidirectional vertical power transistor and low-side bidirectional vertical power transistor are connected in cascode and share a common drain connected to the half-bridge output contact, and are controllable to alternatingly allow a current flow from the high supply contact to the half-bridge output contact or from the half-bridge output contact to the low supply contact.




lec

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY PACK

A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.




lec

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY SEPARATOR

The present invention provides a nonaqueous electrolyte secondary battery separator that achieves an excellent rate characteristic by having a tensile creep compliance J satisfying at least one of the following three conditions in a case where stress of 30 MPa is applied for t seconds: (i) when t=300 seconds, J=4.5 GPa−1 to 14.0 GPa−1, (ii) when t=1800 seconds, J=9.0 GPa−1 to 25.0 GPa−1, (iii) when t=600 seconds, J=12.0 GPa−5 to 32.0 GPa−1.




lec

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




lec

POSITIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

The positive electrode as an embodiment includes a positive electrode current collector mainly composed of aluminum, a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed above the positive electrode current collector, and a protective layer disposed between the positive electrode current collector and the positive electrode mixture layer. The protective layer contains inorganic particles, an electro-conductive material, and a binding material; is mainly composed of the inorganic particles; and is disposed on the positive electrode current collector to cover the positive electrode current collector in approximately the entire area where the positive electrode mixture layer is disposed and at least a part of the exposed portion of the positive electrode current collector where the positive electrode mixture layer is not disposed on the surface of the positive electrode current collector.




lec

POSITIVE ELECTRODE

According to one embodiment, a positive electrode includes a positive electrode layer and a positive electrode current collector. The positive electrode layer includes a positive electrode active material including a first oxide represented by the following formula (α) and/or a second oxide represented by the following formula (β). The positive electrode layer has an intensity ratio falling within a range of 0.25 to 0.7. The ratio is represented by the following formula (1) in an X-ray diffraction pattern obtained by using CuKα radiation for a surface of the positive electrode layer. LixNi1−a−bCoaMnbMcO2 (α) LixNi1−a−cCoaMcO2 (β) I2/I1 (1)




lec

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




lec

REVERSIBLE FUEL CELL OXYGEN ELECTRODE, REVERSIBLE FUEL CELL INCLUDING THE SAME, AND METHOD FOR PREPARING THE SAME

Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.




lec

METHOD OF MAKING A PROTON EXCHANGE MEMBRANE USING A GAS DIFFUSION ELECTRODE AS A SUBSTRATE

One embodiment includes a method comprising the steps of providing a first dry catalyst coated gas diffusion media layer, depositing a wet first proton exchange membrane layer over the first catalyst coated gas diffusion media layer to form a first proton exchange membrane layer; providing a second dry catalyst coated gas diffusion media layer; contacting the second dry catalyst coated gas diffusion media layer with the first proton exchange membrane layer; and hot pressing together the first and second dry catalyst coated gas diffusion media layers with the wet proton exchange membrane layer therebetween.




lec

CATALYST COMPOSITION FOR ALKALINE ELECTROCHEMICAL ENERGY CONVERSION REACTION AND USE THEREOF

A catalyst composition and a use thereof are provided. The catalyst composition includes a support and at least one RuXMY alloy attached to the surface of the support, wherein M is a transition metal and X≧Y. The catalyst composition is used in an alkaline electrochemical energy conversion reaction, and can improve the energy conversion efficiency for an electrochemical energy conversion device and significantly reduce material costs.




lec

ELECTRODE CATALYST FOR FUEL CELLS

A means of inhibiting the occurrence of overvoltage in an electrode catalyst for fuel cells so as to substantially prevent reduction of fuel cell performance includes an anode electrode catalyst for fuel cells, which contains a carbon support having at least one pore having a pore size of 10 nm or less and a pore volume of 1.1 to 8.4 cm3/g and catalyst particles having particle sizes of 3.1 nm or less and supported by the carbon support so that the density of supported catalyst particles is 15% to 40% by mass.




lec

FLOWING ELECTROLYTE FUEL CELL WITH IMPROVED PERFORMANCE AND STABILITY

A flowing electrolyte fuel cell system design (DHCFC-Flow) is provided. The use of a flowing oxygen-saturated electrolyte in a fuel cell offers a significant enhancement in the cell performance characteristics. The mass transfer and reaction kinetics of the superoxide/peroxide/oxide ion (mobile oxygen ion species) in the fuel cell are enhanced by recirculating an oxidizing gas-saturated electrolyte. Recirculating oxygen-saturated electrolyte through a liquid channel enhances the maximal current observed in a fuel cell. The use of a oxygen saturated electrolyte ensures that the reaction kinetics of the oxygen reduction reaction are fast and the use of convection ameliorates concentration gradients and the diffusion-limited maximum current density. The superoxide ion is generated in situ by the reduction of the oxygen dissolved in the gaseous electrolyte. Also, a dual porosity membrane allows the uniform flow of fuel (e.g., methane) on the fuel side, without allowing phase mixing. The capillary pressure for liquid intrusion into the gas phase and vice versa is quite large, estimated to be 1-10 psi. This makes it easier to control the fluctuations in gas/liquid velocity which might otherwise lead to phase mixing and the loss of fuel cell performance. In one variation, a dual-porosity membrane structure is incorporated in the system to allow uniform flow of fuel and prevent mixing of fuel with a liquid electrolyte.




lec

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING METHYL (2,2,3,3,-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of methyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.