tri Regression for copula-linked compound distributions with applications in modeling aggregate insurance claims By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Peng Shi, Zifeng Zhao. Source: The Annals of Applied Statistics, Volume 14, Number 1, 357--380.Abstract: In actuarial research a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcomes is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables and, thus, allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations. Full Article
tri Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Joseph Antonelli, Maitreyi Mazumdar, David Bellinger, David Christiani, Robert Wright, Brent Coull. Source: The Annals of Applied Statistics, Volume 14, Number 1, 257--275.Abstract: Humans are routinely exposed to mixtures of chemical and other environmental factors, making the quantification of health effects associated with environmental mixtures a critical goal for establishing environmental policy sufficiently protective of human health. The quantification of the effects of exposure to an environmental mixture poses several statistical challenges. It is often the case that exposure to multiple pollutants interact with each other to affect an outcome. Further, the exposure-response relationship between an outcome and some exposures, such as some metals, can exhibit complex, nonlinear forms, since some exposures can be beneficial and detrimental at different ranges of exposure. To estimate the health effects of complex mixtures, we propose a flexible Bayesian approach that allows exposures to interact with each other and have nonlinear relationships with the outcome. We induce sparsity using multivariate spike and slab priors to determine which exposures are associated with the outcome and which exposures interact with each other. The proposed approach is interpretable, as we can use the posterior probabilities of inclusion into the model to identify pollutants that interact with each other. We utilize our approach to study the impact of exposure to metals on child neurodevelopment in Bangladesh and find a nonlinear, interactive relationship between arsenic and manganese. Full Article
tri Hierarchical infinite factor models for improving the prediction of surgical complications for geriatric patients By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Elizabeth Lorenzi, Ricardo Henao, Katherine Heller. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2637--2661.Abstract: Nearly a third of all surgeries performed in the United States occur for patients over the age of 65; these older adults experience a higher rate of postoperative morbidity and mortality. To improve the care for these patients, we aim to identify and characterize high risk geriatric patients to send to a specialized perioperative clinic while leveraging the overall surgical population to improve learning. To this end, we develop a hierarchical infinite latent factor model (HIFM) to appropriately account for the covariance structure across subpopulations in data. We propose a novel Hierarchical Dirichlet Process shrinkage prior on the loadings matrix that flexibly captures the underlying structure of our data while sharing information across subpopulations to improve inference and prediction. The stick-breaking construction of the prior assumes an infinite number of factors and allows for each subpopulation to utilize different subsets of the factor space and select the number of factors needed to best explain the variation. We develop the model into a latent factor regression method that excels at prediction and inference of regression coefficients. Simulations validate this strong performance compared to baseline methods. We apply this work to the problem of predicting surgical complications using electronic health record data for geriatric patients and all surgical patients at Duke University Health System (DUHS). The motivating application demonstrates the improved predictive performance when using HIFM in both area under the ROC curve and area under the PR Curve while providing interpretable coefficients that may lead to actionable interventions. Full Article
tri Outline analyses of the called strike zone in Major League Baseball By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Dale L. Zimmerman, Jun Tang, Rui Huang. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2416--2451.Abstract: We extend statistical shape analytic methods known as outline analysis for application to the strike zone, a central feature of the game of baseball. Although the strike zone is rigorously defined by Major League Baseball’s official rules, umpires make mistakes in calling pitches as strikes (and balls) and may even adhere to a strike zone somewhat different than that prescribed by the rule book. Our methods yield inference on geometric attributes (centroid, dimensions, orientation and shape) of this “called strike zone” (CSZ) and on the effects that years, umpires, player attributes, game situation factors and their interactions have on those attributes. The methodology consists of first using kernel discriminant analysis to determine a noisy outline representing the CSZ corresponding to each factor combination, then fitting existing elliptic Fourier and new generalized superelliptic models for closed curves to that outline and finally analyzing the fitted model coefficients using standard methods of regression analysis, factorial analysis of variance and variance component estimation. We apply these methods to PITCHf/x data comprising more than three million called pitches from the 2008–2016 Major League Baseball seasons to address numerous questions about the CSZ. We find that all geometric attributes of the CSZ, except its size, became significantly more like those of the rule-book strike zone from 2008–2016 and that several player attribute/game situation factors had statistically and practically significant effects on many of them. We also establish that the variation in the horizontal center, width and area of an individual umpire’s CSZ from pitch to pitch is smaller than their variation among CSZs from different umpires. Full Article
tri A nonparametric spatial test to identify factors that shape a microbiome By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.Abstract: The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States. Full Article
tri A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Bret Zeldow, Vincent Lo Re III, Jason Roy. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.Abstract: Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart. Full Article
tri RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.Abstract: Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm. Full Article
tri Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Ying Chen, J. S. Marron, Jiejie Zhang. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.Abstract: Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods. Full Article
tri Distributional regression forests for probabilistic precipitation forecasting in complex terrain By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.Abstract: To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach. Full Article
tri Fast dynamic nonparametric distribution tracking in electron microscopic data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, Yu Ding. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1537--1563.Abstract: In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches. Full Article
tri Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Anton Thalmaier, James Thompson. Source: Bernoulli, Volume 26, Number 3, 2202--2225.Abstract: In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators. Full Article
tri Matching strings in encoded sequences By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adriana Coutinho, Rodrigo Lambert, Jérôme Rousseau. Source: Bernoulli, Volume 26, Number 3, 2021--2050.Abstract: We investigate the length of the longest common substring for encoded sequences and its asymptotic behaviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equivalent to the shortest distance between two observed orbits and its limiting relationship with the correlation dimension of the pushforward measure. An extension to the shortest distance between orbits for random dynamical systems is also provided. Full Article
tri Kernel and wavelet density estimators on manifolds and more general metric spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard. Source: Bernoulli, Volume 26, Number 3, 1832--1862.Abstract: We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed. Full Article
tri Random orthogonal matrices and the Cayley transform By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Jauch, Peter D. Hoff, David B. Dunson. Source: Bernoulli, Volume 26, Number 2, 1560--1586.Abstract: Random orthogonal matrices play an important role in probability and statistics, arising in multivariate analysis, directional statistics, and models of physical systems, among other areas. Calculations involving random orthogonal matrices are complicated by their constrained support. Accordingly, we parametrize the Stiefel and Grassmann manifolds, represented as subsets of orthogonal matrices, in terms of Euclidean parameters using the Cayley transform. We derive the necessary Jacobian terms for change of variables formulas. Given a density defined on the Stiefel or Grassmann manifold, these allow us to specify the corresponding density for the Euclidean parameters, and vice versa. As an application, we present a Markov chain Monte Carlo approach to simulating from distributions on the Stiefel and Grassmann manifolds. Finally, we establish that the Euclidean parameters corresponding to a uniform orthogonal matrix can be approximated asymptotically by independent normals. This result contributes to the growing literature on normal approximations to the entries of random orthogonal matrices or transformations thereof. Full Article
tri On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Kamran Kalbasi, Thomas Mountford. Source: Bernoulli, Volume 26, Number 2, 1504--1534.Abstract: In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments. Full Article
tri Strictly weak consensus in the uniform compass model on $mathbb{Z}$ By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Nina Gantert, Markus Heydenreich, Timo Hirscher. Source: Bernoulli, Volume 26, Number 2, 1269--1293.Abstract: We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus. Full Article
tri Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Yating Liu, Gilles Pagès. Source: Bernoulli, Volume 26, Number 2, 1171--1204.Abstract: We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper. Full Article
tri A Bayesian nonparametric approach to log-concave density estimation By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ester Mariucci, Kolyan Ray, Botond Szabó. Source: Bernoulli, Volume 26, Number 2, 1070--1097.Abstract: The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations. Full Article
tri Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
tri High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
tri Living through English history : stories of the Urlwin, Brittridge, Vasper, Partridge and Ellerby families / Janet McLeod. By www.catalog.slsa.sa.gov.au Published On :: Urlwin (Family). Full Article
tri Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program By marketbrief.edweek.org Published On :: Tue, 05 May 2020 22:14:33 +0000 The Round Rock Independent School District in Texas is looking for a digital curriculum and blended learning program. Baltimore is looking for a comprehensive high school literacy program. The post Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program appeared first on Market Brief. Full Article Purchasing Alert Curriculum / Digital Curriculum Educational Technology/Ed-Tech Learning Management / Student Information Systems Procurement / Purchasing / RFPs
tri As States’ Budgets Reel During COVID-19, Districts to Feel the Wrath By marketbrief.edweek.org Published On :: Wed, 06 May 2020 21:23:43 +0000 State funding for K-12 is likely to fall sharply, though districts could look to protect essentials like distance-learning support and professional development, says school finance expert Mike Griffith. The post As States’ Budgets Reel During COVID-19, Districts to Feel the Wrath appeared first on Market Brief. Full Article Analyst's View COVID-19 Federal / State Policy Funding / Budgets Procurement / Purchasing / RFPs State Policy
tri What Districts Want From Assessments, as They Grapple With the Coronavirus By marketbrief.edweek.org Published On :: Fri, 08 May 2020 02:23:58 +0000 EdWeek Market Brief asked district officials in a nationwide survey about their most urgent assessment needs, as they cope with COVID-19 and tentatively plan for reopening schools. The post What Districts Want From Assessments, as They Grapple With the Coronavirus appeared first on Market Brief. Full Article Market Trends Assessment / Testing Coronavirus COVID-19 Exclusive Data
tri Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware
tri Pence aimed to project normalcy during his trip to Iowa, but coronavirus got in the way By news.yahoo.com Published On :: Fri, 08 May 2020 21:35:24 -0400 Vice President Pence’s trip to Iowa shows how the Trump administration’s aims to move past coronavirus are sometimes complicated by the virus itself. Full Article
tri ‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration By news.yahoo.com Published On :: Sat, 09 May 2020 07:22:00 -0400 Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor. Full Article
tri Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions By news.yahoo.com Published On :: Fri, 08 May 2020 19:28:43 -0400 After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair." Full Article
tri Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee. Source: Bayesian Analysis, Volume 15, Number 2, 559--578.Abstract: We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities. Full Article
tri Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
tri Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
tri Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
tri Latent Nested Nonparametric Priors (with Discussion) By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez. Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.Abstract: Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data. Full Article
tri Post-Processing Posteriors Over Precision Matrices to Produce Sparse Graph Estimates By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Amir Bashir, Carlos M. Carvalho, P. Richard Hahn, M. Beatrix Jones. Source: Bayesian Analysis, Volume 14, Number 4, 1075--1090.Abstract: A variety of computationally efficient Bayesian models for the covariance matrix of a multivariate Gaussian distribution are available. However, all produce a relatively dense estimate of the precision matrix, and are therefore unsatisfactory when one wishes to use the precision matrix to consider the conditional independence structure of the data. This paper considers the posterior predictive distribution of model fit for these covariance models. We then undertake post-processing of the Bayes point estimate for the precision matrix to produce a sparse model whose expected fit lies within the upper 95% of the posterior predictive distribution of fit. The impact of the method for selecting the zero elements of the precision matrix is evaluated. Good results were obtained using models that encouraged a sparse posterior (G-Wishart, Bayesian adaptive graphical lasso) and selection using credible intervals. We also find that this approach is easily extended to the problem of finding a sparse set of elements that differ across a set of precision matrices, a natural summary when a common set of variables is observed under multiple conditions. We illustrate our findings with moderate dimensional data examples from finance and metabolomics. Full Article
tri Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Claudia Kirch, Matthew C. Edwards, Alexander Meier, Renate Meyer. Source: Bayesian Analysis, Volume 14, Number 4, 1037--1073.Abstract: Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). Full Article
tri Extrinsic Gaussian Processes for Regression and Classification on Manifolds By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson. Source: Bayesian Analysis, Volume 14, Number 3, 907--926.Abstract: Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces. Full Article
tri Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
tri A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez. Source: Bayesian Analysis, Volume 14, Number 2, 649--675.Abstract: We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology. Full Article
tri A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 2, 553--572.Abstract: In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence. Full Article
tri A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Luis Gutiérrez, Eduardo Gutiérrez-Peña, Ramsés H. Mena. Source: Bayesian Analysis, Volume 14, Number 2, 427--447.Abstract: This work presents a Bayesian predictive approach to statistical shape analysis. A modeling strategy that starts with a Gaussian distribution on the configuration space, and then removes the effects of location, rotation and scale, is studied. This boils down to an application of the projected normal distribution to model the configurations in the shape space, which together with certain identifiability constraints, facilitates parameter interpretation. Having better control over the parameters allows us to generalize the model to a regression setting where the effect of predictors on shapes can be considered. The methodology is illustrated and tested using both simulated scenarios and a real data set concerning eight anatomical landmarks on a sagittal plane of the corpus callosum in patients with autism and in a group of controls. Full Article
tri Larry Brown’s Contributions to Parametric Inference, Decision Theory and Foundations: A Survey By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST James O. Berger, Anirban DasGupta. Source: Statistical Science, Volume 34, Number 4, 621--634.Abstract: This article gives a panoramic survey of the general area of parametric statistical inference, decision theory and foundations of statistics for the period 1965–2010 through the lens of Larry Brown’s contributions to varied aspects of this massive area. The article goes over sufficiency, shrinkage estimation, admissibility, minimaxity, complete class theorems, estimated confidence, conditional confidence procedures, Edgeworth and higher order asymptotic expansions, variational Bayes, Stein’s SURE, differential inequalities, geometrization of convergence rates, asymptotic equivalence, aspects of empirical process theory, inference after model selection, unified frequentist and Bayesian testing, and Wald’s sequential theory. A reasonably comprehensive bibliography is provided. Full Article
tri Models as Approximations II: A Model-Free Theory of Parametric Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Arun Kumar Kuchibhotla, Richard Berk, Edward George, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 545--565.Abstract: We develop a model-free theory of general types of parametric regression for i.i.d. observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals,” defined on large nonparametric classes of joint ${x extrm{-}y}$ distributions, without assuming a correct model. Parametric models are reduced to heuristics to suggest plausible objective functions. An example of a regression functional is the vector of slopes of linear equations fitted by OLS to largely arbitrary ${x extrm{-}y}$ distributions, without assuming a linear model (see Part I). More generally, regression functionals can be defined by minimizing objective functions, solving estimating equations, or with ad hoc constructions. In this framework, it is possible to achieve the following: (1) define a notion of “well-specification” for regression functionals that replaces the notion of correct specification of models, (2) propose a well-specification diagnostic for regression functionals based on reweighting distributions and data, (3) decompose sampling variability of regression functionals into two sources, one due to the conditional response distribution and another due to the regressor distribution interacting with misspecification, both of order $N^{-1/2}$, (4) exhibit plug-in/sandwich estimators of standard error as limit cases of ${x extrm{-}y}$ bootstrap estimators, and (5) provide theoretical heuristics to indicate that ${x extrm{-}y}$ bootstrap standard errors may generally be preferred over sandwich estimators. Full Article
tri User-Friendly Covariance Estimation for Heavy-Tailed Distributions By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, Wen-Xin Zhou. Source: Statistical Science, Volume 34, Number 3, 454--471.Abstract: We provide a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce elementwise and spectrumwise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key insight is that estimators should adapt to the sample size, dimensionality and noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate practical implementation, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods. Full Article
tri An Overview of Semiparametric Extensions of Finite Mixture Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Sijia Xiang, Weixin Yao, Guangren Yang. Source: Statistical Science, Volume 34, Number 3, 391--404.Abstract: Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed. Full Article
tri Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Georg Lindgren. Source: Statistical Science, Volume 34, Number 1, 100--128.Abstract: We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods. Full Article
tri Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Nicole Bohme Carnegie. Source: Statistical Science, Volume 34, Number 1, 90--93.Abstract: With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals. Full Article
tri Dopamine D1 and D2 Receptor Family Contributions to Modafinil-Induced Wakefulness By www.jneurosci.org Published On :: 2009-03-04 Jared W. YoungMar 4, 2009; 29:2663-2665Journal Club Full Article
tri Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization By www.jneurosci.org Published On :: 2017-05-24 Catherine MankiwMay 24, 2017; 37:5221-5231Development Plasticity Repair Full Article
tri Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control By www.jneurosci.org Published On :: 2007-02-28 William W. SeeleyFeb 28, 2007; 27:2349-2356BehavioralSystemsCognitive Full Article
tri Daily Marijuana Use Is Not Associated with Brain Morphometric Measures in Adolescents or Adults By www.jneurosci.org Published On :: 2015-01-28 Barbara J. WeilandJan 28, 2015; 35:1505-1512Neurobiology of Disease Full Article