ef

Leonardo DiCaprio Premiers “Before the Flood” Climate Change Documentary

Environmental activist and Academy Award®-winning actor Leonardo DiCaprio and Academy Award®-winning filmmaker Fisher Stevens premier their documentary film, Before the Flood, a compelling account of the powerful changes occurring on our planet due to climate change. Before the Flood will … Continue reading




ef

‘Warning Bells Going Off’ as NOAA Forecasts Entire Great Barrier Reef at Risk of Coral Bleaching and Death

By Jessica Corbett Common Dreams “This is a wake-up call,” says one Australian marine biologist. “Given sea temperatures usually increase as we get towards March, this is probably conservative.” Delivering yet another “wake-up call” after recent studies have shown that … Continue reading




ef

Repeat after me: Preference testing is not A/B Testing

Researchers sometimes ask participants which of two alternative designs they prefer. The data from these studies comprise opinions that have little predictive value. In contrast, multivariate A/B testing involves target users doing real tasks. The data from these studies comprise behavioural observations that predict real-world behaviour.




ef

Bikefinder re-design

Bikefinder is a startup that I’m and advisor and investor in. They are making an integrated GPS tracker for bikes with a sim card, so you can track it anywhere via web or app. The online store was setup on WooCommerce using the Storefront theme, and I made a new custom design for it. Instead […]




ef

Don't Let Your Diagnosis of TBI and/or PTSD Define You

Adam shares a message of hope to those diagnosed with TBI and/or PTSD: Your life may be different, but you are still the driver and in control.




ef

Could you get PTSD from your pandemic experience? The long-term mental health effects of coronavirus

Experiencing intense flashbacks, nightmares, irritability, anger, and fear? In the face of a traumatic event like the Covid-19 pandemic, it’s common to feel this way.




ef

Redefine Creativity – A conversation with Kevin Rose

Today I’m sitting down with investor, serial entrepreneur and all around good human, Kevin Rose. If you’re a long timer listener, you might remember Kevin was part of 30 Days of Genius. Now the tables are turned and I’m in the hot seat as a guest on his podcast, the Kevin Rose Show. Of course, it’s always fun sitting down with one of my long time homies to unpack some of my favorite topics, including: How to build your creative muscle and why it’s becoming more important Standing out and why you’re uniquely qualified. Forgetting the “shoulds” is a must do to uncork our richest lives and much more… Big shoutout to Kevin for having me on the show … and if you haven’t already, be sure to check out his podcast The Kevin Rose Show anywhere you listen to podcasts. Enjoy! FOLLOW KEVIN: instagram | twitter | website Listen to the Podcast Subscribe   This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top […]

The post Redefine Creativity – A conversation with Kevin Rose appeared first on Chase Jarvis Photography.




ef

How To Succeed In Wireframe Design

For the most part, we tend to underestimate things that are familiar to us. It is also very likely that we will underestimate those things that though new, seem very simple to process. And that is correct to some degree. But, when we are faced with complex cases and all measures are taken, a good and solid understanding of the basics could help us to find the right solutions. In this article, we will take a deeper look at one of the most simple, thus, quite often underrated activities in web development that is the design of wireframes.




ef

In Praise of the Diagonal Reference Line

Annotations are what set visual communication and journalism apart from just visualization. They often consist of text, but some of the most useful annotations are graphical elements, and many of them are very simple. One type I have a particular fondness for is the diagonal reference line, which has been used to provide powerful context […]




ef

Nonlinear singular problems with indefinite potential term. (arXiv:2005.01789v3 [math.AP] UPDATED)

We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities. In this paper the concave term is parametric. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter $lambda$ varies. This work continues our research published in arXiv:2004.12583, where $xi equiv 0 $ and in the reaction the parametric term is the singular one.




ef

Set theoretic Yang-Baxter & reflection equations and quantum group symmetries. (arXiv:2003.08317v3 [math-ph] UPDATED)

Connections between set theoretic Yang-Baxter and reflection equations and quantum integrable systems are investigated. We show that set theoretic $R$-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for $R$-matrices being Baxterized solutions of the $A$-type Hecke algebra ${cal H}_N(q=1)$. We show in the case of the reflection algebra that there exists a "boundary" finite sub-algebra for some special choice of "boundary" elements of the $B$-type Hecke algebra ${cal B}_N(q=1, Q)$. We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the $B$-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the $B$-type Hecke algebra. These are universal statements that largely generalize previous relevant findings, and also allow the investigation of the symmetries of the double row transfer matrix.




ef

Surface Effects in Superconductors with Corners. (arXiv:2003.00521v2 [math-ph] UPDATED)

We review some recent results on the phenomenon of surface superconductivity in the framework of Ginzburg-Landau theory for extreme type-II materials. In particular, we focus on the response of the superconductor to a strong longitudinal magnetic field in the regime where superconductivity survives only along the boundary of the wire. We derive the energy and density asymptotics for samples with smooth cross section, up to curvature-dependent terms. Furthermore, we discuss the corrections in presence of corners at the boundary of the sample.




ef

Effective divisors on Hurwitz spaces. (arXiv:1804.01898v3 [math.AG] UPDATED)

We prove the effectiveness of the canonical bundle of several Hurwitz spaces of degree k covers of the projective line from curves of genus 13<g<20.




ef

A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC])

We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path.




ef

Steiner symmetry in the minimization of the principal positive eigenvalue of an eigenvalue problem with indefinite weight. (arXiv:2005.03581v1 [math.AP])

In cite{CC} the authors, investigating a model of population dynamics, find the following result. Let $Omegasubset mathbb{R}^N$, $Ngeq 1$, be a bounded smooth domain. The weighted eigenvalue problem $-Delta u =lambda m u $ in $Omega$ under homogeneous Dirichlet boundary conditions, where $lambda in mathbb{R}$ and $min L^infty(Omega)$, is considered. The authors prove the existence of minimizers $check m$ of the principal positive eigenvalue $lambda_1(m)$ when $m$ varies in a class $mathcal{M}$ of functions where average, maximum, and minimum values are given. A similar result is obtained in cite{CCP} when $m$ is in the class $mathcal{G}(m_0)$ of rearrangements of a fixed $m_0in L^infty(Omega)$. In our work we establish that, if $Omega$ is Steiner symmetric, then every minimizer in cite{CC,CCP} inherits the same kind of symmetry.




ef

Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC])

Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring.




ef

Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC])

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.




ef

An alternate definition of the Parry measure. (arXiv:2005.03282v1 [math.DS])

In this paper, we give an alternate definition of the well-known Parry measure on an aperiodic subshift of finite type using correlation between the forbidden words. We use the concept of the local escape rate to obtain this definition. We also compute Perron eigenvectors corresponding to the Perron root of the associated adjacency matrix.




ef

An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO])

In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$.




ef

Cohomological dimension of ideals defining Veronese subrings. (arXiv:2005.03250v1 [math.AC])

Given a standard graded polynomial ring over a commutative Noetherian ring $A$, we prove that the cohomological dimension and the height of the ideals defining any of its Veronese subrings are equal. This result is due to Ogus when $A$ is a field of characteristic zero, and follows from a result of Peskine and Szpiro when $A$ is a field of positive characteristic; our result applies, for example, when $A$ is the ring of integers.




ef

Solid hulls and cores of classes of weighted entire functions defined in terms of associated weight functions. (arXiv:2005.03167v1 [math.FA])

In the spirit of very recent articles by J. Bonet, W. Lusky and J. Taskinen we are studying the so-called solid hulls and cores of spaces of weighted entire functions when the weights are given in terms of associated weight functions coming from weight sequences. These sequences are required to satisfy certain (standard) growth and regularity properties which are frequently arising and used in the theory of ultradifferentiable and ultraholomorphic function classes (where also the associated weight function plays a prominent role). Thanks to this additional information we are able to see which growth behavior the so-called "Lusky-numbers", arising in the representations of the solid hulls and cores, have to satisfy resp. if such numbers can exist.




ef

Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG])

We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor.




ef

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




ef

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




ef

When Hearing Defers to Touch. (arXiv:2004.13462v2 [q-bio.NC] UPDATED)

Hearing is often believed to be more sensitive than touch. This assertion is based on a comparison of sensitivities to weak stimuli. The respective stimuli, however, are not easily comparable since hearing is gauged using acoustic pressure and touch using skin displacement. We show that under reasonable assumptions the auditory and tactile detection thresholds can be reconciled on a level playing field. The results indicate that the capacity of touch and hearing to detect weak stimuli varies according to the size of a sensed object as well as to the frequency of its oscillations. In particular, touch is found to be more effective than hearing at detecting small and slow objects.




ef

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




ef

Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED)

Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems.




ef

Multi-group Multicast Beamforming: Optimal Structure and Efficient Algorithms. (arXiv:1911.08925v2 [eess.SP] UPDATED)

This paper considers the multi-group multicast beamforming optimization problem, for which the optimal solution has been unknown due to the non-convex and NP-hard nature of the problem. By utilizing the successive convex approximation numerical method and Lagrangian duality, we obtain the optimal multicast beamforming solution structure for both the quality-of-service (QoS) problem and the max-min fair (MMF) problem. The optimal structure brings valuable insights into multicast beamforming: We show that the notion of uplink-downlink duality can be generalized to the multicast beamforming problem. The optimal multicast beamformer is a weighted MMSE filter based on a group-channel direction: a generalized version of the optimal downlink multi-user unicast beamformer. We also show that there is an inherent low-dimensional structure in the optimal multicast beamforming solution independent of the number of transmit antennas, leading to efficient numerical algorithm design, especially for systems with large antenna arrays. We propose efficient algorithms to compute the multicast beamformer based on the optimal beamforming structure. Through asymptotic analysis, we characterize the asymptotic behavior of the multicast beamformers as the number of antennas grows, and in turn, provide simple closed-form approximate multicast beamformers for both the QoS and MMF problems. This approximation offers practical multicast beamforming solutions with a near-optimal performance at very low computational complexity for large-scale antenna systems.




ef

Numerical study on the effect of geometric approximation error in the numerical solution of PDEs using a high-order curvilinear mesh. (arXiv:1908.09917v2 [math.NA] UPDATED)

When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.




ef

Space-Efficient Vertex Separators for Treewidth. (arXiv:1907.00676v3 [cs.DS] UPDATED)

For $n$-vertex graphs with treewidth $k = O(n^{1/2-epsilon})$ and an arbitrary $epsilon>0$, we present a word-RAM algorithm to compute vertex separators using only $O(n)$ bits of working memory. As an application of our algorithm, we give an $O(1)$-approximation algorithm for tree decomposition. Our algorithm computes a tree decomposition in $c^k n (log log n) log^* n$ time using $O(n)$ bits for some constant $c > 0$.

We finally use the tree decomposition obtained by our algorithm to solve Vertex Cover, Independent Set, Dominating Set, MaxCut and $3$-Coloring by using $O(n)$ bits as long as the treewidth of the graph is smaller than $c' log n$ for some problem dependent constant $0 < c' < 1$.




ef

Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED)

This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces.




ef

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




ef

Efficient Exact Verification of Binarized Neural Networks. (arXiv:2005.03597v1 [cs.AI])

We present a new system, EEV, for verifying binarized neural networks (BNNs). We formulate BNN verification as a Boolean satisfiability problem (SAT) with reified cardinality constraints of the form $y = (x_1 + cdots + x_n le b)$, where $x_i$ and $y$ are Boolean variables possibly with negation and $b$ is an integer constant. We also identify two properties, specifically balanced weight sparsity and lower cardinality bounds, that reduce the verification complexity of BNNs. EEV contains both a SAT solver enhanced to handle reified cardinality constraints natively and novel training strategies designed to reduce verification complexity by delivering networks with improved sparsity properties and cardinality bounds. We demonstrate the effectiveness of EEV by presenting the first exact verification results for $ell_{infty}$-bounded adversarial robustness of nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets. Our results also show that, depending on the dataset and network architecture, our techniques verify BNNs between a factor of ten to ten thousand times faster than the best previous exact verification techniques for either binarized or real-valued networks.




ef

A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL])

In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively.




ef

Two Efficient Device Independent Quantum Dialogue Protocols. (arXiv:2005.03518v1 [quant-ph])

Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305). To make the protocol secure against information leakage, the authors have discarded almost half of the qubits remaining after the error estimation phase. In this paper, we propose two modified versions of the MDI-QD protocol such that the number of discarded qubits is reduced to almost one-fourth of the remaining qubits after the error estimation phase. We use almost half of their discarded qubits along with their used qubits to make our protocol more efficient in qubits count. We show that both of our protocols are secure under the same adversarial model given in MDI-QD protocol.




ef

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




ef

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




ef

Datom: A Deformable modular robot for building self-reconfigurable programmable matter. (arXiv:2005.03402v1 [cs.RO])

Moving a module in a modular robot is a very complex and error-prone process. Unlike in swarm, in the modular robots we are targeting, the moving module must keep the connection to, at least, one other module. In order to miniaturize each module to few millimeters, we have proposed a design which is using electrostatic actuator. However, this movement is composed of several attachment, detachment creating the movement and each small step can fail causing a module to break the connection. The idea developed in this paper consists in creating a new kind of deformable module allowing a movement which keeps the connection between the moving and the fixed modules. We detail the geometry and the practical constraints during the conception of this new module. We then validate the possibility of movement for a module in an existing configuration. This implies the cooperation of some of the modules placed along the path and we show in simulation that it exists a motion process to reach every free positions of the surface for a given configuration.




ef

Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI])

Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed.




ef

Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT])

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration.




ef

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




ef

Constructing Accurate and Efficient Deep Spiking Neural Networks with Double-threshold and Augmented Schemes. (arXiv:2005.03231v1 [cs.NE])

Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges such as the high-power consumption encountered by artificial neural networks (ANNs), however there is still a gap between them with respect to the recognition accuracy on practical tasks. A conversion strategy was thus introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this paper, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on MNIST, Fashion-MNIST and CIFAR10 datasets. The results show that the proposed double-threshold scheme can effectively improve accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast and efficient deep SNNs as compared to other state-of-the-art approaches. Our study therefore provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing.




ef

A Parameterized Perspective on Attacking and Defending Elections. (arXiv:2005.03176v1 [cs.GT])

We consider the problem of protecting and manipulating elections by recounting and changing ballots, respectively. Our setting involves a plurality-based election held across multiple districts, and the problem formulations are based on the model proposed recently by~[Elkind et al, IJCAI 2019]. It turns out that both of the manipulation and protection problems are NP-complete even in fairly simple settings. We study these problems from a parameterized perspective with the goal of establishing a more detailed complexity landscape. The parameters we consider include the number of voters, and the budgets of the attacker and the defender. While we observe fixed-parameter tractability when parameterizing by number of voters, our main contribution is a demonstration of parameterized hardness when working with the budgets of the attacker and the defender.




ef

Line Artefact Quantification in Lung Ultrasound Images of COVID-19 Patients via Non-Convex Regularisation. (arXiv:2005.03080v1 [eess.IV])

In this paper, we present a novel method for line artefacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a non-convex regularisation problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artefacts. Despite being non-convex, the proposed method has guaranteed convergence via a proximal splitting algorithm and accurately identifies both horizontal and vertical line artefacts in LUS images. In order to reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients. In addition, owing to its fast convergence, which takes around 12 seconds for a given frame, our proposed method is readily applicable for processing LUS image sequences.




ef

Two-Grid Deflated Krylov Methods for Linear Equations. (arXiv:2005.03070v1 [math.NA])

An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids. Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is generally considered to be a non-restarted method, it works well in this context with deflating and restarting. Tests show this new approach can be very efficient for difficult linear equations problems.




ef

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR])

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.




ef

In Washington's rural pot shops, the effects of the coronavirus scare can be dramatic

The Cannabis Issue During normal times, I-90 Green House is like a destination resort for marijuana lovers.…




ef

1917 is designed to look like a single take. Here are some other films that use similar tricks to great effect

Sam Mendes' 1917, which took Best Picture and Best Director awards at the Golden Globes earlier this week, looks like a standard period piece.…



  • Film/Film News

ef

Creative cooking at home with chef Ricky Webster

Spokane chef Ricky Webster is bringing tips, recipes and good cheer from his kitchen to yours through a series of lighthearted cooking videos.…



  • Food/Food News

ef

Musicians are posting live streams and personal concerts to make your self-isolation a bit more tuneful

Celebrities: They're just like us! Along with everyone else, famous people are self-isolating at home, and some of them have taken to social media to alleviate the stress of the outside world. We don't need to tell you that events everywhere are canceled, so a few big-time musicians are putting on personal concerts for their fans and followers, and a lot of them — save for that cringe-inducing, star-studded cover of "Imagine" that was going around yesterday — are actually pretty good.…