al

Rejoinder: Bayes, Oracle Bayes, and Empirical Bayes

Bradley Efron.

Source: Statistical Science, Volume 34, Number 2, 234--235.




al

Comment: Variational Autoencoders as Empirical Bayes

Yixin Wang, Andrew C. Miller, David M. Blei.

Source: Statistical Science, Volume 34, Number 2, 229--233.




al

Comment: Empirical Bayes, Compound Decisions and Exchangeability

Eitan Greenshtein, Ya’acov Ritov.

Source: Statistical Science, Volume 34, Number 2, 224--228.

Abstract:
We present some personal reflections on empirical Bayes/ compound decision (EB/CD) theory following Efron (2019). In particular, we consider the role of exchangeability in the EB/CD theory and how it can be achieved when there are covariates. We also discuss the interpretation of EB/CD confidence interval, the theoretical efficiency of the CD procedure, and the impact of sparsity assumptions.




al

Comment: Empirical Bayes Interval Estimation

Wenhua Jiang.

Source: Statistical Science, Volume 34, Number 2, 219--223.

Abstract:
This is a contribution to the discussion of the enlightening paper by Professor Efron. We focus on empirical Bayes interval estimation. We discuss the oracle interval estimation rules, the empirical Bayes estimation of the oracle rule and the computation. Some numerical results are reported.




al

Comment: Bayes, Oracle Bayes and Empirical Bayes

Aad van der Vaart.

Source: Statistical Science, Volume 34, Number 2, 214--218.




al

Comment: Minimalist $g$-Modeling

Roger Koenker, Jiaying Gu.

Source: Statistical Science, Volume 34, Number 2, 209--213.

Abstract:
Efron’s elegant approach to $g$-modeling for empirical Bayes problems is contrasted with an implementation of the Kiefer–Wolfowitz nonparametric maximum likelihood estimator for mixture models for several examples. The latter approach has the advantage that it is free of tuning parameters and consequently provides a relatively simple complementary method.




al

Comment: Bayes, Oracle Bayes, and Empirical Bayes

Nan Laird.

Source: Statistical Science, Volume 34, Number 2, 206--208.




al

Comment: Bayes, Oracle Bayes, and Empirical Bayes

Thomas A. Louis.

Source: Statistical Science, Volume 34, Number 2, 202--205.




al

Bayes, Oracle Bayes and Empirical Bayes

Bradley Efron.

Source: Statistical Science, Volume 34, Number 2, 177--201.

Abstract:
This article concerns the Bayes and frequentist aspects of empirical Bayes inference. Some of the ideas explored go back to Robbins in the 1950s, while others are current. Several examples are discussed, real and artificial, illustrating the two faces of empirical Bayes methodology: “oracle Bayes” shows empirical Bayes in its most frequentist mode, while “finite Bayes inference” is a fundamentally Bayesian application. In either case, modern theory and computation allow us to present a sharp finite-sample picture of what is at stake in an empirical Bayes analysis.




al

Generalized Multiple Importance Sampling

Víctor Elvira, Luca Martino, David Luengo, Mónica F. Bugallo.

Source: Statistical Science, Volume 34, Number 1, 129--155.

Abstract:
Importance sampling (IS) methods are broadly used to approximate posterior distributions or their moments. In the standard IS approach, samples are drawn from a single proposal distribution and weighted adequately. However, since the performance in IS depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this multiple importance sampling (MIS) scenario, extensive literature has addressed the selection and adaptation of the proposal distributions, interpreting the sampling and weighting steps in different ways. In this paper, we establish a novel general framework with sampling and weighting procedures when more than one proposal is available. The new framework encompasses most relevant MIS schemes in the literature, and novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples revealing that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method.




al

Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes

Georg Lindgren.

Source: Statistical Science, Volume 34, Number 1, 100--128.

Abstract:
We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods.




al

Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data

Nicole Bohme Carnegie.

Source: Statistical Science, Volume 34, Number 1, 90--93.

Abstract:
With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals.




al

Comment: Causal Inference Competitions: Where Should We Aim?

Ehud Karavani, Tal El-Hay, Yishai Shimoni, Chen Yanover.

Source: Statistical Science, Volume 34, Number 1, 86--89.

Abstract:
Data competitions proved to be highly beneficial to the field of machine learning, and thus expected to provide similar advantages in the field of causal inference. As participants in the 2016 and 2017 Atlantic Causal Inference Conference (ACIC) data competitions and co-organizers of the 2018 competition, we discuss the strengths of simulation-based competitions and suggest potential extensions to address their limitations. These suggested augmentations aim at making the data generating processes more realistic and gradually increase in complexity, allowing thorough investigations of algorithms’ performance. We further outline a community-wide competition framework to evaluate an end-to-end causal inference pipeline, beginning with a causal question and a database, and ending with causal estimates.




al

Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition”

Susan Gruber, Mark J. van der Laan.

Source: Statistical Science, Volume 34, Number 1, 82--85.

Abstract:
Dorie and co-authors (DHSSC) are to be congratulated for initiating the ACIC Data Challenge. Their project engaged the community and accelerated research by providing a level playing field for comparing the performance of a priori specified algorithms. DHSSC identified themes concerning characteristics of the DGP, properties of the estimators, and inference. We discuss these themes in the context of targeted learning.




al

Matching Methods for Causal Inference: A Review and a Look Forward

Elizabeth A. Stuart

Source: Statist. Sci., Volume 25, Number 1, 1--21.

Abstract:
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.




al

Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning

The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence–divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features.

SIGNIFICANCE STATEMENT The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations.




al

Smoking affects us all. / Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




al

If you must smoke don't exhale / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




al

Smoking is anti-social / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




al

If you must smoke don't exhale / Biman Mullick.

London : Cleanair, [1988?]




al

Dila jalana = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




al

Hārta jbalē = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




al

How can the smoker and the nonsmoker be equally free in the same place? George Bernard Shaw / Biman Mullick.

[London?], [199-?]




al

Karachi Plague Committee in 1897. Album of photographs.

1897.




al

Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018.

[London], 2019.




al

The Joyful Reduction of Uncertainty: Music Perception as a Window to Predictive Neuronal Processing




al

Blake Lively's Favorite Affordable Jeans Brand Is Having a Major Sale Right Now

Here's everything you need to know about Old Navy's Black Friday and Cyber Monday plans.




al

Healthy Holiday Gift Ideas for Women

Treat the babe in your life to one (or two or three) of these indulgent gifts.




al

Taylor Swift, Hailey Bieber, and Tons of Other Celebs’ Favorite Leggings Are on Sale Ahead of Black Friday

Here’s where you can snag their Alo Yoga Moto leggings for less.




al

Gabrielle Union's Mesmerizing Tie Dye Activewear Set Is On Sale for Black Friday

The rainbow sports bra and leggings set from Splits59 is a must-have for anyone craving a pop of color in their workout wardrobe.




al

These Nordstrom Cyber Monday Deals Are Giving Black Friday a Run for Its Money

This is not a drill: You can get up to 50% off at Nordstrom right now.




al

Macy’s Insane Cyber Monday Sale Ends in a Few Hours—Here Are the Best Deals

You've got exactly four hours left to take advantage of these heavily discounted prices.




al

These Clark Booties Are Actually Comfortable Enough to Wear All Day—and They’re on Sale

You can save 50% right now. 




al

The Comfy Sneakers That Kate Middleton, Kelly Ripa, and More Celebs Love Are on Sale at Amazon

Keep your feet comfy and your wallet fat.




al

Forget Black Booties, Amal Clooney and J.Lo Are Wearing This Weather-Resistant Boot Trend Instead

And it’s on sale at Nordstrom.




al

Jennifer Lopez Just Stepped Out in These Glittery Leggings (Again)—and We Found Them on Sale

They’re already going out of stock.




al

Nike Launches Zoom Pulse Sneakers for Medical Workers Who Are On Their Feet All Day

The new style is available to shop today.




al

Shoppers Swear These $30 Colorfulkoala Leggings Are the Ultimate Lululemon Dupes

And they’re available in 19 fun prints.




al

The Axon Initial Segment: An Updated Viewpoint

Christophe Leterrier
Feb 28, 2018; 38:2135-2145
Viewpoints




al

Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

Catherine Mankiw
May 24, 2017; 37:5221-5231
Development Plasticity Repair




al

Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging

Jasper Akerboom
Oct 3, 2012; 32:13819-13840
Cellular




al

The Cognitive Thalamus as a Gateway to Mental Representations

Mathieu Wolff
Jan 2, 2019; 39:3-14
Viewpoints




al

Brain-Derived Neurotrophic Factor Protection of Cortical Neurons from Serum Withdrawal-Induced Apoptosis Is Inhibited by cAMP

Steven Poser
Jun 1, 2003; 23:4420-4427
Cellular




al

Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus

Timothy J. Schoenfeld
May 1, 2013; 33:7770-7777
BehavioralSystemsCognitive




al

Genomic Analysis of Reactive Astrogliosis

Jennifer L. Zamanian
May 2, 2012; 32:6391-6410
Neurobiology of Disease




al

Readiness Potential and Neuronal Determinism: New Insights on Libet Experiment

Karim Fifel
Jan 24, 2018; 38:784-786
Journal Club




al

Advances in Enteric Neurobiology: The "Brain" in the Gut in Health and Disease

Subhash Kulkarni
Oct 31, 2018; 38:9346-9354
Symposium and Mini-Symposium




al

Sleep Deprivation Biases the Neural Mechanisms Underlying Economic Preferences

Vinod Venkatraman
Mar 9, 2011; 31:3712-3718
BehavioralSystemsCognitive




al

Axonal ramifications of hippocampal Ca1 pyramidal cells

WD Knowles
Nov 1, 1981; 1:1236-1241
Articles




al

Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

William W. Seeley
Feb 28, 2007; 27:2349-2356
BehavioralSystemsCognitive