to

Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials

BACKGROUND

Continuous glucose monitoring (CGM) provides important information to aid in achieving glycemic targets in people with diabetes.

PURPOSE

We performed a meta-analysis of randomized controlled trials (RCTs) comparing CGM with usual care for parameters of glycemic control in both type 1 and type 2 diabetes.

DATA SOURCES

Many electronic databases were searched for articles published from inception until 30 June 2019.

STUDY SELECTION

We selected RCTs that assessed both changes in HbA1c and time in target range (TIR), together with time below range (TBR), time above range (TAR), and glucose variability expressed as coefficient of variation (CV).

DATA EXTRACTION

Data were extracted from each trial by two investigators.

DATA SYNTHESIS

All results were analyzed by a random effects model to calculate the weighted mean difference (WMD) with the 95% CI. We identified 15 RCTs, lasting 12–36 weeks and involving 2,461 patients. Compared with the usual care (overall data), CGM was associated with modest reduction in HbA1c (WMD –0.17%, 95% CI –0.29 to –0.06, I2 = 96.2%), increase in TIR (WMD 70.74 min, 95% CI 46.73–94.76, I2 = 66.3%), and lower TAR, TBR, and CV, with heterogeneity between studies. The increase in TIR was significant and robust independently of diabetes type, method of insulin delivery, and reason for CGM use. In preplanned subgroup analyses, real-time CGM led to the higher improvement in mean HbA1c (WMD –0.23%, 95% CI –0.36 to –0.10, P < 0.001), TIR (WMD 83.49 min, 95% CI 52.68–114.30, P < 0.001), and TAR, whereas both intermittently scanned CGM and sensor-augmented pump were associated with the greater decline in TBR.

LIMITATIONS

Heterogeneity was high for most of the study outcomes; all studies were sponsored by industry, had short duration, and used an open-label design.

CONCLUSIONS

CGM improves glycemic control by expanding TIR and decreasing TBR, TAR, and glucose variability in both type 1 and type 2 diabetes.




to

Evaluation of Factors Related to Glycemic Management in Professional Cyclists With Type 1 Diabetes Over a 7-Day Stage Race

OBJECTIVE

To investigate factors related to glycemic management among members of a professional cycling team with type 1 diabetes over a 7-day Union Cycliste Internationale World Tour stage race.

RESEARCH DESIGN AND METHODS

An observational evaluation of possible factors related to glycemic management and performance in six male professional cyclists with type 1 diabetes (HbA1c 6.4 ± 0.6%) during the 2019 Tour of California.

RESULTS

In-ride time spent in euglycemia (3.9–10.0 mmol/L glucose) was 63 ± 11%, with a low percentage of time spent in level 1 (3.0–3.9 mmol/L; 0 ± 1% of time) and level 2 (<3.0 mmol/L; 0 ± 0% of time) hypoglycemia over the 7-day race. Riders spent 25 ± 9% of time in level 1 (10.1–13.9 mmol/L) and 11 ± 9% in level 2 (>13.9 mmol/L) hyperglycemia during races. Bolus insulin use was uncommon during races, despite high carbohydrate intake (76 ± 23 g ⋅ h–1). Overnight, the riders spent progressively more time in hypoglycemia from day 1 (6 ± 12% in level 1 and 0 ± 0% in level 2) to day 7 (12 ± 12% in level 1 and 2 ± 4% in level 2) (2[1] > 4.78, P < 0.05).

CONCLUSIONS

Professional cyclists with type 1 diabetes have excellent in-race glycemia, but significant hypoglycemia during recovery overnight, throughout a 7-day stage race.




to

Medication Adherence During Adjunct Therapy With Statins and ACE Inhibitors in Adolescents With Type 1 Diabetes

OBJECTIVE

Suboptimal adherence to insulin treatment is a main issue in adolescents with type 1 diabetes. However, to date, there are no available data on adherence to adjunct noninsulin medications in this population. Our aim was to assess adherence to ACE inhibitors and statins and explore potential determinants in adolescents with type 1 diabetes.

RESEARCH DESIGN AND METHODS

There were 443 adolescents with type 1 diabetes recruited into the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) and exposed to treatment with two oral drugs—an ACE inhibitor and a statin—as well as combinations of both or placebo for 2–4 years. Adherence was assessed every 3 months with the Medication Event Monitoring System (MEMS) and pill count.

RESULTS

Median adherence during the trial was 80.2% (interquartile range 63.6–91.8) based on MEMS and 85.7% (72.4–92.9) for pill count. Adherence based on MEMS and pill count dropped from 92.9% and 96.3%, respectively, at the first visit to 76.3% and 79.0% at the end of the trial. The percentage of study participants with adherence ≥75% declined from 84% to 53%. A good correlation was found between adherence based on MEMS and pill count (r = 0.82, P < 0.001). Factors associated with adherence were age, glycemic control, and country.

CONCLUSIONS

We report an overall good adherence to ACE inhibitors and statins during a clinical trial, although there was a clear decline in adherence over time. Older age and suboptimal glycemic control at baseline predicted lower adherence during the trial, and, predictably, reduced adherence was more prevalent in subjects who subsequently dropped out.




to

Every Fifth Individual With Type 1 Diabetes Suffers From an Additional Autoimmune Disease: A Finnish Nationwide Study

OBJECTIVE

The aim of this study was to quantify the excess risk of autoimmune hypothyroidism and hyperthyroidism, Addison disease, celiac disease, and atrophic gastritis in adults with type 1 diabetes (T1D) compared with nondiabetic individuals in Finland.

RESEARCH DESIGN AND METHODS

The study included 4,758 individuals with T1D from the Finnish Diabetic Nephropathy (FinnDiane) Study and 12,710 nondiabetic control individuals. The autoimmune diseases (ADs) were identified by linking the data with the Finnish nationwide health registries from 1970 to 2015.

RESULTS

The median age of the FinnDiane individuals at the end of follow-up in 2015 was 51.4 (interquartile range 42.6–60.1) years, and the median duration of diabetes was 35.5 (26.5–44.0) years. Of individuals with T1D, 22.8% had at least one additional AD, which included 31.6% of women and 14.9% of men. The odds ratios for hypothyroidism, hyperthyroidism, celiac disease, Addison disease, and atrophic gastritis were 3.43 (95% CI 3.09–3.81), 2.98 (2.27–3.90), 4.64 (3.71–5.81), 24.13 (5.60–104.03), and 5.08 (3.15–8.18), respectively, in the individuals with T1D compared with the control individuals. The corresponding ORs for women compared with men were 2.96 (2.53–3.47), 2.83 (1.87–4.28), 1.52 (1.15–2.02), 2.22 (0.83–5.91), and 1.36 (0.77–2.39), respectively, in individuals with T1D. Late onset of T1D and aging increased the risk of hypothyroidism, whereas young age at onset of T1D increased the risk of celiac disease.

CONCLUSIONS

This is one of the largest studies quantifying the risk of coexisting AD in adult individuals with T1D in the country with the highest incidence of T1D in the world. The results highlight the importance of continuous screening for other ADs in individuals with T1D.




to

Risk of Ipsilateral Reamputation Following an Incident Toe Amputation Among U.S. Military Veterans With Diabetes, 2005-2016

OBJECTIVE

To assess whether the risk of subsequent lower-limb amputations and death following an initial toe amputation among individuals with diabetes has changed over time and varies by demographic characteristics and geographic region.

RESEARCH DESIGN AND METHODS

Using Veterans Health Administration (VHA) electronic medical records from 1 October 2004 to 30 September 2016, we determined risk of subsequent ipsilateral minor and major amputation within 1 year after an initial toe/ray amputation among veterans with diabetes. To assess changes in the annual rate of subsequent amputation over time, we estimated age-adjusted incidence of minor and major subsequent ipsilateral amputation for each year, separately for African Americans (AAs) and whites. Geographic variation was assessed across VHA markets (n = 89) using log-linear Poisson regression models adjusting for age and ethnoracial category.

RESULTS

Among 17,786 individuals who had an initial toe amputation, 34% had another amputation on the same limb within 1 year, including 10% who had a major ipsilateral amputation. Median time to subsequent ipsilateral amputation (minor or major) was 36 days. One-year risk of subsequent major amputation decreased over time, but risk of subsequent minor amputation did not. Risk of subsequent major ipsilateral amputation was higher in AAs than whites. After adjusting for age and ethnoracial category, 1-year risk of major subsequent amputation varied fivefold across VHA markets.

CONCLUSIONS

Nearly one-third of individuals require reamputation following an initial toe amputation, although risks of subsequent major ipsilateral amputation have decreased over time. Nevertheless, risks remain particularly high for AAs and vary substantially geographically.




to

Early Childhood Antibiotic Treatment for Otitis Media and Other Respiratory Tract Infections Is Associated With Risk of Type 1 Diabetes: A Nationwide Register-Based Study With Sibling Analysis

OBJECTIVE

The effect of early-life antibiotic treatment on the risk of type 1 diabetes is debated. This study assessed this question, applying a register-based design in children up to age 10 years including a large sibling-control analysis.

RESEARCH DESIGN AND METHODS

All singleton children (n = 797,318) born in Sweden between 1 July 2005 and 30 September 2013 were included and monitored to 31 December 2014. Cox proportional hazards models, adjusted for parental and perinatal characteristics, were applied, and stratified models were used to account for unmeasured confounders shared by siblings.

RESULTS

Type 1 diabetes developed in 1,297 children during the follow-up (median 4.0 years [range 0–8.3]). Prescribed antibiotics in the 1st year of life (23.8%) were associated with an increased risk of type 1 diabetes (adjusted hazard ratio [HR] 1.19 [95% CI 1.05–1.36]), with larger effect estimates among children delivered by cesarean section (P for interaction = 0.016). The association was driven by exposure to antibiotics primarily used for acute otitis media and respiratory tract infections. Further, we found an association of antibiotic prescriptions in pregnancy (22.5%) with type 1 diabetes (adjusted HR 1.15 [95% CI 1.00–1.32]). In general, sibling analysis supported these results, albeit often with statistically nonsignificant associations.

CONCLUSIONS

Dispensed prescription of antibiotics, mainly for acute otitis media and respiratory tract infections, in the 1st year of life is associated with an increased risk of type 1 diabetes before age 10 years, most prominently in children delivered by cesarean section.




to

A Special Thanks to the Reviewers of Diabetes Care




to

Markers of Early Life Infection in Relation to Adult Diabetes: Prospective Evidence From a National Birth Cohort Study Over Four Decades




to

Bariatric Surgery in Patients With Obesity and Latent Autoimmune Diabetes in Adults (LADA)




to

Pre-transplant testosterone and outcome of men after allogeneic stem cell transplantation

Testosterone is an important determinant of endothelial function and vascular health in men. As both factors play a role in mortality after allogeneic stem cell transplantation (alloSCT), we retrospectively evaluated the impact of pre-transplant testosterone levels on outcome in male patients undergoing alloSCT. In the discovery cohort (n=346), an impact on outcome was observed only in the subgroup of patients allografted for acute myeloid leukemia (AML) (n=176, hereafter termed ‘training cohort’). In the training cohort, lower pre-transplant testosterone levels were significantly associated with shorter overall survival (OS) [hazard ratio (HR) for a decrease of 100 ng/dL: 1.11, P=0.045]. This was based on a higher hazard of non-relapse mortality (NRM) (cause-specific HR: 1.25, P=0.013), but not relapse (cause-specific HR: 1.06, P=0.277) in the multivariable models. These findings were replicated in a confirmation cohort of 168 male patients allografted for AML in a different center (OS, HR: 1.15, P=0.012 and NRM, cause-specific HR: 1.23; P=0.008). Next, an optimized cut-off point for pre-transplant testosterone was derived from the training set and evaluated in the confirmation cohort. In multivariable models, low pre-transplant testosterone status (<250 ng/dL) was associated with worse OS (hazard ratio 1.95, P=0.021) and increased NRM (cause-specific HR 2.68, P=0.011) but not with relapse (cause-specific HR: 1.28, P=0.551). Our findings may provide a rationale for prospective studies on testosterone/androgen assessment and supplementation in male patients undergoing alloSCT for AML.




to

Relationship between factor VIII activity, bleeds and individual characteristics in severe hemophilia A patients

Pharmacokinetic-based prophylaxis of replacement factor VIII (FVIII) products has been encouraged in recent years, but the relationship between exposure (factor VIII activity) and response (bleeding frequency) remains unclear. The aim of this study was to characterize the relationship between FVIII dose, plasma FVIII activity, and bleeding patterns and individual characteristics in severe hemophilia A patients. Pooled pharmacokinetic and bleeding data during prophylactic treatment with BAY 81-8973 (octocog alfa) were obtained from the three LEOPOLD trials. The population pharmacokinetics of FVIII activity and longitudinal bleeding frequency, as well as bleeding severity, were described using non-linear mixed effects modeling in NONMEM. In total, 183 patients [median age 22 years (range, 1-61); weight 60 kg (11-124)] contributed with 1,535 plasma FVIII activity observations, 633 bleeds and 11 patient/study characteristics [median observation period 12 months (3.1-13.1)]. A parametric repeated time-to-categorical bleed model, guided by plasma FVIII activity from a 2-compartment population pharmacokinetic model, described the time to the occurrence of bleeds and their severity. Bleeding probability decreased with time of study, and a bleed was not found to affect the time of the next bleed. Several covariate effects were identified, including the bleeding history in the 12-month pre-study period increasing the bleeding hazard. However, unexplained inter-patient variability in the phenotypic bleeding pattern remained large (111%CV). Further studies to translate the model into a tool for dose individualization that considers the individual bleeding risk are required. Research was based on a post-hoc analysis of the LEOPOLD studies registered at clinicaltrials.gov identifiers: 01029340, 01233258 and 01311648.




to

The contact system proteases play disparate roles in streptococcal sepsis

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.




to

Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.




to

CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas

B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell malignancies including diffuse large B-cell lymphoma (DLBCL). In in vitro and in vivo model systems, a subset of DLBCLs depend upon BCR survival signals and respond to proximal BCR/phosphoinositide 3 kinase (PI3K) blockade. However, single-agent BCR pathway inhibitors have had more limited activity in patients with DLBCL, underscoring the need for indicators of sensitivity to BCR blockade and insights into potential resistance mechanisms. Here, we report highly significant transcriptional upregulation of C-X-C chemokine receptor 4 (CXCR4) in BCR-dependent DLBCL cell lines and primary tumors following chemical spleen tyrosine kinase (SYK) inhibition, molecular SYK depletion or chemical PI3K blockade. SYK or PI3K inhibition also selectively upregulated cell surface CXCR4 protein expression in BCR-dependent DLBCLs. CXCR4 expression was directly modulated by fork-head box O1 via the PI3K/protein kinase B/forkhead box O1 signaling axis. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased stromal cell-derived factor-1α (SDF-1α) induced chemotaxis, consistent with the role of CXCR4 signaling in B-cell migration. Select PI3K isoform inhibitors also augmented SDF-1α induced chemotaxis. These data define CXCR4 upregulation as an indicator of sensitivity to BCR/PI3K blockade and identify CXCR4 signaling as a potential resistance mechanism in BCR-dependent DLBCLs.




to

Impact of cytogenetic abnormalities on outcomes of adult Philadelphia-negative acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation: a study by the Acute Leukemia Working Committee of the Center for International Blood and

Cytogenetic risk stratification at diagnosis has long been one of the most useful tools to assess prognosis in acute lymphoblastic leukemia (ALL). To examine the prognostic impact of cytogenetic abnormalities on outcomes after allogeneic hematopoietic cell transplantation, we studied 1731 adults with Philadelphia-negative ALL in complete remission who underwent myeloablative or reduced intensity/non-myeloablative conditioning transplant from unrelated or matched sibling donors reported to the Center for International Blood and Marrow Transplant Research. A total of 632 patients had abnormal conventional metaphase cytogenetics. The leukemia-free survival and overall survival rates at 5 years after transplantation in patients with abnormal cytogenetics were 40% and 42%, respectively, which were similar to those in patients with a normal karyotype. Of the previously established cytogenetic risk classifications, modified Medical Research Council-Eastern Cooperative Oncology Group score was the only independent prognosticator of leukemia-free survival (P=0.03). In the multivariable analysis, monosomy 7 predicted post-transplant relapse [hazard ratio (HR)=2.11; 95% confidence interval (95% CI): 1.04-4.27] and treatment failure (HR=1.97; 95% CI: 1.20-3.24). Complex karyotype was prognostic for relapse (HR=1.69; 95% CI: 1.06-2.69), whereas t(8;14) predicted treatment failure (HR=2.85; 95% CI: 1.35-6.02) and overall mortality (HR=3.03; 95% CI: 1.44-6.41). This large study suggested a novel transplant-specific cytogenetic scheme with adverse [monosomy 7, complex karyotype, del(7q), t(8;14), t(11;19), del(11q), tetraploidy/near triploidy], intermediate (normal karyotype and all other abnormalities), and favorable (high hyperdiploidy) risks to prognosticate leukemia-free survival (P=0.02). Although some previously established high-risk Philadelphia-negative cytogenetic abnormalities in ALL can be overcome by transplantation, monosomy 7, complex karyotype, and t(8;14) continue to pose significant risks and yield inferior outcomes.




to

Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.




to

Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia

Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells.




to

Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model

Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.




to

Extensive multilineage analysis in patients with mixed chimerism after allogeneic transplantation for sickle cell disease: insight into hematopoiesis and engraftment thresholds for gene therapy

Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included. A selective advantage of donor RBC and their progenitors/precursors led to full chimerism in mature RBC (despite partial engraftment of other lineages), and resulted in the clinical control of the disease. Six patients with donor chimerism <50% had hemolysis (reticulocytosis) and higher HbS than their donor. Four of them had donor chimerism <30%, including a patient with AA donor (hemoglobin >10 g/dL) and three with AS donors (hemoglobin <10 g/dL). However, only one vaso-occlusive crisis occurred with 68.7% HbS. Except in the patients with the lowest chimerism, the donor engraftment was lower for T cells than for the other lineages. In a context of mixed chimerism after hematopoietic stem cell transplantation for SCD, myeloid (rather than T cell) engraftment was the key efficacy criterion. Results show that myeloid chimerism as low as 30% was sufficient to prevent a vaso-occlusive crisis in transplants from an AA donor but not constantly from an AS donor. However, the correction of hemolysis requires higher donor chimerism levels (i.e. ≥50%) in both AA and AS recipients. In the future, this group of patients may need a different therapeutic approach.




to

Long-term outcome of a randomized controlled study in patients with newly diagnosed severe aplastic anemia treated with antithymocyte globulin and cyclosporine, with or without granulocyte colony-stimulating factor: a Severe Aplastic Anemia Working Party

This follow-up study of a randomized, prospective trial included 192 patients with newly diagnosed severe aplastic anemia receiving antithymoglobulin and cyclosporine, with or without granulocyte colony-stimulating factor (G-CSF). We aimed to evaluate the long-term effect of G-CSF on overall survival, event-free survival, probability of secondary myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), clinical paroxysmal nocturnal hemoglobinuria, relapse, avascular osteonecrosis and chronic kidney disease. The median follow-up was 11.7 years (95% CI, 10.9-12.5). The overall survival rate at 15 years was 57±12% in the group given G-CSF and 63±12% in the group not given G-CSF (P=0.92); the corresponding event-free survival rates were 24±10% and 23±10%, respectively (P=0.36). In total, 9 patients developed MDS or AML, 10 only a clonal cytogenetic abnormality, 7 a solid cancer, 18 clinical paroxysmal nocturnal hemoglobinuria, 8 osteonecrosis, and 12 chronic kidney disease, without any difference between patients treated with or without G-CSF. The cumulative incidence of MDS, AML or isolated cytogenetic abnormality at 15 years was 8.5±3% for the G-CSF group and 8.2±3% for the non-G-CSF group (P=0.90). The cumulative incidence of any late event including myelodysplastic syndrome or acute myeloid leukemia, isolated cytogenetic abnormalities, solid cancer, clinical paroxysmal nocturnal hemoglobinuria, aseptic osteonecrosis, chronic kidney disease and relapse was 50±12% for the G-CSF group and 49±12% for the non-G-CSF group (P=0.65). Our results demonstrate that it is unlikely that G-CSF has an impact on the outcome of severe aplastic anemia; nevertheless, very late events are common and eventually affect the prognosis of these patients, irrespectively of their age at the time of immunosuppressive therapy (NCT01163942).




to

Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation

Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.




to

Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.




to

The never ending success story of tranexamic acid in acquired bleeding

Tranexamic acid (TXA) is an anti-fibrinolytic agent that acts by inhibiting plasminogen activation and fibrinolysis. Although its first clinical use dates back more than 50 years, this hemostatic agent is still the object of intense clinical and developmental research. In particular, renewed interest in TXA has arisen following evidence that it has a beneficial effect in reducing blood loss in a variety of medical and surgical conditions at increased risk of bleeding. Given this characteristic, TXA is currently considered a mainstay of Patient Blood Management programs aimed at reducing patients’ exposure to allogeneic blood transfusion. Importantly, recent large randomized controlled trials have consistently documented that the use of TXA confers a survival advantage in a number of globally critical clinical conditions associated with acute bleeding, including traumatic injury and post-partum hemorrhage, without increasing the thromboembolic risk.




to

Recruiting TP53 to target chronic myeloid leukemia stem cells




to

Immunosuppression and growth factors for severe aplastic anemia: new data for old questions




to

100-Year Old Haematologica Images: The Quarrel about the Origin of Platelets (I)




to

Severe treatment-refractory T-cell-mediated immune skin toxicities observed with obinutuzumab/rituximab-atezo-pola in two patients with follicular lymphoma




to

Hemolytic anemia due to the unstable hemoglobin Wien: manifestations and long-term course in the largest pedigree identified to date




to

Early high plasma ST2, the decoy IL-33 receptor, in children undergoing hematopoietic cell transplantation is associated with the development of post-transplant diabetes mellitus




to

Phase I/Ib study of carfilzomib and panobinostat with or without dexamethasone in patients with relapsed/refractory multiple myeloma




to

IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma




to

Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells




to

5-formylcytosine and 5-hydroxymethyluracil as surrogate markers of TET2 and SF3B1 mutations in myelodysplastic syndrome, respectively




to

Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis




to

Functional assessment of glucocerebrosidase modulator efficacy in primary patient-derived macrophages is essential for drug development and patient stratification




to

Haematologica




to

Erratum. WASH Regulates Glucose Homeostasis by Facilitating Glut2 Receptor Recycling in Pancreatic {beta}-Cells. Diabetes 2019;68:377-386




to

A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function

Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.




to

Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy

Identifying gene variants causing monogenic diabetes (MD) increases understanding of disease etiology and allows for implementation of precision therapy to improve metabolic control and quality of life. Here, we aimed to assess the prevalence of MD in youth with diabetes in Lithuania, uncover potential diabetes-related gene variants, and prospectively introduce precision treatment. First, we assessed all pediatric and most young-adult patients with diabetes in Lithuania (n = 1,209) for diabetes-related autoimmune antibodies. We then screened all antibody-negative patients (n = 153) using targeted high-throughput sequencing of >300 potential candidate genes. In this group, 40.7% had MD, with the highest percentage (100%) in infants (diagnosis at ages 0–12 months), followed by those diagnosed at ages >1–18 years (40.3%) and >18–25 years (22.2%). The overall prevalence of MD in youth with diabetes in Lithuania was 3.5% (1.9% for GCK diabetes, 0.7% for HNF1A, 0.2% for HNF4A and ABCC8, 0.3% for KCNJ11, and 0.1% for INS). Furthermore, we identified likely pathogenic variants in 11 additional genes. Microvascular complications were present in 26% of those with MD. Prospective treatment change was successful in >50% of eligible candidates, with C-peptide >252 pmol/L emerging as the best prognostic factor.




to

Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice

Diabetic keratopathy occurs in ~70% of all people with diabetes. This study was designed to examine the effects of vitamin D receptor knockout (VDR–/–) and vitamin D deficiency (VDD) on corneal epithelial wound healing and nerve density in diabetic mice. Diabetes was induced using the low-dose streptozotocin method. Corneal epithelial wounds were created using an Algerbrush, and wound healing was monitored over time. Corneal nerve density was measured in unwounded mice. VDR–/– and VDD diabetic mice (diabetic for 8 and 20 weeks, respectively) had slower healing ratios than wild-type diabetic mice. VDR–/– and VDD diabetic mice also showed significantly decreased nerve density. Reduced wound healing ratios and nerve densities were not fully rescued by a supplemental diet rich in calcium, lactose, and phosphate. We conclude that VDR–/– and VDD significantly reduce both corneal epithelial wound healing and nerve density in diabetic mice. Because the supplemental diet did not rescue wound healing or nerve density, these effects are likely not specifically related to hypocalcemia. This work supports the hypothesis that low vitamin D levels can exacerbate preexisting ophthalmic conditions, such as diabetes.




to

A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity

Type 2 diabetes (T2D) is caused by loss of pancreatic β-cell mass and failure of the remaining β-cells to deliver sufficient insulin to meet demand. β-Cell glucolipotoxicity (GLT), which refers to combined, deleterious effects of elevated glucose and fatty acid levels on β-cell function and survival, contributes to T2D-associated β-cell failure. Drugs and mechanisms that protect β-cells from GLT stress could potentially improve metabolic control in patients with T2D. In a phenotypic screen seeking low-molecular-weight compounds that protected β-cells from GLT, we identified compound A that selectively blocked GLT-induced apoptosis in rat insulinoma cells. Compound A and its optimized analogs also improved viability and function in primary rat and human islets under GLT. We discovered that compound A analogs decreased GLT-induced cytosolic calcium influx in islet cells, and all measured β-cell–protective effects correlated with this activity. Further studies revealed that the active compound from this series largely reversed GLT-induced global transcriptional changes. Our results suggest that taming cytosolic calcium overload in pancreatic islets can improve β-cell survival and function under GLT stress and thus could be an effective strategy for T2D treatment.




to

Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study

The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study demonstrated that intensive glucose control reduced the risk of developing diabetic peripheral neuropathy (DPN) and cardiovascular autonomic neuropathy (CAN). We evaluated multiple risk factors and phenotypes associated with DPN and CAN in this large, well-characterized cohort of participants with type 1 diabetes, followed for >23 years. DPN was defined by symptoms, signs, and nerve conduction study abnormalities in ≥2 nerves; CAN was assessed using standardized cardiovascular reflex tests. Generalized estimating equation models assessed the association of DPN and CAN with individual risk factors measured repeatedly. During DCCT/EDIC, 33% of participants developed DPN and 44% CAN. Higher mean HbA1c was the most significant risk factor for DPN, followed by older age, longer duration, greater height, macroalbuminuria, higher mean pulse rate, β-blocker use, and sustained albuminuria. The most significant risk factor for CAN was older age, followed by higher mean HbA1c, sustained albuminuria, longer duration of type 1 diabetes, higher mean pulse rate, higher mean systolic blood pressure, β-blocker use, estimated glomerular filtration rate <60 mL/min/1.73 m2, higher most recent pulse rate, and cigarette smoking. These findings identify risk factors and phenotypes of participants with diabetic neuropathy that can be used in the design of new interventional trials and for personalized approaches to neuropathy prevention.




to

Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF-Resistant Diabetic Macular Edema

Approximately 40% of patients with diabetic macular edema (DME) are resistant to anti–vascular endothelial growth factor (VEGF) therapy (rDME). Here, we demonstrate that significant correlations between inflammatory cytokines and VEGF, as observed in naive DME, are lost in patients with rDME. VEGF overexpression in the mouse retina caused delayed inflammatory cytokine upregulation, monocyte/macrophage infiltration (CD11b+ Ly6C+ CCR2+ cells), macrophage/microglia activation (CD11b+ CD80+ cells), and blood-retinal barrier disruption due to claudin-5 redistribution, which did not recover with VEGF blockade alone. Phosphorylated protein analysis of VEGF-overexpressed retinas revealed rho-associated coiled-coil–containing protein kinase (ROCK) activation. Administration of ripasudil, a selective ROCK inhibitor, attenuated retinal inflammation and claudin-5 redistribution. Ripasudil also contributed to the stability of claudin-5 expression by both transcriptional enhancement and degradation suppression in inflammatory cytokine–stimulated endothelium. Notably, the anti-VEGF agent and the ROCK inhibitor were synergic in suppressing cytokine upregulation, monocyte/macrophage infiltration, macrophage/microglia activation, and claudin-5 redistribution. Furthermore, in vitro analysis confirmed that claudin-5 redistribution depends on ROCK2 but not on ROCK1. This synergistic effect was also confirmed in human rDME cases. Our results suggest that ROCK-mediated claudin-5 redistribution by inflammation is a key mechanism in the anti-VEGF resistance of DME.




to

Vitamin D Receptor Overexpression in {beta}-Cells Ameliorates Diabetes in Mice

Vitamin D deficiency has been associated with increased incidence of diabetes, both in humans and in animal models. In addition, an association between vitamin D receptor (VDR) gene polymorphisms and diabetes has also been described. However, the involvement of VDR in the development of diabetes, specifically in pancreatic β-cells, has not been elucidated yet. Here, we aimed to study the role of VDR in β-cells in the pathophysiology of diabetes. Our results indicate that Vdr expression was modulated by glucose in healthy islets and decreased in islets from both type 1 diabetes and type 2 diabetes mouse models. In addition, transgenic mice overexpressing VDR in β-cells were protected against streptozotocin-induced diabetes and presented a preserved β-cell mass and a reduction in islet inflammation. Altogether, these results suggest that sustained VDR levels in β-cells may preserve β-cell mass and β-cell function and protect against diabetes.




to

The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition

Glucagon is classically described as a counterregulatory hormone that plays an essential role in the protection against hypoglycemia. In addition to its role in the regulation of glucose metabolism, glucagon has been described to promote ketosis in the fasted state. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) are a new class of glucose-lowering drugs that act primarily in the kidney, but some reports have described direct effects of SGLT2i on α-cells to stimulate glucagon secretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone production, features common to glucagon action. Here, we directly test the ketogenic role of glucagon in mice, demonstrating that neither fasting- nor SGLT2i-induced ketosis is altered by interruption of glucagon signaling. Moreover, any effect of glucagon to stimulate ketogenesis is severely limited by its insulinotropic actions. Collectively, our data suggest that fasting-associated ketosis and the ketogenic effects of SGLT2 inhibitors occur almost entirely independent of glucagon.




to

The Use of Mendelian Randomization to Determine the Role of Metabolic Traits on Urinary Albumin-to-Creatinine Ratio




to

"Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets

The coordinated electrical activity of β-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the β-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between β-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism.




to

A Special Thanks to the Reviewers of Diabetes




to

Abnormal expression of GABAA receptor subunits and hypomotility upon loss of gabra1 in zebrafish [RESEARCH ARTICLE]

Nayeli G. Reyes-Nava, Hung-Chun Yu, Curtis R. Coughlin II, Tamim H. Shaikh, and Anita M. Quintana

We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease.




to

Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka (Olyzias latipes) [RESEARCH ARTICLE]

Yuta Sakae, Akira Oikawa, Yuki Sugiura, Masatoshi Mita, Shuhei Nakamura, Toshiya Nishimura, Makoto Suematsu, and Minoru Tanaka

The teleost fish, medaka (Oryzias latipes), employs the XX/XY genetic sex determination system. We show here that the phenotypic sex of medaka is affected by changes in lipid metabolism. Medaka larvae subjected to 5 days of starvation underwent female-to-male sex reversal. Metabolomic and RT-qPCR analyses indicated that pantothenate metabolism was suppressed by starvation. Consistently, inhibiting the pantothenate metabolic pathway caused sex reversal. The final metabolite in this pathway is coenzyme A, an essential factor for lipogenesis. Inhibiting fatty acid synthesis, the first step of lipogenesis, also caused sex reversal. The expression of dmrt1, a critical gene for male development, was suppressed by starvation, and a dmrt1 (13) mutant did not show sex reversal under starvation. Collectively, these results indicate that fatty acid synthesis is involved in female-to-male sex reversal through ectopic expression of male gene dmrt1 under starvation.