to

Direct-to-Consumer Prescription Drug Advertising and Patient-Provider Interactions

Background:

Direct-to-consumer prescription drug advertising is prevalent and affects patient care. Previous research that examined its effect on the patient-provider relationship predates many changes in the advertising and medical landscape that have occurred in the last decade, such as the rise in online promotion and the push for value-based medicine.

Methods:

We conducted a nationally representative mail-push-to-web survey of 1744 US adults in 2017 to explore how patients view the effects of direct-to-consumer prescription drug advertising on patient-provider interactions.

Results:

Most respondents (76%) said they were likely to ask a health care provider about advertised drugs; 26% said they had already done so. Among the 26% of respondents who talked to a health care provider about a specific prescription drug they saw advertised, 16% said they received a prescription for the advertised drug. Few respondents (5%) reported that advertising had caused conflict with a health care provider, 16% said it had caused them to question their provider’s advice, and 23% said they were likely to look for a different provider if their provider refused to prescribe a requested brand name drug.

Discussion:

These results suggest that direct-to-consumer advertising is driving some patients to discuss specific products with their health care providers but that most patients do not believe advertising has a negative influence on the patient-provider interaction itself.




to

Factors Influencing Uptake of Changes to Clinical Preventive Guidelines

Background:

Despite widespread recognition that adherence to clinical preventive guidelines improves patient outcomes, clinicians struggle to implement guideline changes in a timely manner. Multiple factors influence guideline adoption and effective implementation. However, few studies evaluate their collective and inter-related effects. This qualitative study provides a comprehensive picture of the interplay between multiple factors on uptake of new or changed preventive guidelines.

Methods:

Semistructured interviews conducted in 2018 with a diverse sample of clinicians and practice leaders sought to understand patient, clinician, practice, health system, environment, and guideline factors of influence. An immersion-crystallization approach was used to identify emergent themes.

Results:

Interviewees expressed motivation to adhere to guidelines but also valued sharing decisions with patients. Personal biases and fears affected both clinician and patient guideline adoption. Practices facilitated implementation through workflow optimization and encouraging a culture of evidence-based practice while a key health system function was to maintain electronic health record alerts. More traditional environmental factors, such as insurance coverage or transportation, were less of a barrier to guideline adoption and implementation than the influence of media and specialists. Various specific guideline characteristics also affected ease of adoption and implementation. Different settings expressed greater health system, practice, or clinician-centric approaches to guideline implementation.

Conclusions:

Guideline uptake is influenced by a complex interplay of multiple levels of factors including the patient, clinician, practice, health system, environment, and guideline levels. Comprehensively understanding all levels of influence for each specific clinical setting may help to determine the optimal intervention(s) for improving uptake of evidence-based guidelines.




to

Dedicated Workforce Required to Support Large-Scale Practice Improvement

Background:

Facilitation is an effective approach for helping practices implement sustainable evidence-based practice improvements. Few studies examine the facilitation infrastructure and support needed for large-scale dissemination and implementation initiatives.

Methods:

The Agency for Health care Research and Quality funded 7 Cooperatives, each of which worked with over 200 primary care practices to rapidly disseminate and implement improvements in cardiovascular preventive care. The intervention target was to improve primary care practice capacity for quality initiative and the ABCS of cardiovascular disease prevention: aspirin in high-risk individuals, blood pressure control, cholesterol management, and smoking cessation. We identified the organizational elements and infrastructures Cooperatives used to support facilitators by reviewing facilitator logs, online diary data, semistructured interviews with facilitators, and fieldnotes from facilitator observations. We analyzed these data using a coding and sorting process.

Results:

Each Cooperative partnered with 2 to 16 organizations, piecing together 16 to 35 facilitators, often from other quality improvement projects. Quality assurance strategies included establishing initial and ongoing training, processes to support facilitators, and monitoring to assure consistency and quality. Cooperatives developed facilitator toolkits, implemented initiative-specific training, and developed processes for peer-to-peer learning and support.

Conclusions:

Supporting a large-scale facilitation workforce requires creating an infrastructure, including initial training, and ongoing support and monitoring, often borrowing from other ongoing initiatives. Facilitation that recognizes the need to support the vital integrating functions of primary care might be more efficient and effective than this fragmented approach to quality improvement.




to

Eliminating Patient Identified Barriers to Decrease Medicaid Inpatient Admission Rates and Improve Quality of Care

Background and Objectives:

The goal of this study was to decrease admission and readmission rate for the 2296 Medicaid patients in our clinic. Our focus was to eliminate patient identified barriers to care that led to decreased quality of care. The identified barriers for our clinic included distance to care, poor same-day access, communication, and fragmented care. A team-based, collaborative approach using members from all aspects of patient care.

Methods:

An initial survey identified which barriers to care our patients felt obstructed their care. With this data, along with a national literature review, our team used biweekly quality team meetings with LEAN methodology and Plan-Do-Study-Act cycles to create a 4-phase quality improvement project. A home-visit program to decrease distance to care, walk-in clinic to improve same-day access, strengthened collaboration with outside care managers and clinic staff to improve communication, and the introduction of an in-house phlebotomist to improve fragmented care were created and studied between June 2015 and December 2018. Admission rate, avoidable readmission rate, as well as other quality of care measurements were assessed with electronic medical record reports and through North Carolina Medicaid data reports.

Results:

Overall Medicaid admissions decreased 32.7% from starting numbers, 40.2% below expected benchmarks. Avoidable readmissions decreased 41.8%, 53.8% below the expected benchmark. Improvements in same-day access numbers and lab completion rate were also seen.

Discussion:

The team-based approach to eliminating patient-identified barriers decreased both admissions and avoidable readmissions for our Medicaid patients. It also improved quality-of-care measures. This approach has been shown to be beneficial at our clinic and can easily be replicated in other settings.




to

Turning Points as Opportunities to Partner with Patients Living with type 2 Diabetes or Prediabetes

Introduction:

Understanding patients’ perspectives about their diabetes and what causes those perspectives to shift is critical to building a treatment strategy with the patient and facilitating patient self-management behavior. Key "turning points" can provide crucial opportunities to enact a change in perspective. The goal of this study is to identify "turning points" that have significance to diabetes-related health.

Methods:

Research coordinators interviewed 33 patients aged 25 to 65 diagnosed with type 2 diabetes mellitus or prediabetes at medical centers in Augusta, Georgia, and Las Vegas, Nevada. Retrospective interview technique and turning point analysis was employed to plot health or diabetes management changes from diagnosis up to the present day. The constant comparative method was used to conduct a thematic analysis. Axial coding identified properties characterizing each turning point.

Results:

Patients reported 5 interrelated turning points occurring at various times after diagnosis: 1) gaining knowledge, either through patients own research and/or a health care class; 2) making lifestyle changes, including exercising and healthier eating; 3) encountering a life-changing event/transition, including events that derailed healthy behavior, motivated health behavior, and removed barriers to enacting healthy behavior; 4) receiving social support, either through holding patients accountable or encouraging them to enact healthy behavior; and 5) interacting with clinicians, such as medication changes or behavior changes critical to disease management.

Discussion:

These turning points provide specific moments throughout diabetes care in which family physicians can effectively partner with patients. By prompting, facilitating, or attending to these turning points, family physicians can partner with patients throughout diabetes care.




to

Successful Health Care Provider Strategies to Overcome Psychological Insulin Resistance in United States and Canada

Purpose:

To identify specific actions and characteristics of health care providers (HCPs) in the United States and Canada that influenced patients with type 2 diabetes who were initially reluctant to begin insulin.

Methods:

Patients from the United States (n = 120) and Canada (n = 74) were recruited via registry, announcements, and physician referrals to complete a 30-minute online survey based on interviews with patients and providers regarding specific HCP actions that contributed to the decision to begin insulin.

Results:

The most helpful HCP actions were patient-centered approaches to improve patients’ understanding of the injection process (ie, "My HCP walked me through the whole process of exactly how to take insulin" [helped moderately or a lot, United States: 79%; Canada: 83%]) and alleviate concerns ("My HCP encouraged me to contact his/her office immediately if I ran into any problems or had questions after starting insulin" [United States: 76%; Canada: 82%]). Actions that were the least helpful included referrals to other sources (ie, "HCP referred patient to a class to help learn more about insulin" [United States: 40%; Canada: 58%]).

Conclusions:

The study provides valuable insight that HCPs can use to help patients overcome psychological insulin resistance, which is a critical step in the design of effective intervention protocols.




to

Complexities in Integrating Social Risk Assessment into Health Care Delivery




to

When and How Do We Need Permission to Help Patients Address Social Risk?




to

Drosophila larval glue sticks to anything [INSIDE JEB]

Kathryn Knight




to

Response to 'What makes the blood go around? [CORRESPONDENCE]

William Joyce and Tobias Wang




to

Microclimate buffering and thermal tolerance across elevations in a tropical butterfly [RESEARCH ARTICLE]

Gabriela Montejo-Kovacevich, Simon H. Martin, Joana I. Meier, Caroline N. Bacquet, Monica Monllor, Chris D. Jiggins, and Nicola J. Nadeau

Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species.




to

Body surface temperature responses to food restriction in wild and captive great tits [RESEARCH ARTICLE]

Lucy A. Winder, Stewart A. White, Andreas Nord, Barbara Helm, and Dominic J. McCafferty

During winter at temperate and high latitudes, the low ambient temperatures, limited food supplies and short foraging periods mean small passerines show behavioural, morphological and physiological adaptations to reduce the risk of facing energy shortages. Peripheral tissues vasoconstrict in low ambient temperatures to reduce heat loss and cold injury. Peripheral vasoconstriction has been observed with food restriction in captivity but has yet to be explored in free-ranging animals. We experimentally food restricted both wild and captive great tits (Parus major) during winter months and measured surface temperatures of the bill and eye region using thermal imaging, to investigate whether birds show rapid local heterothermic responses, which may reduce their thermoregulatory costs when facing a perceived imminent food shortage. Our results of a continuously filmed wild population showed that bill temperature was immediately reduced in response to food restriction compared with when food was available ad libitum, an apparent autonomic response. Such immediacy implies a ‘pre-emptive’ response before the bird experiences any shortfalls in energy reserves. We also demonstrate temporal variation in vasoconstriction of the bill, with bill temperature gradually rising throughout the food restriction after the initial drop. Eye-region temperature in the wild birds remained at similar levels throughout food restriction compared with unrestricted birds, possibly reflecting the need to maintain steady circulation to the central nervous and visual systems. Our findings provide evidence that birds selectively allow the bill to cool when a predictable food supply is suddenly disrupted, probably as a means of minimising depletion of body reserves for a perceived future shortage in energy.




to

Habituation of the cardiovascular response to restraint stress is inhibited by exposure to other stressor stimuli and exercise training [RESEARCH ARTICLE]

Ricardo Benini, Leandro A. Oliveira, Lucas Gomes-de-Souza, Bruno Rodrigues, and Carlos C. Crestani

This study evaluated the effect of exposure to either a chronic variable stress (CVS) protocol or social isolation, as well as treadmill exercise training, in the habituation of the cardiovascular response upon repeated exposure to restraint stress in rats. The habituation of the corticosterone response to repeated restraint stress was also evaluated. For this, animals were subjected to either acute or 10 daily sessions of 60 min of restraint stress. CVS and social isolation protocols lasted for 10 consecutive days, whereas treadmill training was performed for 1 h per day, 5 days per week for 8 weeks. We observed that the increase in serum corticosterone was reduced during both the stress and the recovery period of the 10th session of restraint. Habituation of the cardiovascular response was identified in terms of a faster return of heart rate to baseline values during the recovery period of the 10th session of restraint. The increase in blood pressure and the decrease in tail skin temperature were similar at the 1st and 10th session of restraint. Exposure to CVS, social isolation or treadmill exercise training inhibited the habituation of the restraint-evoked tachycardia. Additionally, CVS increased the blood pressure response at the 10th session of restraint, whereas social isolation enhanced both the tachycardia during the first session and the drop in skin temperature at the 10th session of restraint. Taken together, these findings provide new evidence that pathologies evoked by stress might be related to impairment in the habituation process to homotypic stressors.




to

Reduced immune responsiveness contributes to winter energy conservation in an Arctic bird [RESEARCH ARTICLE]

Andreas Nord, Arne Hegemann, and Lars P. Folkow

Animals in seasonal environments must prudently manage energy expenditure to survive the winter. This may be achieved through reductions in the allocation of energy for various purposes (e.g. thermoregulation, locomotion, etc.). We studied whether such trade-offs also include suppression of the innate immune response, by subjecting captive male Svalbard ptarmigan (Lagopus muta hyperborea) to bacterial lipopolysaccharide (LPS) during exposure to either mild temperature (0°C) or cold snaps (acute exposure to –20°C), in constant winter darkness when birds were in energy-conserving mode, and in constant daylight in spring. The innate immune response was mostly unaffected by temperature. However, energy expenditure was below baseline when birds were immune challenged in winter, but significantly above baseline in spring. This suggests that the energetic component of the innate immune response was reduced in winter, possibly contributing to energy conservation. Immunological parameters decreased (agglutination, lysis, bacteriostatic capacity) or did not change (haptoglobin/PIT54) after the challenge, and behavioural modifications (anorexia, mass loss) were lengthy (9 days). While we did not study the mechanisms explaining these weak, or slow, responses, it is tempting to speculate they may reflect the consequences of having evolved in an environment where pathogen transmission rate is presumably low for most of the year. This is an important consideration if climate change and increased exploitation of the Arctic would alter pathogen communities at a pace outwith counter-adaption in wildlife.




to

Skeletal muscle thermogenesis induction by exposure to predator odor [RESEARCH ARTICLE]

Erin Gorrell, Ashley Shemery, Jesse Kowalski, Miranda Bodziony, Nhlalala Mavundza, Amber R. Titus, Mark Yoder, Sarah Mull, Lydia A. Heemstra, Jacob G. Wagner, Megan Gibson, Olivia Carey, Diamond Daniel, Nicholas Harvey, Meredith Zendlo, Megan Rich, Scott Everett, Chaitanya K. Gavini, Tariq I. Almundarij, Diane Lorton, and Colleen M. Novak

Non-shivering thermogenesis can promote negative energy balance and weight loss. In this study, we identified a contextual stimulus that induces rapid and robust thermogenesis in skeletal muscle. Rats exposed to the odor of a natural predator (ferret) showed elevated skeletal muscle temperatures detectable as quickly as 2 min after exposure, reaching maximum thermogenesis of >1.5°C at 10–15 min. Mice exhibited a similar thermogenic response to the same odor. Ferret odor induced a significantly larger and qualitatively different response from that of novel or aversive odors, fox odor or moderate restraint stress. Exposure to predator odor increased energy expenditure, and both the thermogenic and energetic effects persisted when physical activity levels were controlled. Predator odor-induced muscle thermogenesis is subject to associative learning as exposure to a conditioned stimulus provoked a rise in muscle temperature in the absence of the odor. The ability of predator odor to induce thermogenesis is predominantly controlled by sympathetic nervous system activation of β-adrenergic receptors, as unilateral sympathetic lumbar denervation and a peripherally acting β-adrenergic antagonist significantly inhibited predator odor-induced muscle thermogenesis. The potential survival value of predator odor-induced changes in muscle physiology is reflected in an enhanced resistance to running fatigue. Lastly, predator odor-induced muscle thermogenesis imparts a meaningful impact on energy expenditure as daily predator odor exposure significantly enhanced weight loss with mild calorie restriction. This evidence signifies contextually provoked, centrally mediated muscle thermogenesis that meaningfully impacts energy balance.




to

Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2 [RESEARCH ARTICLE]

Peter J. Edmunds and Scott C. Burgess

Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day–1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges.




to

Neev, a novel long non-coding RNA, is expressed in chaetoblasts during regeneration of Eisenia fetida [RESEARCH ARTICLE]

Surendra Singh Patel, Sanyami Zunjarrao, and Beena Pillai

Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.




to

Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands [RESEARCH ARTICLE]

Vanessa Corby-Harris, Megan E. Deeter, Lucy Snyder, Charlotte Meador, Ashley C. Welchert, Amelia Hoffman, and Bethany T. Obernesser

Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress.




to

Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats [RESEARCH ARTICLE]

Ewa Komar, Dina K. N. Dechmann, Nicolas J. Fasel, Marcin Zegarek, and Ireneusz Ruczynski

Balancing energy budgets can be challenging, especially in periods of food shortage, adverse weather conditions and increased energy demand due to reproduction. Bats have particularly high energy demands compared to other mammals and regularly use torpor to save energy. However, while torpor limits energy expenditure, it can also downregulate important processes, such as sperm production. This constraint could result in a trade-off between energy saving and future reproductive capacity. We mimicked harsh conditions by restricting food and tested the effect on changes in body mass, torpor use and seasonal sexual maturation in male parti-coloured bats (Vespertilio murinus). Food-restricted individuals managed to maintain their initial body mass, while in well-fed males, mass increased. Interestingly, despite large differences in food availability, there were only small differences in torpor patterns. However, well-fed males reached sexual maturity up to half a month earlier. Our results thus reveal a complex trade-off in resource allocation; independent of resource availability, males maintain a similar thermoregulation strategy and favour fast sexual maturation, but limited resources and low body mass moderate this latter process.




to

Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained [RESEARCH ARTICLE]

Zhi-Jun Zhao, Davina Derous, Abby Gerrard, Jing Wen, Xue Liu, Song Tan, Catherine Hambly, and John R. Speakman

Lactating mice increase food intake 4- to 5-fold, reaching an asymptote in late lactation. A key question is whether this asymptote reflects a physiological constraint, or a maternal investment strategy (a ‘restraint’). We exposed lactating mice to periods of food restriction, hypothesizing that if the limit reflected restraint, they would compensate by breaching the asymptote when refeeding. In contrast, if it was a constraint, they would by definition be unable to increase their intake on refeeding days. Using isotope methods, we found that during food restriction, the females shut down milk production, impacting offspring growth. During refeeding, food intake and milk production rose again, but not significantly above unrestricted controls. These data provide strong evidence that asymptotic intake in lactation reflects a physiological/physical constraint, rather than restraint. Because hypothalamic neuropeptide Y (Npy) was upregulated under both states of restriction, this suggests the constraint is not imposed by limits in the capacity to upregulate hunger signalling (the saturated neural capacity hypothesis). Understanding the genetic basis of the constraint will be a key future goal and will provide us additional information on the nature of the constraining factors on reproductive output, and their potential links to life history strategies.




to

The brains of six African mole-rat species show divergent responses to hypoxia [RESEARCH ARTICLE]

Samantha M. Logan, Kama E. Szereszewski, Nigel C. Bennett, Daniel W. Hart, Barry van Jaarsveld, Matthew E. Pamenter, and Kenneth B. Storey

Mole-rats are champions of self-preservation, with increased longevity compared to other rodents their size, strong antioxidant capabilities, and specialized defenses against endogenous oxidative stress. However, how the brains of these subterranean mammals handle acute in vivo hypoxia is poorly understood. This study is the first to examine the molecular response to low oxygen in six different species of hypoxia-tolerant mole-rats from sub-Saharan Africa. Protein carbonylation, a known marker of DNA damage (hydroxy-2’-deoxyguanosine), and antioxidant capacity did not change following hypoxia but HIF-1 protein levels increased significantly in the brains of two species. Nearly 30 miRNAs known to play roles in hypoxia-tolerance were differentially regulated in a species-specific manner. The miRNAs exhibiting the strongest response to low oxygen stress inhibit apoptosis and regulate neuroinflammation, likely providing neuroprotection. A principal component analysis using a subset of the molecular targets assessed herein revealed differences between control and hypoxic groups for two solitary species (Georychus capensis and Bathyergus suillus), which are ecologically adapted to a normoxic environment, suggesting a heightened sensitivity to hypoxia relative to species that may experience hypoxia more regularly in nature. By contrast, all molecular data were included in the PCA to detect a difference between control and hypoxic populations of eusocial Heterocephalus glaber, indicating they may require many lower-fold changes in signaling pathways to adapt to low oxygen settings. Finally, none of the Cryptomys hottentotus subspecies showed a statistical difference between control and hypoxic groups, presumably due to hypoxia-tolerance derived from environmental pressures associated with a subterranean and social lifestyle.




to

The effect of vertical extent of stimuli on cockroach optomotor response [RESEARCH ARTICLE]

Juha Nuutila, Anna E. Honkanen, Kyösti Heimonen, and Matti Weckström

Using tethered American cockroaches walking on a trackball in a spherical virtual reality environment, we tested optomotor responses to horizontally moving black-and-white gratings of different vertical extent under six different light intensities. We found that shortening the vertical extent of the wide-field stimulus grating within a light level weakened response strength, reduced average velocity, and decreased angular walking distance. Optomotor responses with the vertically shortened stimuli persisted down to light intensity levels of 0.05 lx. Response latency seems to be independent of both the height of the stimulus and light intensity. The optomotor response started saturating at the light intensity of 5 lx, where the shortest behaviourally significant stimulus was 1°. This indicates that the number of vertical ommatidial rows needed to elicit an optomotor response at 5 lx and above is in the single digits, maybe even just one. Our behavioural results encourage further inquiry into the interplay of light intensity and stimulus size in insect dim-light vision.




to

An {alpha}7-related nicotinic acetylcholine receptor mediates the ciliary arrest response in pharyngeal gill slits of Ciona [RESEARCH ARTICLE]

Kei Jokura, Junko M. Nishino, Michio Ogasawara, and Atsuo Nishino

Ciliary movement is a fundamental process to support animal life, and the movement pattern may be altered in response to external stimuli under the control of nervous systems. Juvenile and adult ascidians have ciliary arrays around their pharyngeal gill slits (stigmata), and continuous beating is interrupted for seconds by mechanical stimuli on other parts of the body. Although it has been suggested that neural transmission to evoke ciliary arrest is cholinergic, its molecular basis has not yet been elucidated in detail. We herein attempted to clarify the molecular mechanisms underlying this neurociliary transmission in the model ascidian Ciona. Acetylcholinesterase histochemical staining showed strong signals on the laterodistal ciliated cells of stigmata, hereafter referred to as trapezial cells. The direct administration of acetylcholine (ACh) and other agonists of nicotinic ACh receptors (nAChRs) onto ciliated cells reliably evoked ciliary arrest that persisted for seconds in a dose-dependent manner. Only one isoform among all nAChR subunits encoded in the Ciona genome, called nAChR-A7/8-1, a relative of vertebrate α7 nAChRs, was expressed by trapezial cells. Exogenously expressed nAChR-A7/8-1 on Xenopus oocytes responded to ACh and other agonists with consistent pharmacological traits to those observed in vivo. Further efforts to examine signaling downstream of this receptor revealed that an inhibitor of phospholipase C (PLC) hampered ACh-induced ciliary arrest. We herein propose that homomeric α7-related nAChR-A7/8-1 mediates neurociliary transmission in Ciona stigmata to elicit persistent ciliary arrest by recruiting intracellular Ca2+ signaling.




to

In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

Christopher T. Richards and Enrico A. Eberhard

Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




to

The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny [RESEARCH ARTICLE]

Krishnamoorthy Krishnan, Asif Shahriar Nafi, Roi Gurka, and Roi Holzman

Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their ability to capture prey. Prey capture is impeded because smaller larvae produce weaker suction flows, exerting weaker forces on the prey. Previous observations on feeding larvae also showed prey exiting the mouth after initially entering it (hereafter "in-and-out"), although the mechanism causing such failures had been unclear. In this study, we used numerical simulations to investigate the hydrodynamic mechanisms responsible for the failure to feed caused by this in-and-out prey movement. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models revealed that for small larvae which expand their mouth slowly, fluid entering the mouth cavity is expelled through the mouth before it is closed, resulting in flow reversal at the orifice. This relative efflux of water through the mouth was >8% of the influx through the mouth for younger ages. However similar effluxes were found when we simulated slow strikes by larger fish. The simulations can explain the observations of larval fish failing to fish due to the in-and-out movement of the prey. These results further highlight the importance of transporting the prey from the gape deeper into the mouth cavity in determining suction-feeding success.




to

Alkaline guts contribute to immunity during exposure to acidified seawater in the sea urchin larva [RESEARCH ARTICLE]

Meike Stumpp, Inga Petersen, Femke Thoben, Jia-Jiun Yan, Matthias Leippe, and Marian Y. Hu

Larval stages of the abulacraria superphylum including echinoderms and hemichordates have highly alkaline midguts. To date the reason for the evolution of such extreme pH conditions in the gut of these organisms remains unknown. Here, we test the hypothesis that analogous to the acidic stomachs of vertebrates, these alkaline conditions may represent a first defensive barrier to protect from environmental pathogens.

pH-optimum curves for five different species of marine bacteria demonstrated a rapid decrease in proliferation rates by 50-60% between pH 8.5 and 9.5. Using the marine bacterium Vibrio diazotrophicus which elicits a coordinated immune response in the sea urchin larva of Strongylocentrotus purpuratus, we studied the physiological responses of the midgut pH regulatory machinery to this pathogen. Gastroscopic microelectrode measurements demonstrate a stimulation of midgut alkalization upon infection with V. diazotrophicus accompanied by an upregulation of acid-base transporter transcripts of the midgut. Pharmacological inhibition of midgut alkalization resulted in an increased mortality rate of larvae during Vibrio infection. Reductions in seawater pH resembling ocean acidification (OA) conditions lead to moderate reductions in midgut alkalization. However, these reductions in midgut pH do not affect the immune response and resilience of sea urchin larvae to a Vibrio infection under OA conditions.

Our study addressed the evolutionary benefits of the alkaline midgut of ambulacraria larval stages. The data indicate that alkaline conditions in the gut may serve as a first defensive barrier against environmental pathogens and that this mechanism can compensate for changes in seawater pH.




to

Limits to Sustained Energy Intake XXXI: Effect of Graded Levels of Dietary Fat on Lactation Performance in Swiss Mice [RESEARCH ARTICLE]

Yi Huang, Jazmin Osorio Mendoza, Catherine Hambly, Baoguo Li, Zengguang Jin, Li Li, Moshen Madizi, Sumei Hu, and John R. Speakman

The heat dissipation limit theory predicts lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared to those of 8.3% and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6, 25%: 278.8±25.8, 41.7%: 359.6±51.5, 58.3%: 353.7±43.6, 66.6%: 346±44.7 kJ day–1), lower daily energy expenditure (8.3%: 128.5±16, 25%: 131.6±8.4, 41.7%: 124.4±10.8, 58.3%: 115.1±10.5, 66.6%: 111.2±11.5 kJ day–1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3, 25%: 147.2±25.1, 41.7%: 225.1±49.6, 58.3%: 238.6±40.1, 66.6%: 234.8±41.1 kJ day–1). Milk fat content (%) was unrelated to dietary fat content, indicating females on higher fat diets (> 41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared to those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.




to

Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon [RESEARCH ARTICLE]

Lewis C. Naisbett-Jones, Nathan F. Putman, Michelle M. Scanlan, David L. G. Noakes, and Kenneth J. Lohmann

A variety of animals sense Earth's magnetic field and use it to guide movements over a wide range of spatial scales. Little is known, however, about the mechanisms that underlie magnetic field detection. Among teleost fish, growing evidence suggests that crystals of the mineral magnetite provide the physical basis of the magnetic sense. In this study, juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to a brief but strong magnetic pulse capable of altering the magnetic dipole moment of biogenic magnetite. Orientation behaviour of pulsed fish and untreated control fish was then compared in a magnetic coil system under two conditions: (1) the local magnetic field; and (2) a magnetic field that exists near the southern boundary of the natural oceanic range of Chinook salmon. In the local field, no significant difference existed between the orientation of the control and pulsed groups. By contrast, orientation of the two groups was significantly different in the magnetic field from the distant site. These results demonstrate that a magnetic pulse can alter the magnetic orientation behaviour of a fish and are consistent with the hypothesis that salmon have magnetite-based magnetoreception.




to

Responses of activity rhythms to temperature cues evolve in Drosophila populations selected for divergent timing of eclosion [RESEARCH ARTICLE]

Lakshman Abhilash, Arshad Kalliyil, and Vasu Sheeba

Even though the rhythm in adult emergence and rhythm in locomotor activity are two different rhythmic phenomena that occur at distinct life-stages of the fly life cycle, previous studies have hinted at similarities in certain aspects of the organisation of the circadian clock driving these two rhythms. For instance, the period gene plays an important regulatory role in both rhythms. In an earlier study, we have shown that selection on timing of adult emergence behaviour in populations of Drosophila melanogaster leads to the co-evolution of temperature sensitivity of circadian clocks driving eclosion. In this study, we were interested in asking if temperature sensitivity of the locomotor activity rhythm has evolved in our populations with divergent timing of adult emergence rhythm, with the goal of understanding the extent of similarity (or lack of it) in circadian organisation between the two rhythms. We found that in response to simulated jetlag with temperature cycles, late chronotypes (populations selected for predominant emergence during dusk) indeed re-entrain faster than early chronotypes (populations selected for predominant emergence during dawn) to 6-h phase-delays, thereby indicating enhanced sensitivity of the activity/rest clock to temperature cues in these stocks (entrainment is the synchronisation of internal rhythms to cyclic environmental time-cues). Additionally, we found that late chronotypes show higher plasticity of phases across regimes, day-to-day stability in phases and amplitude of entrainment, all indicative of enhanced temperature sensitive activity/rest rhythms. Our results highlight remarkably similar organisation principles between emergence and activity/rest rhythms.




to

Diving apart together: call propagation in diving long-finned pilot whales [RESEARCH ARTICLE]

Annebelle C. M. Kok, Lisette van Kolfshoten, James A. Campbell, Alexander M. von Benda-Beckmann, Patrick J. O. Miller, Hans Slabbekoorn, and Fleur Visser

Group-living animals must communicate to stay in contact. In long-finned pilot whales, there is a trade-off between the benefits of foraging individually at depth and the formation of tight social groups at the surface. Using theoretical modelling and empirical data of tagged pairs within a group, we examined the potential of pilot whale social calls to reach dispersed group-members during foraging periods. Both theoretical predictions and empirical data of tag pairs showed a potential for communication between diving and non-diving group members over separation distances up to at least 385 m (empirical) and 1800 m (theoretical). These distances are at or exceeding pilot whale dive depths recorded across populations. Call characteristics and environmental characteristics were analysed to investigate determinants of call detectability. Longer calls with a higher sound pressure level (SPL) that were received in a quieter environment were more often detected than their shorter, lower SPL counterparts within a noisier environment. In a noisier environment, calls were louder and had a lower peak frequency, indicating mechanisms for coping with varying conditions. However, the vulnerability of pilot whales to anthropogenic noise is still of concern as the ability to cope with increasing background noise may be limited. Our study shows that combining propagation modelling and actual tag recordings provides new insights into the communicative potential for social calls in orientation and reunion with group members for deep-diving pilot whales.




to

The effect of ecological factors on eye morphology in the western rainbowfish, Melanotaenia australis [RESEARCH ARTICLE]

Thomas J. Lisney, Shaun P. Collin, and Jennifer L. Kelley

Ecological factors such as spatial habitat complexity and diet can explain variation in visual morphology, but few studies have sought to determine whether visual specialisation can occur among populations of the same species. We used a small Australian freshwater fish (the western rainbowfish, Melanotaenia australis) to determine whether populations showed variation in eye size and eye position, and whether this variation could be explained by environmental (light availability, turbidity) and ecological (predation risk, habitat complexity, invertebrate abundance) variables. We investigated three aspects of eye morphology, (1) eye size relative to body size, (2) pupil size relative to eye size, and (3) eye position in the head, for fish collected from 14 sites in a major river catchment in northwest Western Australia. We found significant variation among populations in all three measures of eye morphology, but no effect of sex on eye size or eye position. Variation in eye diameter and eye position was best explained by the level of habitat complexity. Specifically, fish occurring in habitats with low complexity (i.e. open water) tended to have smaller, more dorsally-located eyes, than those occurring in more complex habitats (i.e. vegetation present). The size of the pupil relative to the size of the eye was most influenced by the presence of surrounding rock formations; fish living in gorge habitats had significantly smaller pupils (relative to eye size) than those occupying semi-gorge sites or open habitats. Our findings reveal that different ecological and environmental factors contribute to habitat-specific visual specialisations within a species.




to

The metabolic response to an immune challenge in a viviparous snake, Sistrurus miliarius [RESEARCH ARTICLE]

C. M. Lind, J. Agugliaro, and T. M. Farrell

Mounting an immune response may be energetically costly and require the diversion of resources away from other physiological processes. Yet, both the metabolic cost of immune responses and the factors that impact investment priorities remain poorly described in many vertebrate groups. For example, although viviparity has evolved many times in vertebrates, the relationship between immune function and pregnancy has been disproportionately studied in placental mammals. To examine the energetic costs of immune activation and the modulation of immune function during pregnancy in a non-mammalian vertebrate, we elicited an immune response in pregnant and non-pregnant pygmy rattlesnakes, Sistrurus miliarius, using lipopolysaccharide (LPS). Resting metabolic rate (RMR) was measured using flow-through respirometry. Immune function was examined using bactericidal assays and leukocyte counts. The RMR of pygmy rattlesnakes increased significantly in response to LPS injection. There was no statistically significant difference in the metabolic response of non-reproductive and pregnant snakes to LPS. Mean metabolic increments for pregnant females, non-reproductive females, and males were 13%, 18%, and 26%, respectively. The ratio of heterophils to lymphocytes was elevated in response to LPS across reproductive categories; however, LPS did not impact plasma bactericidal ability in non-reproductive snakes. Although pregnant females had significantly higher plasma bactericidal ability compared to non-reproductive snakes prior to manipulation, their bactericidal ability declined in response to LPS. LPS administration also significantly reduced several litter characteristics, particularly when administrated relatively early in pregnancy. Our results indicate that immune performance is energetically costly, altered during pregnancy, and that immune activation during pregnancy may result in tradeoffs that affect offspring in a viviparous reptile.




to

Spatial orientation based on multiple visual cues in non-migratory monarch butterflies [RESEARCH ARTICLE]

Myriam Franzke, Christian Kraus, David Dreyer, Keram Pfeiffer, M. Jerome Beetz, Anna L. Stöckl, James J. Foster, Eric J. Warrant, and Basil el Jundi

Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. While the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here we studied if non-migrating butterflies - that stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we here show that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.




to

Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies [RESEARCH ARTICLE]

David E. Cade, J. Jacob Levenson, Robert Cooper, Rafael de la Parra, D. Harry Webb, and Alistair D. M. Dove

Whale sharks (Rhincodon typus Smith 1828) – the largest extant fish species – reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 hours of whale shark behavior in Yucatan, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram-feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hrs. Compared to normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made.




to

Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE]

Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela Storch

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.




to

Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature [RESEARCH ARTICLE]

Brad A. Seibel and Curtis Deutsch

The capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body-size, diversity and biogeography. Here we derive a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate. For most terrestrial and shallow-living marine species, this "Pcrit-max" is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ~2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation.




to

Physiological responses of wild zebra finches (Taeniopygia guttata) to heatwaves [RESEARCH ARTICLE]

Christine Elizabeth Cooper, Laura Leilani Hurley, Pierre Deviche, and Simon Charles Griffith

Desert birds inhabit hot, dry environments that are becoming hotter and drier as a consequence of climate change. Extreme weather such as heatwaves can cause mass-mortality events that may significantly impact populations and species. There are currently insufficient data concerning physiological plasticity to inform models of species’ response to extreme events and develop mitigation strategies. Consequently, we examine here the physiological plasticity of a small desert bird in response to hot (mean maximum ambient temperature=42.7°C) and cooler (mean maximum ambient temperature=31.4°C) periods during a single Austral summer. We measured body mass, metabolic rate, evaporative water loss, and body temperature, along with blood parameters (corticosterone, glucose, and uric acid) of wild zebra finches (Taeniopygia guttata; Gould 1837) to assess their physiological state and determine the mechanisms by which they respond to heatwaves. Hot days were not significant stressors; they did not result in modification of baseline blood parameters or an inability to maintain body mass, provided drinking water was available. During heatwaves, finches shifted their thermoneutral zone to higher temperatures. They reduced metabolic heat production, evaporative water loss and wet thermal conductance, and increased hyperthermia, especially when exposed to high ambient temperature. A consideration of the significant physiological plasticity that we have demonstrated to achieve more favourable heat and water balance is essential for effectively modelling and planning for the impacts of climate change on biodiversity.




to

A Simple Clinical Tool for Stratifying Risk of Clinically Significant CKD after Nephrectomy: Development and Multinational Validation

Background

Clinically significant CKD following surgery for kidney cancer is associated with increased morbidity and mortality, but identifying patients at increased CKD risk remains difficult. Simple methods to stratify risk of clinically significant CKD after nephrectomy are needed.

Methods

To develop a tool for stratifying patients’ risk of CKD arising after surgery for kidney cancer, we tested models in a population-based cohort of 699 patients with kidney cancer in Queensland, Australia (2012–2013). We validated these models in a population-based cohort of 423 patients from Victoria, Australia, and in patient cohorts from single centers in Queensland, Scotland, and England. Eligible patients had two functioning kidneys and a preoperative eGFR ≥60 ml/min per 1.73 m2. The main outcome was incident eGFR <45 ml/min per 1.73 m2 at 12 months postnephrectomy. We used prespecified predictors—age ≥65 years old, diabetes mellitus, preoperative eGFR, and nephrectomy type (partial/radical)—to fit logistic regression models and grouped patients according to degree of risk of clinically significant CKD (negligible, low, moderate, or high risk).

Results

Absolute risks of stage 3b or higher CKD were <2%, 3% to 14%, 21% to 26%, and 46% to 69% across the four strata of negligible, low, moderate, and high risk, respectively. The negative predictive value of the negligible risk category was 98.9% for clinically significant CKD. The c statistic for this score ranged from 0.84 to 0.88 across derivation and validation cohorts.

Conclusions

Our simple scoring system can reproducibly stratify postnephrectomy CKD risk on the basis of readily available parameters. This clinical tool’s quantitative assessment of CKD risk may be weighed against other considerations when planning management of kidney tumors and help inform shared decision making between clinicians and patients.




to

Chitotriosidase as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis

Background

Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis.

Methods

We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1β, IL-6, IL-18, and chitotriosidase enzyme activity.

Results

A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications.

Conclusions

Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis.




to

Protein Kinase C-{delta} Mediates Kidney Tubular Injury in Cold Storage-Associated Kidney Transplantation

Background

Kidney injury associated with cold storage is a determinant of delayed graft function and the long-term outcome of transplanted kidneys, but the underlying mechanism remains elusive. We previously reported a role of protein kinase C- (PKC) in renal tubular injury during cisplatin nephrotoxicity and albumin-associated kidney injury, but whether PKC is involved in ischemic or transplantation-associated kidney injury is unknown.

Methods

To investigate PKC’s potential role in injury during cold storage–associated transplantation, we incubated rat kidney proximal tubule cells in University of Wisconsin (UW) solution at 4°C for cold storage, returning them to normal culture medium at 37°C for rewarming. We also stored kidneys from donor mice in cold UW solution for various durations, followed by transplantation into syngeneic recipient mice.

Results

We observed PKC activation in both in vitro and in vivo models of cold-storage rewarming or transplantation. In the mouse model, PKC was activated and accumulated in mitochondria, where it mediated phosphorylation of a mitochondrial fission protein, dynamin-related protein 1 (Drp1), at serine 616. Drp1 activation resulted in mitochondrial fission or fragmentation, accompanied by mitochondrial damage and tubular cell death. Deficiency of PKC in donor kidney ameliorated Drp1 phosphorylation, mitochondrial damage, tubular cell death, and kidney injury during cold storage–associated transplantation. PKC deficiency also improved the repair and function of the renal graft as a life-supporting kidney. An inhibitor of PKC, V1-1, protected kidneys against cold storage–associated transplantation injury.

Conclusions

These results indicate that PKC is a key mediator of mitochondrial damage and renal tubular injury in cold storage–associated transplantation and may be an effective therapeutic target for improving renal transplant outcomes.




to

Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease

Background

The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

Method

To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines.

Results

Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells.

Conclusions

STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.




to

Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis

Background

Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments.

Methods

To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls.

Results

Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities.

Conclusions

These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.




to

Atorvastatin Reduces In Vivo Fibrin Deposition and Macrophage Accumulation, and Improves Primary Patency Duration and Maturation of Murine Arteriovenous Fistula

Background

Arteriovenous fistulas placed surgically for dialysis vascular access have a high primary failure rate resulting from excessive inward remodeling, medial fibrosis, and thrombosis. No clinically established pharmacologic or perisurgical therapies currently address this unmet need. Statins’ induction of multiple anti-inflammatory and antithrombotic effects suggests that these drugs might reduce arteriovenous fistula failure. Yet, the in vivo physiologic and molecular effects of statins on fistula patency and maturation remain poorly understood.

Methods

We randomized 108 C57Bl/6J mice to receive daily atorvastatin 1.14 mg/kg or PBS (control) starting 7 days before end-to-side carotid artery–jugular vein fistula creation and for up to 42 days after fistula creation. We then assessed longitudinally the effects of statin therapy on primary murine fistula patency and maturation. We concomitantly analyzed the in vivo arteriovenous fistula thrombogenic and inflammatory macrophage response to statin therapy, using the fibrin-targeted, near-infrared fluorescence molecular imaging agent FTP11-CyAm7 and dextranated, macrophage-avid nanoparticles CLIO-VT680.

Results

In vivo molecular-structural imaging demonstrated that atorvastatin significantly reduced fibrin deposition at day 7 and macrophage accumulation at days 7 and 14, findings supported by histopathologic and gene-expression analyses. Structurally, atorvastatin promoted favorable venous limb outward remodeling, preserved arteriovenous fistula blood flow, and prolonged primary arteriovenous fistula patency through day 42 (P<0.05 versus control for all measures).

Conclusions

These findings provide new in vivo evidence that statins improve experimental arteriovenous fistula patency and maturation, indicating that additional clinical evaluation of statin therapy in patients on dialysis undergoing arteriovenous fistula placement is warranted.




to

Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors

Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation—sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)—can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter–2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.




to

Fructose Production and Metabolism in the Kidney

Understanding fructose metabolism might provide insights to renal pathophysiology. To support systemic glucose concentration, the proximal tubular cells reabsorb fructose as a substrate for gluconeogenesis. However, in instances when fructose intake is excessive, fructose metabolism is costly, resulting in energy depletion, uric acid generation, inflammation, and fibrosis in the kidney. A recent scientific advance is the discovery that fructose can be endogenously produced from glucose under pathologic conditions, not only in kidney diseases, but also in diabetes, in cardiac hypertrophy, and with dehydration. Why humans have such a deleterious mechanism to produce fructose is unknown, but it may relate to an evolutionary benefit in the past. In this article, we aim to illuminate the roles of fructose as it relates to gluconeogenesis and fructoneogenesis in the kidney.




to

Axon microdissection and transcriptome profiling reveals the in vivo RNA content of fully differentiated myelinated motor axons [ARTICLE]

Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in the maintenance of the axoplasm in a steady state. Recent studies have begun to identify the mRNAs localized in axons, which could be translated locally under different conditions. Despite that by now hundreds or thousands of mRNAs have been shown to be localized into the axonal compartment of cultured neurons in vitro, knowledge of which mRNAs are localized in mature myelinated axons is quite limited. With the purpose of characterizing the transcriptome of mature myelinated motor axons of peripheral nervous systems, we modified the axon microdissection method devised by Koenig, enabling the isolation of the axoplasm RNA to perform RNA-seq analysis. The transcriptome analysis indicates that the number of RNAs detected in mature axons is lower in comparison with in vitro data, depleted of glial markers, and enriched in neuronal markers. The mature myelinated axons are enriched for mRNAs related to cytoskeleton, translation, and oxidative phosphorylation. Moreover, it was possible to define core genes present in axons when comparing our data with transcriptomic data of axons grown in different conditions. This work provides evidence that axon microdissection is a valuable method to obtain genome-wide data from mature and myelinated axons of the peripheral nervous system, and could be especially useful for the study of axonal involvement in neurodegenerative pathologies of motor neurons such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophies (SMA).




to

A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes [ARTICLE]

Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster. Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster.




to

RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency [BIOINFORMATICS]

The importance of noncoding RNA sequences has become increasingly clear over the past decade. New RNA families are often detected and analyzed using comparative methods based on multiple sequence alignments. Accordingly, a number of programs have been developed for aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for these tasks remain unclear because existing benchmarks contain too few sequences belonging to only a small number of RNA families. RNAconTest (RNA consistency test) is a new benchmarking approach relying on the observation that secondary structure is often conserved across highly divergent RNA sequences from the same family. RNAconTest scores multiple sequence alignments based on the level of consistency among known secondary structures belonging to reference sequences in their output alignment. Similarly, consensus secondary structure predictions are scored according to their agreement with one or more known structures in a family. Comparing the performance of 10 popular alignment programs using RNAconTest revealed that DAFS, DECIPHER, LocARNA, and MAFFT created the most structurally consistent alignments. The best consensus secondary structure predictions were generated by DAFS and LocARNA (via RNAalifold). Many of the methods specific to noncoding RNAs exhibited poor scalability as the number or length of input sequences increased, and several programs displayed substantial declines in score as more sequences were aligned. Overall, RNAconTest provides a means of testing and improving tools for comparative RNA analysis, as well as highlighting the best available approaches. RNAconTest is available from the DECIPHER website (http://DECIPHER.codes/Downloads.html).




to

2019 Year in Review: Neonatal Respiratory Support

Respiratory support of the critically ill neonate has steadily shifted from invasive to noninvasive forms of support. There have recently been a number of important advances in our understanding of the changes to neonatal resuscitation practices as they pertain to clinically important outcomes, mechanisms of gas exchange for high-flow nasal cannula, and best use of noninvasive ventilation and predicting response. Although the proportion of infants requiring intubation and mechanical ventilation has decreased, the most severely ill often still require intubation and ventilation. Recently, volume-targeted ventilation, high-frequency ventilation, and different methods of assessing weaning and extubation have been investigated. This review summarizes a number of important advances that have been made in the management of prematurity and neonatal respiratory distress syndrome.




to

Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials

BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials.