app

Crisis and Disaster Situations on Social Media Streams: An Ontology-Based Knowledge Harvesting Approach

Aim/Purpose: Vis-à-vis management of crisis and disaster situations, this paper focuses on important use cases of social media functions, such as information collection & dissemination, disaster event identification & monitoring, collaborative problem-solving mechanism, and decision-making process. With the prolific utilization of disaster-based ontological framework, a strong disambiguation system is realized, which further enhances the searching capabilities of the user request and provides a solution of unambiguous in nature. Background: Even though social media is information-rich, it has created a challenge for deriving a decision in critical crisis-related cases. In order to make the whole process effective and avail quality decision making, sufficiently clear semantics of such information is necessary, which can be supplemented through employing semantic web technologies. Methodology: This paper evolves a disaster ontology-based system availing a framework model for monitoring uses of social media during risk and crisis-related events. The proposed system monitors a discussion thread discovering whether it has reached its peak or decline after its root in the social forum like Twitter. The content in social media can be accessed through two typical ways: Search Application Program Interfaces (APIs) and Streaming APIs. These two kinds of API processes can be used interchangeably. News content may be filtered by time, geographical region, keyword occurrence and availability ratio. With the support of disaster ontology, domain knowledge extraction and comparison against all possible concepts are availed. Besides, the proposed method makes use of SPARQL to disambiguate the query and yield the results which produce high precision. Contribution: The model provides for the collection of crisis-related temporal data and decision making through semantic mapping of entities over concepts in a disaster ontology we developed, thereby disambiguating potential named entities. Results of empirical testing and analysis indicate that the proposed model outperforms similar other models. Findings: Crucial findings of this research lie in three aspects: (1) Twitter streams and conventional news media tend to offer almost similar types of news coverage for a specified event, but the rate of distribution among topics/categories differs. (2) On specific events such as disaster, crisis or any emergency situations, the volume of information that has been accumulated between the two news media stands divergent and filtering the most potential information poses a challenging task. (3) Relational mapping/co-occurrence of terms has been well designed for conventional news media, but due to shortness and sparseness of tweets, there remains a bottleneck for researchers. Recommendations for Practitioners: Though metadata avails collaborative details of news content and it has been conventionally used in many areas like information retrieval, natural language processing, and pattern recognition, there is still a lack of fulfillment in semantic aspects of data. Hence, the pervasive use of ontology is highly suggested that build semantic-oriented metadata for concept-based modeling, information flow searching and knowledge exchange. Recommendation for Researchers: The strong recommendation for researchers is that instead of heavily relying on conventional Information Retrieval (IR) systems, one can focus more on ontology for improving the accuracy rate and thereby reducing ambiguous terms persisting in the result sets. In order to harness the potential information to derive the hidden facts, this research recommends clustering the information from diverse sources rather than pruning a single news source. It is advisable to use a domain ontology to segregate the entities which pose ambiguity over other candidate sets thus strengthening the outcome. Impact on Society: The objective of this research is to provide informative summarization of happenings such as crisis, disaster, emergency and havoc-based situations in the real world. A system is proposed which provides the summarized views of such happenings and corroborates the news by interrelating with one another. Its major task is to monitor the events which are very booming and deemed important from a crowd’s perspective. Future Research: In the future, one shall strive to help to summarize and to visualize the potential information which is ranked high by the model.




app

A Multicluster Approach to Selecting Initial Sets for Clustering of Categorical Data

Aim/Purpose: This article proposes a methodology for selecting the initial sets for clustering categorical data. The main idea is to combine all the different values of every single criterion or attribute, to form the first proposal of the so-called multiclusters, obtaining in this way the maximum number of clusters for the whole dataset. The multiclusters thus obtained, are themselves clustered in a second step, according to the desired final number of clusters. Background: Popular cluster methods for categorical data, such as the well-known K-Modes, usually select the initial sets by means of some random process. This fact introduces some randomness in the final results of the algorithms. We explore a different application of the clustering methodology for categorical data that overcomes the instability problems and ultimately provides a greater clustering efficiency. Methodology: For assessing the performance of the proposed algorithm and its comparison with K-Modes, we apply both of them to categorical databases where the response variable is known but not used in the analysis. In our examples, that response variable can be identified to the real clusters or classes to which the observations belong. With every data set, we perform a two-step analysis. In the first step we perform the clustering analysis on data where the response variable (the real clusters) has been omitted, and in the second step we use that omitted information to check the efficiency of the clustering algorithm (by comparing the real clusters to those given by the algorithm). Contribution: Simplicity, efficiency and stability are the main advantages of the multicluster method. Findings: The experimental results attained with real databases show that the multicluster algorithm has greater precision and a better grouping effect than the classical K-modes algorithm. Recommendations for Practitioners: The method can be useful for those researchers working with small and medium size datasets, allowing them to detect the underlying structure of the data in an intuitive and reasonable way. Recommendation for Researchers: The proposed algorithm is slower than K-Modes, since it devotes a lot of time to the calculation of the initial combinations of attributes. The reduction of the computing time is therefore an important research topic. Future Research: We are concerned with the scalability of the algorithm to large and complex data sets, as well as the application to mixed data sets with both quantitative and qualitative attributes.




app

The Challenge of Evaluating Virtual Communities of Practice: A Systematic Mapping Study

Aim/Purpose: This paper presents a study of Virtual Communities of Practice (VCoP) evaluation methods that aims to identify their current status and impact on knowledge sharing. The purposes of the study are as follows: (i) to identify trends and research gaps in VCoP evaluation methods; and, (ii) to assist researchers to position new research activities in this domain. Background: VCoP have become a popular knowledge sharing mechanism for both individuals and organizations. Their evaluation process is complex; however, it is recognized as an essential means to provide evidences of community effectiveness. Moreover, VCoP have introduced additional features to face to face Communities of Practice (CoP) that need to be taken into account in evaluation processes, such as geographical dispersion. The fact that VCoP rely on Information and Communication Technologies (ICT) to execute their practices as well as storing artifacts virtually makes more consistent data analysis possible; thus, the evaluation process can apply automatic data gathering and analysis. Methodology: A systematic mapping study, based on five research questions, was carried out in order to analyze existing studies about VCoP evaluation methods and frameworks. The mapping included searching five research databases resulting in the selection of 1,417 papers over which a formal analysis process was applied. This process led to the preliminary selection of 39 primary studies for complete reading. After reading them, we select 28 relevant primary studies from which data was extracted and synthesized to answer the proposed research questions. Contribution: The authors of the primary studies analyzed along this systematic mapping propose a set of methods and strategies for evaluating VCoP, such as frameworks, processes and maturity models. Our main contribution is the identification of some research gaps present in the body of studies, in order to stimulate projects that can improve VCoP evaluation methods and support its important role in social learning. Findings: The systematic mapping led to the conclusion that most of the approaches for VCoP evaluation do not consider the combination of data structured and unstructured metrics. In addition, there is a lack of guidelines to support community operators’ actions based on evaluation metrics.




app

Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach

Aim/Purpose: This study aims at investigating the factors that influence students’ continuous intention to use Moodle, as an exemplar of learning management systems (LMSs), in the post-adoption phase. Background: Higher education institutions (HEIs) have invested heavily in learning management systems (LMSs), such as Moodle and BlackBoard, as these systems enhance students’ learning and improve their interactions with the educational systems. While most studies on LMSs have focused on the pre-adoption or acceptance phases of this technology, the determinant factors that influence students’ continuance intention to use LMSs have received less attention in the information systems (IS) literature. Methodology: The theoretical model for this study was primarily drawn from the expectation-confirmation model (ECM). A total of 387 Kuwaiti students, from a private American University in the State of Kuwait, participated in this study. Partial least squares (PLS) was employed to analyze the data. Contribution: This study contributes to the existing scientific knowledge in different ways. First, this study extends the expectation confirmation model (ECM) by integrating factors that are important to students’ continuous intention to use LMSs, including system interactivity, effort expectancy, attitude, computer anxiety, self-efficacy, subjective norms, and facilitating conditions. Second, this study adds on a Kuwaiti literature context by focusing on the continuous intention to use LMSs, which is, to the best of our knowledge, the first study that extends and empirically assesses the applicability of the ECM in the LMSs context in a developing country – Kuwait. Third, this study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM, and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Finally, this study aims to assist HEIs, faculty members, and systems’ developers in understanding the main factors that influence students’ continuance use intention of LMSs. Findings: While subjective norms were not significant, the results mainly showed that students’ continuous intention to use Moodle is significantly influenced by performance expectancy, effort expectancy, attitude, satisfaction, self-efficacy and facilitating conditions. The study’s results also confirmed that satisfaction and attitude are two conceptually and empirically different constructs, conflicting with the views that these constructs can be taken as interchangeable factors in the ECM. Recommendations for Practitioners: This study offers several useful practical implications. First, given the significant influence of system interactivity on performance expectancy and satisfaction, faculty members should modify their teaching approach by enabling communication and interaction among instructors, students, and peers using the LMS. Second, given the significant influence of performance expectancy, satisfaction, and attitude on continuous intention to use the LMS, HEIs should conduct training programs for students on the effective use of the LMS. This would increase students’ awareness regarding the usefulness of the LMS, enhance their attitude towards the LMS, and improve their satisfaction with the system. Third, given the significant role of effort expectancy in influencing performance expectancy, attitude, and students’ continuous intention to use Moodle, developers and system programmers should design the LMS with easy to use, high quality, and customizable user interface. This, in turn, will not only motivate students’ performance expectancy, but will also influence their attitude and continuous intention to use the system. Recommendation for Researchers: This study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Hence, it is recommended that researchers include these two constructs in their research models when investigating continuous intention to use a technology. Impact on Society: This study could be used in other countries to compare and verify the results. Additionally, the research model of this study could also be used to investigate other LMSs, such as Blackboard. Future Research: This study focused on how different factors affected students’ continuous intention to use Moodle but did not consider all determinants of successful system, such as system quality, information quality, and instructional as well as course content quality. Thus, future research should devote attention to the effects of these quality characteristics of LMS.




app

The Effect of Visual Appeal, Social Interaction, Enjoyment, and Competition on Mobile Esports Acceptance by Urban Citizens

Aim/Purpose: This study investigated a model of mobile esports acceptance among urban citizens based on an extended Technology Acceptance Model (TAM). Background: Currently, esports are increasingly popular and in demand by the public. Supported by the widespread development of mobile devices, it has become an interactive market trend to play games in a new model, mobile esports. Methodology: This study collected data from 400 respondents and analyzed it using partial least squares-structural equation modeling (PLS-SEM). Contribution: This study addresses two research gaps. The first gap is limited esports information systems studies, particularly in mobile esports acceptance studies. The second gap is limited exploration of external variables in online gaming acceptance studies. Thus, this study proposed a TAM extended model by integrating the TAM native variables with other external variables such as visual appeal, enjoyment, social interaction, and competition to explore mobile esports acceptance by urban citizens. Findings: Nine hypotheses were accepted, and four were rejected. The visual appeal did not affect the acceptance. Meanwhile, social interaction and enjoyment significantly affected both perceived ease of use and usefulness. However, perceived ease of use surprisingly had an insignificant effect on attitude toward using mobile esports. Moreover, competition significantly affected the acceptance, particularly on perceived usefulness. Recommendations for Practitioners: Fresh and innovative features, such as new game items or themes, should be frequently introduced to enhance players’ continued enjoyment. Moreover, mobile esports providers should offer a solid platform to excite players’ interactions to increase the likelihood that users feel content. On the other hand, the national sports ministry/agency or responsible authorities should organize many esports competitions, big or small, to search for new talents. Recommendation for Researchers: Visual appeal in this study did not influence the perceived ease of use or usefulness. However, it could affect enjoyment. Thus, it would be worth revisiting the relationship between visual appeal and enjoyment. At the same time, perceived ease of use is a strong driver for the continued use of most online games, but not in this study. It could indicate significant differences between mobile esports and typical online games, one of which is the different purposes. Users might play online games for recreational intention, but players would use mobile esports to compete, win, or even get monetary rewards. Therefore, although users might find mobile esports challenging and hard to use, they tend to keep playing it. Thus, monetary rewards could be considered a determinant of the continuation of use. Impact on Society: Nowadays, users are being paid for playing games. It also would be an excel-lent job if they become professional esports athletes. This study investigated factors that could affect the continued use of mobile esports. Like other jobs, playing games professionally in the long term could make the players tedious and tired. Therefore, responsible parties, like mobile esports providers or governments, could use the recommendations of this study to promote positive behavior among the players. They will not feel like working and still con-sider playing mobile esports a hobby if they happily do the job. In the long run, the players could also make a nation’s society proud if they can be a champion in prestigious competitions. Future Research: A larger sample size will be needed to generalize the results, such as for a nation. It is also preferable if the sample is randomized systematically. Future works should also investigate whether the same results are acquired in other mobile esports. Furthermore, to extend our knowledge and deepen our understanding of the variables that influence mobile esports adoption, the subsequent research could look at other mobile esports acceptability based on characteristics of system functionality and moderator effects. Finally, longitudinal data-collecting approaches are suggested for future studies since behavior can change over time.




app

Adoption of Telecommuting in the Banking Industry: A Technology Acceptance Model Approach

Aim/Purpose: Currently, the world faces unprecedented challenges due to COVID-19, particularly concerning individuals’ health and livelihood and organizations and industrial performance. Indeed, the pandemic has caused rapid intensifying socio-economic effects. For instance, organizations are shifting from traditional working patterns toward telecommuting. By adopting remote working, organizations might mitigate the impact of COVID-19 on their workforce, explicitly concerning their safety, wellbeing, mobility, work-life balance, and self-efficiency. From this perceptive, this study examines the factors that influence employees’ behavioral intention to adopt telecommuting in the banking industry. Background: The study’s relevance stems from the fact that telecommuting and its benefits have been assumed rather than demonstrated in the banking sector. However, the pandemic has driven the implementation of remote working, thereby revealing possible advantages of working from home in the banking industry. The study investigated the effect of COVID-19 in driving organizations to shift from traditional working patterns toward telecommuting. Thereby, the study investigates the banking sector employees’ behavioral intention to adopt telecommuting. Methodology: The study employed a survey-based questionnaire, which entails gathering data from employees of twelve banks in Jordan, as the banking sector in Jordan was the first to transform from traditional working to telecommuting. The sample for this research was 675 respondents; convenience sampling was employed as a sampling technique. Subsequently, the data were analyzed with the partial least square structural equation modeling (PLS-SEM) to statistically test the research model. Contribution: Firstly, this study provides a deep examination and understanding of facilitators of telecommuting in a single comprehensive model. Secondly, the study pro-vides a deeper insight into the factors affecting behavioral intention towards telecommuting from the employees’ perspective in the banking sector. Finally, this study is the first to examine telecommuting in the emerging market of Jordan. Thereby, this study provides critical recommendations for managers to facilitate the implementation of telecommuting. Findings: Using the Technology Acceptance Model (TAM), this study highlights significant relationships between telecommuting systems, quality, organizational support, and the perceived usefulness and ease of use in telecommuting. Employees who perceive telecommuting systems to be easy and receive supervision and training for using these systems are likely to adopt this work scheme. The results present critical theoretical and managerial implications regarding employees’ behavioral intentions toward telecommuting. Recommendations for Practitioners: This study suggests the importance of work-life balance for employees when telecommuting. Working from home while managing household duties can create complications for employees, particularly parents. Therefore, flexibility in terms of working hours is needed to increase employees’ acceptance of telecommuting as they will have more control over their life. These increase employees’ perceived self-efficacy with telecommuting, which smooths the transition toward remote working in the future. In addition, training will allow employees to solve technical issues that can arise from using online systems. Recommendation for Researchers: This study focused on the context of the banking sector. The sensitivity of data and transactions in this sector may influence employers’ and employees’ willingness to work remotely. In addition, the job descriptions of employees in banks moderate specific factors outlined in this model, including work-life balance. For instance, executive managers may have a higher overload in banks in contrast to front-line employees. Thus, future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Impact on Society: The COVID-19 pandemic created a sudden shift towards telecommuting, which made employees struggle to adopt new work schemes. Therefore, managers had to provide training for their employees to be well prepared and increase their acceptance of telecommuting. Furthermore, telecommuting has a positive effect on work-life balance, it provides employees with the flexibility to organize their daily schedule into more activities. Along the same line, the study highlighted the correlation between work-life balance and telecommuting. Such a relationship provides further evidence for the need to understand employees’ lifestyles in facilitating the adoption of telecommuting. Moreover, the study extends the stream of literature by outlining critical factors affecting employees’ acceptance of telecommuting. Future Research: Future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Furthermore, the research team conducted the study by surveying 12 banks. Future research recommends surveying the whole banking industry to add more validation to the model.




app

Impact of Text Diversity on Review Helpfulness: A Topic Modeling Approach

Aim/Purpose: In this study, we aim to investigate the impact of an important characteristic of textual reviews – the diversity of the review content on review helpfulness. Background: Consumer-generated reviews are an essential format of online Word-of-Month that help customers reduce uncertainty and information asymmetry. However, not all reviews are equally helpful as reflected by the varying number of helpfulness votes received by reviews. From consumers’ perspective, what kind of content is more effective and useful for making purchase decisions is unclear. Methodology: We use a data set consisting of consumer reviews for laptop products on Amazon from 2014 to 2018. A topic modeling technique is implemented to unveil the hidden topics embedded in the reviews. Based on the extracted topics, we compute the text diversity score of each review. The diversity score measures how diverse the content in a review is compared to other reviews. Contribution: In the literature, studies have examined various factors that can influence review helpfulness. However, studies that emphasized the information value of textual reviews are limited. Our study contributes to the extant literature of online word-of-mouth by establishing the connection between the diversity of the review content and consumer perceived helpfulness. Findings: Empirical results show that text diversity plays an important role in consumers’ evaluation of whether the review is helpful. Reviews that contain more diverse content tend to be more helpful to consumers. Moreover, we find a negative interaction effect between text diversity and the text depth. This result suggests that text depth and text diversity have a substitution effect. When a review contains more in-depth content, the impact of text diversity is weakened. Recommendations for Practitioners: For consumers to quickly find the informative reviews, platforms should incorporate measures such as text diversity in the ranking algorithms to rank consumer reviews. Future Research: Future study can extend the current research by examine the impact of text diversity for experienced goods and compare the results with search goods.




app

The Segmentation of Mobile Application Users in The Hotel Booking Journey

Aim/Purpose: This study aims to create customer segmentation who use Online Travel Agent (OTA) mobile applications in Indonesia throughout their hotel booking journey. Background: In the context of mobile hotel booking applications, research analyzing the customer experience at each customer journey stage is scarce. However, literature increasingly acknowledges the significance of this stage in comprehending customer behavior and revenue streams. Methodology: This study employs a mixed-method and exploratory approach by doing in-depth interviews with 20 participants and questionnaires from 207 participants. Interview data are analyzed using thematic analysis, while the questionnaires are analyzed using descriptive statistics. Contribution: This study enriches knowledge in understanding customer behavior that considers the usage of mobile apps as a segmentation criterion in the hotel booking journey. Findings: We developed four user personas (no sweat player, spotless seeker, social squad, and bargain hunter) that show customer segmentation based on the purpose, motivation, and actions in each journey stage (inspiration, consideration, reservation, and experience). Recommendations for Practitioners: The resulting customer segmentation enables hospitality firms to improve their current services by adapting to the needs of various segments and avoiding unanticipated customer pain points, such as incomplete information, price changes, no social proof, and limited payment options. Recommendation for Researchers: The quality and robustness of the customer segment produced in this study can be further tested based on the criteria of homogeneity, size, potential benefits, segment stability, segment accessibility, segment compatibility, and segment actionability. Impact on Society: This study has enriched the existing literature by establishing a correlation between user characteristics and how they use smartphones for tourism planning, focusing on hotel booking in mobile applications. Future Research: For future research, each customer segment’s demographic and behavioral factors can be explored further.




app

Unveiling Roadblocks and Mapping Solutions for Blockchain Adoption by Governments: A Systematic Literature Review

Aim/Purpose: Blockchain technology (BCT) has emerged as a potential catalyst for transforming government institutions and services, yet the adoption of blockchain in governments faces various challenges, for which previous studies have yet to provide practical solutions. Background: This study aims to identify and analyse barriers, potential solutions, and their relations in implementing BC for governments through a systematic literature review (SLR). The authors grouped the challenges based on the Technology-Organisation-Environment (TOE) framework while exercising a thematic grouping for the solutions, followed by a comprehensive mapping to unveil the relationship between challenges and solutions. Methodology: This study employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 methodology, combined with the tollgate method, to improve the quality of selected articles. The authors further administer a three-level approach (open coding, axial coding, and selective coding) to analyse the challenges and solutions from the articles. Contribution: The authors argue that this study enriches the existing literature on BC adoption, particularly in the government context, by providing a comprehensive framework to analyse and address the unique challenges and solutions, thus contributing to the development of new theories and models for future research in BC adoption in government settings and fostering deeper exploration in the field. Findings: The authors have unveiled 40 adoption challenges categorised using the TOE framework. The most prevalent technological challenges include security concerns and integration & interoperability, while cultural resistance, lack of support and involvement, and employees’ capability hinder adoption at the organisational level. Notably, the environmental dimension lacks legal and standard frameworks. The study further unveils 28 potential solutions, encompassing legal frameworks, security and privacy measures, collaboration and governance, technological readiness and infrastructure, and strategic planning and adoption. The authors of the study have further mapped the solutions to the identified challenges, revealing that the establishment of legal frameworks stands out as the most comprehensive solution. Recommendations for Practitioners: Our findings provide a big picture regarding BC adoption for governments around the globe. This study charts the problems commonly encountered by government agencies and presents proven solutions in their wake. The authors endeavour practitioners, particularly those in governments, to embrace our findings as the cornerstone of BC/BCT adoption. These insights can aid practitioners in identifying existing or potential obstacles in adopting BC, pinpointing success factors, and formulating strategies tailored to their organisations. Recommendation for Researchers: Researchers could extend this study by making an in-depth analysis of challenges or solutions in specific types of countries, such as developed and developing countries, as the authors believe this approach would yield more insights. Researchers could also test, validate, and verify the mapping in this study to improve the quality of the study further and thus can be a great aid for governments to adopt BC/BCT fully. Impact on Society: This study provides a comprehensive exploration of BC adoption in the government context, offering detailed explanations and valuable insights that hold significant value for government policymakers and decision-makers, serving as a bedrock for successful implementation by addressing roadblocks and emphasising the importance of establishing a supportive culture and structure, engaging stakeholders, and addressing security and privacy concerns, ultimately enhancing the efficiency and effectiveness of BC adoption in government institutions and services. Future Research: Future research should address the limitations identified in this study by expanding the scope of the literature search to include previously inaccessible sources and exploring alternative frameworks to capture dynamic changes and contextual factors in BC adoption. Additionally, rigorous scrutiny, review, and testing are essential to establish the practical and theoretical validity of the identified solutions, while in-depth analyses of country-specific and regional challenges will provide valuable insights into the unique considerations faced by different governments.




app

Use of Mobile Health Applications by Lay Users in Kuwait

Aim/Purpose: This study aims to explore the use of mobile health applications (mHealth apps) by lay users in Kuwait. Specifically, it seeks to: (i) identify and highlight the impact of factors that contribute to their use of mHealth apps and (ii) validate a model of these users’ usage of mHealth apps. Background: The advancement of information technologies has paved the way for efficiency and effectiveness in healthcare sectors in developed countries. Kuwait has attempted to revolutionise healthcare systems through mobile applications of information technology solutions to educate users on better methods of receiving customised health services. However, end-user usage of mHealth apps remains in the infancy in developing countries, including Kuwait. Lay users are often vulnerable and frequently overlooked by researchers and health technology providers. Methodology: A cross-sectional study was conducted among 225 lay users of mHealth apps in Kuwait using an online questionnaire to achieve the study objectives. A purposive sampling method utilising convenience and snowballing sampling techniques was used in which all the respondents were lay users. Descriptive statistics, Pearson correlation, and regression analyses were employed to analyse the collected data. Contribution: The study contributes to the extant literature on health informatics and mHealth by providing a comprehensive understanding of how technological, social, and functional factors are related to mHealth apps in the context of developing countries. It identifies key drivers of mHealth app use, suggests expanding the TAM model, and facilitates comparisons with developed countries, addressing gaps in mHealth research. Findings: Four factors (i.e., perceived trust (PT), perceived ease of use (PEU) and behaviour control (PBC), perceived usefulness (PU), and subjective norms (SN)) were identified that influence the use of mHealth apps. These four identified factors also contributed to lay users’ use of these mHealth apps. Among these four factors, perceived trust (PT) was the main contributor to lay users’ use of these mHealth apps. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of mHealth apps. The findings urge developers to enhance app functionality by prioritising privacy and security to build user trust while outlining guidelines for future development focused on user-centric design and compliance with data privacy regulations. Additionally, the government should establish supportive policies and funding, ensure regulatory oversight, and promote public awareness to foster trust. Healthcare providers should integrate mHealth apps into their services, train staff for practical use, gather users’ feedback, and collaborate with developers to create tailored healthcare solutions. Future Research: Additional research is required to apply probability sampling techniques and increase the sample size to generate more reliable and generalisable findings. Additionally, the young age segment must be considered here, and research must be extended to consider the moderating role of demographic factors like age, gender, and educational levels to better understand the adoption of mHealth apps.




app

A Learn-to-Rank Approach to Medicine Selection for Patient Treatments

Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level.




app

Enhancing Waste Management Decisions: A Group DSS Approach Using SSM and AHP in Indonesia

Aim/Purpose: This research aims to design a website-based group decision support system (DSS) user interface to support an integrated and sustainable waste management plan in Jagatera. The main focus of this research is to design a group DSS to help Jagatera prioritize several waste alternatives to be managed so that Jagatera can make the right decisions to serve the community. Background: The Indonesian government and various stakeholders are trying to solve the waste problem. Jagatera, as a waste recycling company, plays a role as a stakeholder in managing waste. In 2024, Jagatera plans to accept all waste types, which impacts the possibility of increasing waste management costs. If Jagatera does not have a waste management plan, this will impact reducing waste management services in the community. To solve this problem, the group DSS assists Jagatera in prioritizing waste based on aspects of waste management cost. Methodology: Jagatera, an Indonesian waste recycling company, is implementing a group DSS using the soft system methodology (SSM) method. The SSM process involves seven stages, including problem identification, problem explanation using rich pictures, system design, conceptual model design, real-life comparison, changes, and improvement steps. The final result is a prototype user interface design addressing the relationship between actors and the group DSS. The analytical hierarchy process (AHP) method prioritized waste based on management costs. This research obtained primary data from interviews with Jagatera management, a literature review regarding the group DSS, and questionnaires to determine the type of waste and evaluate user interface design. Contribution: This research focuses on determining waste handling priorities based on their management. It contributes the DSS, which uses a decision-making approach based on management groups developed using the SSM and AHP methods focused on waste management decisions. It also contributes to the availability of a user interface design from the DSS group that explains the interactions between actors. The implications of the availability of DSS groups in waste recycling companies can help management understand waste prioritization problems in a structured manner, increase decision-making efficiency, and impact better-quality waste management. Combining qualitative approaches from SSM to comprehend issues from different actor perspectives and AHP to assist quantitative methods in prioritizing decisions can yield theoretical implications when using the SSM and AHP methods together. Findings: This research produces a website-based group DSS user interface design that can facilitate decision-making using AHP techniques. The user interface design from the DSS group was developed using the SSM approach to identify complex problems at waste recycling companies in Indonesia. This study also evaluated the group DSS user interface design, which resulted in a score of 91.67%. This value means that the user interface design has met user expectations, which include functional, appearance, and comfort needs. These results also show that group DSS can enhance waste recycling companies’ decision-making process. The results of the AHP technique using all waste process information show that furniture waste, according to the CEO, is given more priority, and textile waste, according to the Managing Director. Group DSS developed using the AHP method allows user actors to provide decisions based on their perspectives and authority. Recommendations for Practitioners: This research shows that the availability of a group DSS is one of the digital transformation efforts that waste recycling companies can carry out to support the determination of a sustainable waste management plan. Managers benefit from DSS groups by providing a digital decision-making process to determine which types of waste should be prioritized based on management costs. Timely and complete information in the group DSS is helpful in the decision-making process and increases organizational knowledge based on the chosen strategy. Recommendation for Researchers: Developing a group DSS for waste recycling companies can encourage strategic decision-making processes. This research integrates SSM and AHP to support a comprehensive group DSS because SSM encourages a deeper and more detailed understanding of waste recycling companies with complex problems. At the same time, AHP provides a structured approach for recycling companies to make decisions. The group DSS that will be developed can be used to identify other more relevant criteria, such as environmental impact, waste management regulations, and technological capabilities. Apart from more varied criteria, the group DSS can be encouraged to provide various alternatives such as waste paper, metal, or glass. In addition to evaluating the group DSS’s user interface design, waste recycling companies need to consider training or support for users to increase system adoption. Impact on Society: The waste problem requires the role of various stakeholders, one of which is a waste recycling company. The availability of a group DSS design can guide waste recycling companies in providing efficient and effective services so that they can respond more quickly to the waste management needs of the community. The community also gets transparent information regarding their waste management. The impact of good group DSS is reducing the amount of waste in society. Future Research: Future research could identify various other types of waste used as alternatives in the decision-making process to illustrate the complexity of the prioritization process. Future research could also identify other criteria, such as environmental impact, social aspects of community involvement, or policy compliance. Future research could involve decision-makers from other parties, such as the government, who play an essential role in the waste industry.




app

Recommendation System for an Online Shopping Pay-Later System Using a Multistage Approach: A Case Study from Indonesia

Aim/Purpose: In this study, we developed a recommendation system model designed to support decision-makers in identifying consumers eligible for pay-later options via consensus-based decision-making. This approach was chosen due to the high and complex risks involved, such as delayed payments, challenges in reaching consumers, and issues of bad credit. Background: The “pay-later” option, which allows consumers to postpone payment for e-commerce purchases, offers convenience and flexibility but also introduces several challenges: (i) by enabling payment deferral, merchants face financial risks, including potential delays or defaults in payment, adversely affecting their cash flow and profitability; and (ii) this payment delay can also heighten the risk of fraud, including identity theft and unauthorized transactions. Methodology: This study initiated a risk analysis utilizing the ROAD process. Considering contemporary economic developments and advancements in neural networks, integrating these networks into risk assessment has become crucial. Consequently, model development involved the amalgamation of three deep learning methods – CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), and LSTM (Long Short-Term Memory) – to address various risk alternatives and facilitate multi-stage decision-making recommendations. Contribution: Our primary contribution is threefold. First, our study identified potential consumers by prioritizing those with the smallest associated problem consequence values. Second, we achieved an optimal recall value using a candidate generator. Last, we categorized consumers to assess their eligibility for pay-later rights. Findings: The findings from this study indicate that our multi-stage recommendation model is effective in minimizing the risk associated with consumer debt repayment. This method of consumer selection empowers policymakers to make informed decisions regarding which consumers should be granted pay-later privileges. Recommendations for Practitioners: This recommendation system is proposed to several key parties involved in the development, implementation, and use of pay-later systems. These parties include E-commerce Executive Management for financial analysis and risk evaluation, the Risk Management Team to assess and manage risks related to users utilizing Pay-Later services, and Sales Managers to integrate Pay-Later services into sales strategies. Recommendation for Researchers: Advanced fraud detection mechanisms were implemented to prevent unauthorized transactions effectively. The goal was to cultivate user confidence in the safety of their financial data by ensuring secure payment processing. Impact on Society: Ensuring consumers understand the terms and conditions of pay-later arrangements, including interest rates, repayment schedules, and potential fees, is crucial. Providing clear and transparent information, along with educating consumers about their financial responsibilities, helps prevent misunderstandings and disputes. Future Research: Our future development plans involve the ongoing assessment of the system’s performance to enhance prediction accuracy. This includes updating models and criteria based on feedback and changes in economic or market conditions. Upholding compliance with security and data privacy regulations necessitates the implementation of protective measures to safeguard consumer information. The implementation of such a system requires careful consideration to ensure fairness and adherence to legal standards. Additionally, it is important to acknowledge that algorithms and models may evolve over time through the incorporation of additional data and continuous evaluations.




app

Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk

Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications.




app

Using Social Media Applications for Accessing Health-related Information: Evidence from Jordan

Aim/Purpose: This study examined the use of Social Media Applications (SMAs) for accessing health-related information within a heterogeneous population in Jordan. The objective of this study was therefore threefold: (i) to investigate the usage of SMAs, including WhatsApp, Twitter, YouTube, Snapchat, Instagram, and Facebook, for accessing health-related information; (ii) to examine potential variations in the use of SMAs based on demographic and behavioral characteristics; and (iii) to identify the factors that can predict the use of SMAs. Background: There has been limited focus on investigating the behavior of laypeople in Jordan when it comes to seeking health information from SMAs. Methodology: A cross-sectional study was conducted among the general population in Jordan using an online questionnaire administered to 207 users. A purposive sampling technique was employed, wherein all the participants actively sought online health information. Descriptive statistics, t-tests, and regression analyses were utilized to analyze the collected data. Contribution: This study adds to the existing body of research on health information seeking from SMAs in developing countries, with a specific focus on Jordan. Moreover, laypeople, often disregarded by researchers and health information providers, are the most vulnerable individuals who warrant greater attention. Findings: The findings indicated that individuals often utilized YouTube as a platform to acquire health-related information, whereas their usage of Facebook for this purpose was less frequent. Participants rarely utilized Instagram and WhatsApp to obtain health information, while Twitter and Snapchat were very seldom used for this purpose. The variable of sex demonstrated a notable positive correlation with the utilization of YouTube and Twitter for the purpose of finding health-related information. Conversely, the variable of nationality exhibited a substantial positive correlation with the utilization of Facebook, Instagram, and Twitter. Consulting medical professionals regarding information obtained from the Internet was a strong indicator of using Instagram to search for health-related information. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of SMAs. Recommendation for Researchers: Researchers should conduct separate investigations for each application specifically pertaining to the acquisition of health-related information. Additionally, it is advisable to investigate additional variables that may serve as predictors for the utilization of SMAs. Impact on Society: The objective of this study is to enhance the inclination of the general public in Jordan to utilize SMAs for health-related information while also maximizing the societal benefits of these applications. Future Research: Additional research is required to examine social media’s usability (regarding ease of use) and utility (comparing advantages to risks) in facilitating effective positive change and impact in healthcare.




app

International Journal of Bioinformatics Research and Applications




app

Hybrid encryption of Fernet and initialisation vector with attribute-based encryption: a secure and flexible approach for data protection

With the continuous growth and importance of data, the need for strong data protection becomes crucial. Encryption plays a vital role in preserving the confidentiality of data, and attribute-based encryption (ABE) offers a meticulous access control system based on attributes. This study investigates the integration of Fernet encryption with initialisation vector (IV) and ABE, resulting in a hybrid encryption approach that enhances both security and flexibility. By combining the advantages of Fernet encryption and IV-based encryption, the hybrid encryption scheme establishes an effective and robust mechanism for safeguarding data. Fernet encryption, renowned for its simplicity and efficiency, provides authenticated encryption, guaranteeing both the confidentiality and integrity of the data. The incorporation of an initialisation vector (IV) introduces an element of randomness into the encryption process, thereby strengthening the overall security measures. This research paper discusses the advantages and drawbacks of the hybrid encryption of Fernet and IV with ABE.




app

Map reduce-based scalable Lempel-Ziv and application in route prediction

Prediction of route based on historical trip observation of users is widely employed in location-based services. This work concentrates on building a route prediction system using Lempel-Ziv technique applied to a historical corpus of user travel data. Huge continuous logs of historical GPS traces representing the user's location in past are decomposed into smaller logical units known as trips. User trips are converted into sequences of road network edges using a process known as map matching. Lempel-Ziv is applied on road network edges to build the prediction model that captures the user's travel pattern in the past. A two-phased model is proposed using a map reduce framework without losing accuracy and efficiency. Model is then used to predict the user's end-to-end route given a partial route travelled by the user at any point in time. The objective of the proposed work is to build a Route Prediction system in which model building and prediction both are horizontally scalable.




app

Modeling the Organizational Aspects of Learning Objects in Semantic Web Approaches to Information Systems




app

Decoupling the Information Application from the Information Creation: Video as Learning Objects in Three-Tier Architecture




app

Addressing the eLearning Contradiction: A Collaborative Approach for Developing a Conceptual Framework Learning Object




app

Meta-Data Application in Development, Exchange and Delivery of Digital Reusable Learning Content




app

An Integrated Approach for Automatic Aggregation of Learning Knowledge Objects




app

Applying a System Development Approach to Translate Educational Requirements into E-Learning




app

An Ontology to Automate Learning Scenarios? An Approach to its Knowledge Domain




app

E-Learning and Constructivism: From Theory to Application




app

Applications of Semantic Web Technology to Support Learning Content Development




app

Developing Web-Based Learning Resources in School Education: A User-Centered Approach




app

A CSCL Approach to Blended Learning in the Integration of Technology in Teaching




app

Keeping an Eye on the Screen: Application Accessibility for Learning Objects for Blind and Limited Vision Students




app

An Approach toward a Software Factory for the Development of Educational Materials under the Paradigm of WBE




app

An Object Oriented Approach to Improve the Precision of Learning Object Retrieval in a Self Learning Environment




app

An Assistant for Loading Learning Object Metadata: An Ontology Based Approach




app

A Data Mining Approach to Improve Re-Accessibility and Delivery of Learning Knowledge Objects




app

Analyzing the Discourse of Chais Conferences for the Study of Innovation and Learning Technologies via a Data-Driven Approach

The current rapid technological changes confront researchers of learning technologies with the challenge of evaluating them, predicting trends, and improving their adoption and diffusion. This study utilizes a data-driven discourse analysis approach, namely culturomics, to investigate changes over time in the research of learning technologies. The patterns and changes were examined on a corpus of articles published over the past decade (2006-2014) in the proceedings of Chais Conference for the Study of Innovation and Learning Technologies – the leading research conference on learning technologies in Israel. The interesting findings of the exhaustive process of analyzing all the words in the corpus were that the most commonly used terms (e.g., pupil, teacher, student) and the most commonly used phrases (e.g., face-to-face) in the field of learning technologies reflect a pedagogical rather than a technological aspect of learning technologies. The study also demonstrates two cases of change over time in prominent themes, such as “Facebook” and “the National Information and Communication Technology (ICT) program”. Methodologically, this research demonstrates the effectiveness of a data-driven approach for identifying discourse trends over time.




app

Developing a Multidimensional Checklist for Evaluating Language-Learning Websites Coherent with the Communicative Approach: A Path for the Knowing-How-To-Do Enhancement

As a result of the rapid development of Information and Communication Technology (ICT) and the growing interest in Internet-based tools for language classroom, it has become a pressing need for educators to locate, evaluate and select the most appropriate language-learning digital resources that foster more communicative and meaningful learning processes. Hence, this paper describes a mixed research project that, on the first hand, aimed at proposing a Checklist for evaluating language websites built on the principles of the Communicative Approach, and on the second hand, sought to strengthen the teachers’ Knowing-how-to-do skill as part of their digital competence. To achieve these goals, a four-phase research procedure was followed that included reviewing relevant literature and administering qualitative and quantitative research methods to participants (i.e., language teachers, an expert in the Computer-Assisted Language Learning (CALL) field and a college professor) in order to gain insights into problematic issues and, thereafter, to contribute to the creation and validation of the Checklist model and the Study Guide. The findings revealed that: (a) evaluating language websites leads to the enhancement of the teachers’ practical skills and their knowledge of the technological language; and (b) having an assessment instrument allows educators to choose the materials that best meet their communicative teaching purposes.




app

A Learning Analytics Approach for Evaluating the Impact of Interactivity in Online Video Lectures on the Attention Span of Students

Aim/Purpose: As online video lectures rapidly gain popularity in formal and informal learning environments, one of their main challenges is student retention. This study investigates the influence of adding interactivity to online video lectures on students’ attention span. Background: Interactivity is perceived as increasing the attention span of learners and improving the quality of learning. However, interactivity may be regarded as an interruption, which distracts students. Furthermore, adding interactive elements to online video lectures requires additional investment of various resources. Therefore, it is important to investigate the impact of adding interactivity to online video lectures on the attention span of learners. Methodology: This study employed a learning analytics approach, obtained data from Google Analytics, and analyzed data of two Massive Open Online Courses (MOOCs) that were developed by the Open University of Israel in order to make English for academic purposes (EAP) courses freely accessible. Contribution: The paper provides important insights, based on quantitative empirical research, on: integrating interactive elements in online videos; the impact of video length; and differences between two groups of advanced and basic learners. Furthermore, it demonstrates how learning analytics may be used for improving instructional design. Findings: The findings suggest that interactivity may increase the attention span of learners, as measured by the average online video lecture viewing completion percentage, before and after the addition of interactivity. However, when the lecture is longer than about 15 minutes, the completion percentages decrease, even after adding interactive elements. Recommendations for Practitioners: Adding interactivity to online video lectures and controlling their length is expected to increase the attention span of learners. Recommendation for Researchers: Learning analytics is a powerful quantitative methodology for identifying ways to improve learning processes. Impact on Society: Providing practical insights on mechanisms for increasing the attention span of learners is expected to improve social inclusion. Future Research: Discovering further best practices to improve the effectiveness of online video lectures for diverse learners.




app

Closing the Digital Divide in Low-Income Urban Communities: A Domestication Approach

Aim/Purpose: Significant urban digital divide exists in Nairobi County where low income households lack digital literacy skills and do not have access to the internet. The study was undertaken as an intervention, designed to close the digital divide among low income households in Nairobi by introducing internet access using the domestication framework. Background: Information and Communication Technologies (ICTs) have the potential to help reduce social inequality and have been hailed as critical to the achievement of the Sustainable Development goals (SDGs). Skills in use of ICTs have also become a prerequisite for almost all forms of employment and in accessing government services, hence, the need for digital inclusion for all. Methodology: In this research study, I employed a mixed methods approach to investigate the problem. This was achieved through a preliminary survey to collect data on the existence of urban digital divide in Nairobi and a contextual analysis of the internet domestication process among the eighteen selected case studies. Contribution: While there have been many studies on digital divide between Africa and the rest of the world, within the African continent, among genders and between rural and urban areas at national levels, there are few studies exploring urban digital divide and especially among the marginalized communities living in the low-income urban areas. Findings: Successful domestication of internet and related technologies was achieved among the selected households, and the households appreciated the benefits of having and using the internet for the first time. A number of factors that impede use of internet among the marginalized communities in Nairobi were also identified. Recommendations for Practitioners: In the study, I found that use of differentiated costs internet services targeting specific demographic groups is possible and that use of such a service could help the marginalized urban communities’ access the internet. Therefore, ISPs should offer special internet access packages for the low-income households. Recommendation for Researchers: In this research study, I found that the urban digital divide in Nairobi is an indication of social economic development problems. Therefore, researchers should carryout studies involving multipronged strategies to address the growing digital divide among the marginalized urban communities. Impact on Society: The absence of an Information and Communication Technology (ICT) inclusion policy is a huge setback to the achievement of the SDGs in Kenya. Digital inclusion policies prioritizing digital literacy training, universal internet access and to elucidate the social-economic benefits of internet access for all Kenyans should be developed. Future Research: Future studies should explore ways of providing affordable mass internet access solutions among the residents of low-income communities and in eliminating the persistence urban digital divide in Kenya.




app

Making Sense of the Information Seeking Process of Undergraduates in a Specialised University: Revelations from Dialogue Journaling on WhatsApp Messenger

Aim/Purpose: The research work investigated the information seeking process of undergraduates in a specialised university in Nigeria, in the course of a group assignment. Background: Kuhlthau’s Information Search Process (ISP) model is used as lens to reveal how students interact with information in the affective, cognitive and physical realms. Methodology: Qualitative research methods were employed. The entire seventy-seven third year students in the Department of Petroleum and Natural Gas and their course lecturer were the participants. Group assignment question was analysed using Bloom’s Taxonomy while the information seeking process of the students was garnered through dialogue journaling on WhatsApp Messenger. Contribution: The research explicates how students’ information seeking behaviour can be captured beyond the four walls of a classroom by using a Web 2.0 tool such as WhatsApp Messenger. Findings: The apparent level of uncertainty, optimism, and confusion/doubt common in the initiation, selection, and exploration phases of the ISP model and low confidence levels were not markedly evident in the students. Consequently, Kuhlthau’s ISP model could not be applied in its entirety to the study’s particular context of teaching and learning due to the nature of the assignment. Recommendations for Practitioners: The study recommends that the Academic Planning Unit (APU) should set a benchmark for all faculties and, by extension, the departments in terms of the type/scope and number of assignments per semester, including learning outcomes. Recommendation for Researchers: Where elements of a guided approach to learning are missing, Kuhlthau’s ISP may not be employed. Therefore, alternative theory, such as Theory of Change could explain the poor quality of education and the type of intervention that could enhance students’ learning. Impact on Society: The ability to use emerging technologies is a form of literacy that is required by the 21st century work place. Hence, the study demonstrates students’ adaptation to emerging technology. Future Research: The study is limited to only one case site. It would be more helpful to the Nigerian society to have this study extended to other universities for the purpose of generalisation and appropriate intervention.




app

E-Safety in the Use of Social Networking Apps by Children, Adolescents, and Young Adults

Aim/Purpose: Following the widespread use of social networking applications (SNAs) by children, adolescents, and young adults, this paper sought to examine the usage habits, sharing, and dangers involved from the perspective of the children, adolescents, and young adults. The research question was: What are the usage habits, sharing, drawbacks, and dangers of using SNAs from the perspective of children, adolescents, and young adults? Background: Safety has become a major issue and relates to a range of activities including online privacy, cyberbullying, exposure to violent content, exposure to content that foments exclusion and hatred, contact with strangers online, and coarse language. The present study examined the use of social networking applications (SNAs) by children, adolescents, and young adults, from their point of view. Methodology: This is a mixed-method study; 551participants from Israel completed questionnaires, and 110 respondents were also interviewed. Contribution: The study sought to examine from their point of view (a) characteristics of SNA usage; (b) the e-safety of SNA; (c) gender differences between age groups; (d) habits of use; (e) hazards and solutions; and (f) sharing with parents and parental control. Findings: Most respondents stated that cyberbullying (such as shaming) happens mainly between members of the group and it is not carried out by strangers. The study found that children’s awareness of the connection between failures of communication in the SNAs and quarrels and disputes was lower than that of adolescents and young adults. It was found that more children than adolescents and young adults believe that monitoring and external control can prevent the dangers inherent in SNAs, and that the awareness of personal responsibility increases with age. The SNAs have intensified the phenomenon of shaming, but the phenomenon is accurately documented in SNAs, unlike in face-to-face communication. Therefore, today more than ever, it is possible and necessary to deal with shaming, both in face-to-face and in SNA communication. Recommendations for Practitioners: Efforts should be made to resolve the issue of shaming among members of the group and to explain the importance of preserving human dignity and privacy. The Internet in general and SNAs in particular are an integral part of children’s and adolescents’ life environment, so it can be said that the SNAs are part of the problem because they augment shaming. But they can also be part of the solution, because interactions are accurately documented, unlike in face-to-face communication, where it is more difficult to examine events, to remember exactly what has been said, to point out cause and effect, etc. Therefore, more than ever before, today it is possible and necessary to deal with shaming both in face-to-face and in the SNA communication, because from the point of view of youngsters, this is their natural environment, which includes smart phones, SNAs, etc. Recommendations for Researchers: The study recommends incorporating in future studies individual case studies and allowing participants to express how they perceive complex e-Safety situa-tions in the use of social networking apps. Impact on Society: Today more than ever, it is possible and necessary to deal with shaming, both in face-to-face and in SNA communication. Future Research: The study was unable to find significant differences between age groups. Fur-ther research may shed light on the subject.




app

Students’ Approaches to E-Learning: Analyzing Credit/Noncredit and High/Low Performers

Aim/Purpose: This study examines differences in credit and noncredit users’ learning and usage of the Plant Sciences E-Library (PASSEL, http://passel.unl.edu), a large international, open-source multidisciplinary learning object repository. Background: Advances in online education are helping educators to meet the needs of formal academic credit students, as well as informal noncredit learners. Since online learning attracts learners with a wide variety of backgrounds and intentions, it is important understand learner behavior so that instructional resources can be designed to meet the diversity of learner motivations and needs. Methodology: This research uses both descriptive statistics and cluster analysis. The descriptive statistics address the research question of how credit learners differ from noncredit learners in using an international e-library of learning objects. Cluster analysis identifies high and low credit/noncredit students based on their quiz scores and follow-up descriptive statistics to (a) differentiate their usage patterns and (b) help describe possible learning approaches (deep, surface, and strategic). Contribution: This research is unique in its use of objective, web-tracking data and its novel use of clustering and descriptive analytic approaches to compare credit and noncredit learners’ online behavior of the same educational materials. It is also one of the first to begin to identify learning approaches of the noncredit learner. Findings: Results showed that credit users scored higher on quizzes and spent more time on the online quizzes and lessons than did noncredit learners, suggesting their academic orientation. Similarly, high credit scorers spent more time on individual lessons and quizzes than did the low scorers. The most striking difference among noncredit learners was in session times, with the low scorers spending more time in a session, suggesting more browsing behavior. Results were used to develop learner profiles for the four groups (high/low quiz scorers x credit/noncredit). Recommendations for Practitioners: These results provide preliminary insight for instructors or instructional designers. For example, low scoring credit students are spending a reasonable amount of time on a lesson but still score low on the quiz. Results suggest that they may need more online scaffolding or auto-generated guidance, such as the availability of relevant animations or the need to review certain parts of a lesson based on questions missed. Recommendation for Researchers: The study showed the value of objective, web-tracking data and novel use of clustering and descriptive analytic approaches to compare different types of learners. One conclusion of the study was that this web-tracking data be combined with student self-report data to provide more validation of results. Another conclusion was that demographic data from noncredit learners could be instrumental in further refining learning approaches for noncredit learners. Impact on Society: Learning object repositories, online courses, blended courses, and MOOCs often provide learners the option of moving freely among educational content, choosing not only topics of interest but also formats of material they feel will advance their learning. Since online learning is becoming more prolific and attracts learners with a wide variety of backgrounds and intentions, these results show the importance of understanding learner behavior so that e-learning instructional resources can be designed to meet the diversity of learner motivations and needs. Future Research: Future research should combine web-tracking data with student self-report to provide more validation of results. In addition, collection of demographic data and disaggregation of noncredit student usage motivations would help further refining learning approaches for this growing population of online users.




app

Updating the CS Curriculum: Traditional vs. Market-Driven Approaches




app

Training Facilitators for Face-to-Face Electronic Meetings: An Experiential Learning Approach




app

How Good Are Students at Assessing the Quality of Their Applications?




app

Digital Watermarking Technology with Practical Applications




app

Multimedia Content Analysis and Indexing for Filtering and Retrieval Applications




app

Building an Internet-Based Learning Environment in Higher Education: Learner Informing Systems and the Life Cycle Approach




app

Applications Of Informetrics To Information Retrieval Research




app

Teaching Information Management to Honors Degree Students: The Information Challenges Approach




app

Applications of Scalable Multipoint Video and Audio Using the Public Internet