amp

RF channel amplification module with instantaneous power limiting function

A radio frequency channel amplification module for communication satellite, comprises an input configured to convey an input radio frequency signal, an output configured to restore a pre-amplified output radio frequency signal intended to power a travelling wave tube amplifier that can be equipped with linearization means with predistortion, at least one first upstream gain control module arranged downstream of the input and one second downstream gain control module arranged downstream of the first upstream gain control module and upstream of any linearization means by predistortion. The channel amplification module also comprises an instantaneous power limiter intended to clip the peaks of the input radio frequency signals with a level exceeding a determined threshold value, the instantaneous power limiter being arranged in series between said first upstream gain control module and said second downstream gain control module.




amp

Operational transconductance amplifier with increased current sinking capability

An amplifier circuit includes an input terminal and an output terminal. A current sinking transistor includes a first conduction terminal coupled to the output terminal and a second conduction terminal coupled to a reference supply node. A voltage sensing circuit has a first input coupled to the input terminal and a second input coupled to the output terminal. An output of the voltage sensing circuit is coupled to the control terminal of the current sinking transistor. The voltage sensing circuit functions to sense a rise in the voltage at the output terminal which exceeds the voltage at the input terminal, and respond thereto by activating the current sinking transistor.




amp

Dual-band high efficiency Doherty amplifiers with hybrid packaged power devices

An amplifying structure includes a main amplifier configured to amplify a first signal; and a peak amplifier configured to amplify a second signal, each of the main amplifier and the peak amplifier including, respectively, a hybrid power device, the hybrid power device including, a first power transistor die configured to amplify signals of a first frequency, and a second power transistor die configured to amplify signals of a second frequency different than the first frequency.




amp

Two mode power converter for audio amplifiers

A power converter with positive and negative supply rail outputs for feeding a single ended class D amplifier, the converter comprising a transformer arrangement, a supply pump reduction arrangement connected between the secondary windings and the positive and negative supply rail outputs, and a boost drive mode switching arrangement. A controller is adapted to control the power converter in a negate drive mode and a boost drive mode, wherein the output voltage in the boost mode is increased by means of the transformer and the boost drive mode switching arrangement. The output voltages on the positive and negative rails can be generated at two different output voltage levels without changing the duty cycle or dead time of the control signals.




amp

Input receiver circuit having single-to-differential amplifier, and semiconductor device including the same

An input receiver circuit including a single-to-differential amplifier and a semiconductor device including the input receiver circuit are disclosed. The input receiver circuit includes a first stage amplifier unit and a second stage amplifier unit. The first stage amplifier unit amplifies a single input signal in a single-to-differential mode to generate a differential output signal, without using a reference voltage. The second stage amplifier unit amplifies the differential output signal in a differential-to-single mode to generate a single output signal.




amp

Transimpedance amplifier (TIA) circuit and method

A TIA circuit and method are provided that merge the automatic gain control function with the bandwidth adjustment function to allow the TIA circuit to operate over a wide dynamic range at multiple data rates. The TIA circuit has an effective resistance that is adjustable for adjusting the gain and the bandwidth of the TIA circuit. The mechanism of the TIA circuit that is used to adjust the effective resistance, and hence the gain and bandwidth of the TIA circuit, is temperature independent, and as such, the performance of the TIA circuit is not affected by temperature variations.




amp

Amplifier

An amplifier includes a first input terminal, a second input terminal, a TIA, and a compensation circuit. The TIA includes a first transistor, a second transistor, a first current source connected to the first input terminal and an emitter of the first transistor, a second current source connected to the second input terminal and an emitter of the second transistor, a first load resistor connected to a collector of the first transistor, and a second load resistor connected to a collector of the second transistor. A bias voltage is supplied to bases of the first and second transistors, the compensation circuit adjusts a first load current and a second load current based on voltage signals, and the TIA outputs the voltage signals based on collector voltages of the first and second transistors.




amp

Split amplifiers with improved linearity

Split amplifiers with configurable gain and linearization circuitry are disclosed. In an exemplary design, an apparatus includes first and second amplifier circuits and a linearization circuit, which may be part of an amplifier. The first and second amplifier circuits are coupled in parallel and to an amplifier input. The linearization circuit is also coupled to the amplifier input. The first and second amplifier circuits are enabled in a high-gain mode. One of the first and second amplifier circuits is enabled in a low-gain mode. The linearization circuit is enabled in the second mode and disabled in the first mode. The amplifier is split into multiple sections. Each section includes an amplifier circuit and is a fraction of the amplifier. High linearly may be obtained using one amplifier circuit and the linearization circuit in the low-gain mode.




amp

Gain calibration of a high speed amplifier

Embodiments include systems and methods for accurately controlling gain of a high-speed variable-gain amplifier (VGA) without adversely impacting bandwidth performance. Embodiments include a VGA with a variable resistor, for which resistance is a function of a control level. A gain calibration system controls the control level by using a gain control feedback subsystem to sample outputs of a duplicate VGA, which includes a duplicate variable resistor. The sampled duplicate outputs are compared to a target gain generated by a reference generator. The control level can be fed back to control the gain of the duplicate VGA until the target gain is reached. The control level can also be fed to the actual VGA to control its gain. By performing gain control on the duplicate VGA without interfering with the output signal path of the actual VGA, the actual VGA's gain can be accurately controlled without impacting its bandwidth.




amp

Multi-stage amplifier

Exemplary embodiments are directed to operating a multi-stage amplifier with low-voltage supply voltages. A multi-stage amplifier may include a first path of an amplifier output stage configured to convey an output signal if a first supply voltage is greater than a threshold voltage. The multi-stage amplifier may also include a second path of the amplifier output stage configured to convey the output signal if the first supply voltage is less than or equal to the threshold voltage.




amp

Variable gain amplifier

A variable gain amplifier (100) includes a transistor (110), an FB impedance section (120), a source impedance section (130), a drain impedance section (140), a gain controller (150), and a frequency characteristic controller (160). The gain controller (150) varies impedance of one of the FB impedance section (140), the source impedance section (130), and the drain impedance section (140), and outputs a gain control signal. The frequency characteristic controller (160) varies the impedance of different impedance section, based on the gain control signal.




amp

Microwave semiconductor amplifier

A microwave semiconductor amplifier includes a semiconductor amplifier element, an input matching circuit and an output matching circuit. The semiconductor amplifying element includes an input electrode and an output electrode and has a capacitive output impedance. The input matching circuit is connected to the input electrode. The output matching circuit includes a bonding wire and a first transmission line. The bonding wire includes first and second end portions. The first end portion is connected to the output electrode. The second end portion is connected to one end portion of the first transmission line. A fundamental impedance and a second harmonic impedance seen toward the external load change toward the one end portion. The second harmonic impedance at the one end portion has an inductive reactance. The output matching circuit matches the capacitive output impedance of the semiconductor amplifying element to the fundamental impedance of the external load.




amp

Tunable wide band driver amplifier

A tunable wide band driver amplifier is disclosed. In an exemplary embodiment, an apparatus includes a first band selection circuit selectively connected between an output terminal of an amplifier and a circuit ground. The first band selection circuit configured to adjust an amplification band from a first frequency band to a second frequency band. The apparatus also includes a first harmonic reduction circuit selectively connected between the first band selection circuit and the circuit ground and configured to reduce 2nd harmonic frequencies associated with the first frequency band when the amplification band is set to the first frequency band.




amp

Combining an audio power amplifier and a power converter in a single device

An apparatus is described that includes an audio power amplifier having an input and an output. An alternating-current to direct-current power converter is coupled to the audio power amplifier in a single package to supply power to the audio power amplifier.




amp

Amplifier apparatus

Disclosed is a technique for reducing noise superimposed on an output signal while keeping loop gain constant without increasing the circuit scale and without changing the transfer function of the amplifier apparatus (frequency characteristics of gain and phase). According to the technique, there are included a power-supply voltage control unit 7 for detecting the amplitude level S9 of an input audio signal S1 and outputting power with a voltage value indicated by target set voltage value information Vs corresponding to this amplitude level S9, and a PWM modulation unit 2 including a PWM converter 23 for converting the pulse width of the input audio signal S1 and a correction unit for correcting the signal modulated by the PWM converter 23. The PWM modulation unit 2 corrects the pulse width of a PWM signal S5 modulated by the PWM converter 23 so that the correction unit will cancel out a change in amplification gain of a power amplification unit 4 according to the target set voltage value information Vs.




amp

Pop-free single-ended output class-D amplifier

A pop-free single-ended output class-D amplifier includes: an input signal generator for generating an input signal; a power supply for supplying input power; a reference voltage generator for generating a reference voltage; a gain-adjustable stage for generating an amplified signal according to the reference voltage and adjusting a gain of the single-ended output class-D amplifier; a pulse width modulation module for outputting a pulse width modulation signal according to the reference voltage, the amplified signal, and the input power; a low-pass filter for low-pass filtering the pulse width modulation signal to generate an output voltage; and a logic controller for generating at least one control signal to control the reference voltage generator, the gain-adjustable stage, and the pulse width modulation module according to the input power, the reference voltage, and the pulse width modulation signal.




amp

Power amplifier with an adaptive bias

An electronic circuit, including, a power amplifier adapted to amplify an RF signal and provide it as output from the integrated circuit; a power source that is adapted to provide an unregulated voltage to the power amplifier; a regulator adapted to provide a regulated bias voltage; a subtracter that is adapted to accept a voltage proportional to the unregulated voltage and subtract it from the bias voltage to provide a reference voltage to the power amplifier; wherein the power amplifier is adapted to use the reference voltage to adjust the output from the power amplifier so that it will provide a stable power output.




amp

Amplifier circuits

Differential amplifier circuits for LDMOS-based amplifiers are disclosed. The differential amplifier circuits comprise a high resistivity substrate and separate DC and AC ground connections. Such amplifier circuits may not require thru-substrate vias for ground connection.




amp

Multimode differential amplifier biasing system

Differential power amplifier circuitry includes a differential transistor pair, an input transformer, and biasing circuitry. The base contact of each transistor in the differential transistor pair may be coupled to the input transformer through a coupling capacitor. The coupling capacitors may be designed to resonate with the input transformer about a desired frequency range, thereby passing desirable signals to the differential transistor pair while blocking undesirable signals. The biasing circuitry may include a pair of emitter follower transistors, each coupled at the emitter to the base contact of each one of the transistors in the differential transistor pair and adapted to bias the differential transistor pair to maximize efficiency and stability.




amp

Power amplifier with feedback impedance for stable output

An amplifier circuit amplifies a signal for wireless transmission. A feedback circuit, including a capacitor, is coupled to the amplifier circuit. Components of the feedback circuit are selected based on a feedback factor such that an input impedance to the amplifier circuit has a same impedance characteristic as a feedback circuit impedance of the feedback circuit.




amp

Wireless communication unit and semiconductor device having a power amplifier therefor

A semiconductor package device comprises a radio frequency power transistor having an output port operably coupled to a single de-coupling capacitance located within the semiconductor package device. The single de-coupling capacitance is arranged to provide both high frequency decoupling and low frequency decoupling of signals output from the radio frequency power transistor.




amp

Power amplifier modules including related systems, devices, and methods

A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm−3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.




amp

Power amplifier

A power amplifier includes: first and second bias terminals to which bias voltages are respectively supplied; a first transistor having a first control terminal connected to the first bias terminal, a first terminal that is grounded, and a second terminal; a second transistor having a second control terminal connected to the second bias terminal, a third terminal connected to the second terminal, and a fourth terminal; a capacitor connected between the second control terminal and a grounding point; and a variable resistor connected in series with the capacitor, between the second control terminal and the grounding point.




amp

Systems and methods for providing modulation of switchmode RF power amplifiers

Systems and methods are provided for generating an amplitude modulation signal to a switchmode power amplifier. A DC to DC switch is configured to receive a DC input voltage and to provide a DC output voltage. A low dropout regulator is configured to provide the amplitude modulation signal according to a modulation control signal received by the low dropout regulator. A control circuit is configured to establish a nominal operating power level for the power amplifier via the amplitude modulation signal and to maintain a minimum voltage difference between the DC output voltage and the low dropout regulator output. A modulator control circuit is configured to provide the modulation control signal to the low dropout regulator. The modulator control circuit provides the transition from a high amplitude to a low amplitude and a transition from the low amplitude to the high amplitude at configurable first and second slopes, respectively.




amp

Amplification systems and methods with one or more channels

Systems and methods are provided for amplifying multiple input signals to generate multiple output signals. An example system includes a first channel, a second channel, and a third channel. The first channel is configured to receive one or more first input signals, process information associated with the one or more first input signals and a first ramp signal, and generate one or more first output signals. The second channel is configured to receive one or more second input signals, process information associated with the one or more second input signals and a second ramp signal, and generate one or more second output signals. The first ramp signal corresponds to a first phase. The second ramp signal corresponds to a second phase. The first phase and the second phase are different.




amp

Amplifier

An amplifier includes a signal processing circuit configured to generate an orthogonal signal orthogonal to an input signal; a first D/A converter configured to convert the orthogonal signal into a first analog signal; a second D/A converter configured to convert the input signal into a second analog signal; and an analog computing circuit configured to generate a constant envelope signal based on the first analog signal from the first D/A converter and the second analog signal from the second D/A converter.




amp

Apparatus and method for expanding operation region of power amplifier

An apparatus for amplifying power is provided. The apparatus includes a supply modulator for generating a supply voltage based on an amplitude component of a transmission signal, and a power amplify module for amplifying power of the transmission signal using the supply voltage, wherein the power amplify module includes a first power amplifier and a second power amplifier, and when an output power of the transmission signal is greater than a reference power, the first power amplifier amplifies the power of the transmission signal using the supply voltage, and when the output power of the transmission signal is equal to or less than the reference power, the second power amplifier amplifies the power of the transmission signal using the supply voltage.




amp

Clamping system

The clamping system for clamping a shank, for example a tool shank, into a seat has a spiral-shaped circumferential groove arranged in the wall of the seating hole and a clamping wedge which is provided with corresponding spiral-shaped ribs and is insertable into a recess on the shank.




amp

Tool holder such as a boring head, a chuck, or a milling cutting arbor integrating a damping device

A damping tool holder, such as a boring head, a chuck, or a milling cutting arbor, integrates a damping device (2), in the form of an elongated body. The damping device (2) is housed in a mounting body (3), connected by one end to the tool-holder body (1) and having at its other end an end fitting (4) for mounting a tool, whereby the mounting body (3) is equipped with at least one lubricant feed pipe (32), emptying at its front end into the end fitting (4) for mounting a tool and connected at its other end to a circular groove (102) for distributing lubricant that is provided on the front surface of the tool holder (1).




amp

Clamping unit

A clamping unit (1) for machine tools (2) with a housing (11) connected in a rotationally fixed arrangement with a machine spindle, (5) and a screw drive (13) that interacts with a draw rod (6) such that rotational movements are converted into translational movements, the housing (11) being provided with an output element by which rotational movements are transmitted to an actuator (21). The housing (11) has an input element in a rotating mounting, with the actuator (21) acting on the input element, and the input element (29) is in driving connection with a shaft (14) by means of intermediate elements (31), whereby to direct rotational movements of the machine spindle (5) via the clamping unit (1), and for adjustment movements of differently configured clamping devices, to be converted into axial adjustment movements and transmitted directly onto the draw rod (6). No complicated electrical control devices and programs are required for adjusting and adapting a power chuck (3) linked to the draw rod (3) to different operating conditions.




amp

Clamping device and collet chuck, base and chuck key therefor

The invention relates to a high-precision clamping device for tools in machine tools of the conventional type according to ISO 15488 and to a collet chuck, a base and a tensioning nut. The invention also relates to a chuck key for tightening the locknut without radial stress. The clamping device according to the invention is characterized by a substantially improved runout accuracy, torsional rigidity of the collet chuck and rigidity of the tool clamped therein.




amp

Electromagnetic clamping method

A method for assembling parts. A sealant is placed between a plurality of parts in a stack up to form a workpiece. The workpiece is clamped using a permanent magnet unit and an electromagnetic clamping device in an activated state such that a number of forces caused by a magnetic field clamps the workpiece between the electromagnetic clamping device and the permanent magnet unit. A number of holes are drilled in the workpiece. A number of fasteners are installed in the number of holes.




amp

Methods and apparatus for controlling a fluid damper

A method and apparatus for a fluid damper comprising a first fluid-filled chamber, a second chamber filled with a fluid having variable flow characteristics and at least partially displaceable by the first fluid, and a gas chamber, the gas chamber compressible due to the displacement of the second chamber. In one embodiment, the fluid in the second chamber is a variable rheology fluid.




amp

Mounting of carbon electrodes on a holder of an arc lamp

The present invention relates to a mounting of carbon electrodes on a holder of an arc lamp used as a light source for a weatherometer or a lightfastness tester. In the holder, one end of the carbon electrodes and the holder are threadedly connected with each other.




amp

Electrode operating mechanism for carbon arc lamp

An improved electrode operating mechanism for control of the discharge of carbon arc lamps for light fastness testing devices. Vertically spaced upper and lower electrode holders have a plurality of electrodes opposed to each other. Two vertical supports extend between upper and lower bases, the vertical supports each having a pair of spaced parallel guide rails extending therealong, each holder having laterally projecting arm members extending from the opposite ends thereof and between the rails. A cylindrical slide member is mounted on the end of each arm member and is slidably engaged in linear sliding contact with the surface of the parallel rails on the sides thereof away from the holders. First wires are attached to the cylindrical slide members on the lower electrode holders and extend upwardly through the upper base through axial bores in the upper cylindrical slide member, and two second wires attached to the upper holders extend upwardly through the upper base. The first wires are wound in one direction around two pulleys on a horizontal shaft on the upper base and the second wires are wound in the opposite direction around other pulleys on the shaft. When the shaft is rotated in one direction the electrodes are moved toward each other and when the shaft is rotated in the opposite direction the electrodes are moved away from each other.




amp

Control means for controlling the position of an electrode in a carbon arc lamp

An improved control system for controlling the position of an upper electrode in a carbon arc lamp. The system has a pulley with a line thereover, and a solenoid core is attached to one end of the line and is movable vertically in a solenoid coil connected in the circuit for supplying discharge current to the electrodes, and a control rod clutch is connected to the other end of the line which normally grasps and holds an electrode control rod on the lower end of which is mounted the upper electrode of the lamp. A balancing weight is provided on the core to balance the weight of the control rod clutch and electrode and a shield is provided around the solenoid coil to shield the arc between the electrodes from the magnetic field of the solenoid coil.




amp

Carbon electrode for arc lamp

A carbon electrode for an arc lamp comprising a plurality of carbon rods joined together in desired length by use of an adhesive comprising metal or carbon powder or mixture thereof and method for preparation of said electrode.




amp

Auxiliary lighting system for high intensity discharge lamp

An auxiliary lighting system for a high-intensity discharge lamp. In one embodiment, the auxiliary lighting system has an auxiliary light source, an HID lamp status circuit having an input for connection to a status signal representative of the operational state of a high-intensity discharge lamp wherein the HID lamp status circuit determines whether the status signal meets predetermined signal criteria, a switch circuit having a first state that effects application of a voltage source to the auxiliary light source, and a second state that isolates the voltage source from the auxiliary light source, and a control circuit responsive to the HID lamp status circuit for controlling the switch circuit. The control circuit has a first state when the HID lamp status circuit determines that the status signal meets the predetermined signal criteria and a second state when the HID lamp status circuit determines that the status signal does not meet the predetermined signal criteria. When the control circuit is in the first state, the control circuit outputs a control signal for input into the switch circuit that configures the switch circuit into the first state. When the control circuit is in the second state, the control circuit outputs a control signal for input into the switch circuit that configures the switch circuit into the second state.




amp

High speed over-sampler application in a serial to parallel converter

The present invention is a serial to parallel data conversion method and device where new serial data are stored within a first n-bit register prior to presentation at an n-bit parallel output. Subsequently, additional data are stored within a second n-bit register while the data stored within the first register are presented at the parallel output. Data storage and data presentation are thereafter alternated, thereby eliminating the problem of setup time seen in prior art.




amp

System and method for automated projector lamp management

An information handling system projector tracks lamp usage to generate a lamp order form for order of a replacement lamp when lamp usage is a predetermined usage. The lamp order form is automatically generated and displayed to include lamp usage and projector identification information so that a user need not manually input that information into an order form. A network module of the projector supports queries for lamp usage from a lamp management module running on an information handling system. A projector processor interfaced with the network module reads the lamp usage and projector identification information from firmware of the projector and provides the lamp usage and projector identification information to the lamp management module for automatic generation of the lamp order form display.




amp

Integer representation of relative timing between desired output samples and corresponding input samples

In general, this disclosure describes techniques for changing a sampling frequency of a digital signal. In particular, the techniques provide a more accurate way to determining a relative timing between a desired output sample and a corresponding input sample using a non-approximated integer representation of the relative timing. The relative timing between the desired output sample and corresponding input sample may be represented using a first component that identifies a latest input sample of the digital signal used to generate intermediate samples, a second component that identifies an intermediate sample, and a third component that identifies a timing difference between the desired output sample and the intermediate sample. Each of the components may be recursively updated using non-approximated integer values.




amp

System and method for automated projector lamp management

An information handling system projector tracks lamp usage to generate a lamp order form for order of a replacement lamp when lamp usage is a predetermined usage. The lamp order form is automatically generated and displayed to include lamp usage and projector identification information so that a user need not manually input that information into an order form. A network module of the projector supports queries for lamp usage from a lamp management module running on an information handling system. A projector processor interfaced with the network module reads the lamp usage and projector identification information from firmware of the projector and provides the lamp usage and projector identification information to the lamp management module for automatic generation of the lamp order form display.




amp

Non-contact and non-disposable electric induction LED lamp

A non-contact and non-disposable electric induction LED lamp includes a power source and a luminous-radiating unit combined together. The power source is formed with a power source module electrically connected with a first electric induction plate, while the luminous-radiating unit is provided with a second electric induction plate corresponding with the first electric induction plate and electrically connected with an LED module. Thus, the electricity of the power source can be transmitted to the luminous-radiating unit via electromagnetic induction produced between the first and the second electric induction plates to enable the LED module to emit light. The LED lamp of this invention can partially be replaced conveniently and has water proof and dustproof effects.




amp

Leak-proof damper having self-diagnostic feature

A leak-proof damper with a self-diagnostic feature. An auxiliary oil reservoir body is disposed externally with respect to the damper cylinder and generally adjacent the rod seal, wherein the auxiliary oil reservoir body is concealed by an end cap. The maximum volume of oil retainable by the auxiliary oil reservoir body is predetermined to coincide with a volume of oil which may be lost from the interior of the damper cylinder and yet the damper will still function properly. The auxiliary oil reservoir body may be a seal body having an internal cavity providing an oil retention volume or an absorbent body having an absorbency capacity that provides an oil retention volume.




amp

Handle mechanism for an HVAC damper actuator

A damper system may include a handle mechanism for use with a damper actuator system. Illustratively, the handle mechanism may include a drive gear mechanism, a handle, a housing, and a spring, and may be actuated to set a crack pressure for the damper system. The handle may connect to the drive gear mechanism at a drive gear arm of the drive gear mechanism and may flip over or about the drive gear arm to move from a first position to a second position. In some instances, once the handle is in the second position, a force may be applied thereto to disengage the drive gear from a stop member and thereafter, the handle may be rotated to change the crack pressure of the damper system.




amp

Clamp ring for welded diaphragms

A diaphragm sealed flow cavity comprises a first body comprising a support surface, a diaphragm comprising an outer portion that is joined by a weld to the first body, a clamped portion, and an inner portion that is movable along an axis, with the clamped portion of the diaphragm being compressed between the bearing surface and the support surface. The diaphragm sealed flow cavity may include a cylindrical body having a crimped portion for joining the cylindrical body to the first body. The diaphragm sealed flow cavity may also include a member that applies a live load to the clamped portion of the diaphragm. In the exemplary embodiments, the diaphragm sealed flow cavity may be realized as part of a diaphragm flow control valve having a valve body, diaphragm and a housing.




amp

Anti-tamper device

An anti-tamper device in the form of a collar fitted about a housing is provided. The ends of the collar are formed into lock tabs, one of which is formed into a U-shaped portion, or V-shaped portion, to permit capture of the end of the other lock tab. Movement of the captured tab is prevented to resist tampering with the housing. Embodiment of the invention find application, in particular, to a housing for a bell at a railroad level crossing, and prevents loss of the bell due to vandalism.




amp

Apparatus for mounting a dampener and/or stabilizer to an archery bow

The apparatus for mounting at least one dampener and/or stabilizer to an archery bow to absorb shock and vibration realized by an archer upon the release of the archery bow. The present invention provides an elongated support structure releasably connectable to the at least one dampener and/or stabilizer. A releasable fastener is connected to one end of the support structure, and the releasable fastener is releasably connectable to the archery bow such that the support structure is extendible in a cantilevered position relative to the archery bow.




amp

Archery bow vibration dampening and balancing device

An archery bow vibration dampening and balancing device is attachable to an archery bow by means of an elongated clamp with a housing pivotably interconnected to the elongated clamp opposite the attachment point. A vibration dampening and balancing device is secured in an opening formed in the housing.




amp

Vibration dampened barrel for a crossbow

A vibration dampened barrel for a crossbow preferably includes at least two vibration dampening chambers, which extend at least a portion of a length of the vibration dampened barrel. The at least two vibration dampening chambers are at least partially filled with a vibration dampening material, such as silicone, rubber, low density foam, high density foam, or any other suitable material that absorbs noise and or vibration. The vibration dampening material is preferably applied by injection, compression, spray, pouring or any other suitable method. The vibration dampening material is retained in the at least two vibration dampening chambers by curing or hardening; mechanically confinement including the use of fasteners or a plug; or with any other suitable method. The at least two vibration dampening chambers may be partially or fully filled. The vibration dampening material may also be placed on a surface inside an extruded barrel.