k

Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression

Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine.

Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.

Abstract:
We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day.




k

Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis

Claudia Kirch, Matthew C. Edwards, Alexander Meier, Renate Meyer.

Source: Bayesian Analysis, Volume 14, Number 4, 1037--1073.

Abstract:
Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).




k

High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors

Joseph Antonelli, Giovanni Parmigiani, Francesca Dominici.

Source: Bayesian Analysis, Volume 14, Number 3, 825--848.

Abstract:
In observational studies, estimation of a causal effect of a treatment on an outcome relies on proper adjustment for confounding. If the number of the potential confounders ( $p$ ) is larger than the number of observations ( $n$ ), then direct control for all potential confounders is infeasible. Existing approaches for dimension reduction and penalization are generally aimed at predicting the outcome, and are less suited for estimation of causal effects. Under standard penalization approaches (e.g. Lasso), if a variable $X_{j}$ is strongly associated with the treatment $T$ but weakly with the outcome $Y$ , the coefficient $eta_{j}$ will be shrunk towards zero thus leading to confounding bias. Under the assumption of a linear model for the outcome and sparsity, we propose continuous spike and slab priors on the regression coefficients $eta_{j}$ corresponding to the potential confounders $X_{j}$ . Specifically, we introduce a prior distribution that does not heavily shrink to zero the coefficients ( $eta_{j}$ s) of the $X_{j}$ s that are strongly associated with $T$ but weakly associated with $Y$ . We compare our proposed approach to several state of the art methods proposed in the literature. Our proposed approach has the following features: 1) it reduces confounding bias in high dimensional settings; 2) it shrinks towards zero coefficients of instrumental variables; and 3) it achieves good coverages even in small sample sizes. We apply our approach to the National Health and Nutrition Examination Survey (NHANES) data to estimate the causal effects of persistent pesticide exposure on triglyceride levels.




k

Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals

L. F. South, A. N. Pettitt, C. C. Drovandi.

Source: Bayesian Analysis, Volume 14, Number 3, 773--796.

Abstract:
Sequential Monte Carlo (SMC) methods for sampling from the posterior of static Bayesian models are flexible, parallelisable and capable of handling complex targets. However, it is common practice to adopt a Markov chain Monte Carlo (MCMC) kernel with a multivariate normal random walk (RW) proposal in the move step, which can be both inefficient and detrimental for exploring challenging posterior distributions. We develop new SMC methods with independent proposals which allow recycling of all candidates generated in the SMC process and are embarrassingly parallelisable. A novel evidence estimator that is easily computed from the output of our independent SMC is proposed. Our independent proposals are constructed via flexible copula-type models calibrated with the population of SMC particles. We demonstrate through several examples that more precise estimates of posterior expectations and the marginal likelihood can be obtained using fewer likelihood evaluations than the more standard RW approach.




k

A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection

Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 2, 553--572.

Abstract:
In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence.




k

Separable covariance arrays via the Tucker product, with applications to multivariate relational data

Peter D. Hoff

Source: Bayesian Anal., Volume 6, Number 2, 179--196.

Abstract:
Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array.




k

Risk Models for Breast Cancer and Their Validation

Adam R. Brentnall, Jack Cuzick.

Source: Statistical Science, Volume 35, Number 1, 14--30.

Abstract:
Strategies to prevent cancer and diagnose it early when it is most treatable are needed to reduce the public health burden from rising disease incidence. Risk assessment is playing an increasingly important role in targeting individuals in need of such interventions. For breast cancer many individual risk factors have been well understood for a long time, but the development of a fully comprehensive risk model has not been straightforward, in part because there have been limited data where joint effects of an extensive set of risk factors may be estimated with precision. In this article we first review the approach taken to develop the IBIS (Tyrer–Cuzick) model, and describe recent updates. We then review and develop methods to assess calibration of models such as this one, where the risk of disease allowing for competing mortality over a long follow-up time or lifetime is estimated. The breast cancer risk model model and calibration assessment methods are demonstrated using a cohort of 132,139 women attending mammography screening in the State of Washington, USA.




k

Larry Brown’s Work on Admissibility

Iain M. Johnstone.

Source: Statistical Science, Volume 34, Number 4, 657--668.

Abstract:
Many papers in the early part of Brown’s career focused on the admissibility or otherwise of estimators of a vector parameter. He established that inadmissibility of invariant estimators in three and higher dimensions is a general phenomenon, and found deep and beautiful connections between admissibility and other areas of mathematics. This review touches on several of his major contributions, with a focus on his celebrated 1971 paper connecting admissibility, recurrence and elliptic partial differential equations.




k

Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang

Roderick J. Little.

Source: Statistical Science, Volume 34, Number 4, 580--583.




k

The Geometry of Continuous Latent Space Models for Network Data

Anna L. Smith, Dena M. Asta, Catherine A. Calder.

Source: Statistical Science, Volume 34, Number 3, 428--453.

Abstract:
We review the class of continuous latent space (statistical) models for network data, paying particular attention to the role of the geometry of the latent space. In these models, the presence/absence of network dyadic ties are assumed to be conditionally independent given the dyads’ unobserved positions in a latent space. In this way, these models provide a probabilistic framework for embedding network nodes in a continuous space equipped with a geometry that facilitates the description of dependence between random dyadic ties. Specifically, these models naturally capture homophilous tendencies and triadic clustering, among other common properties of observed networks. In addition to reviewing the literature on continuous latent space models from a geometric perspective, we highlight the important role the geometry of the latent space plays on properties of networks arising from these models via intuition and simulation. Finally, we discuss results from spectral graph theory that allow us to explore the role of the geometry of the latent space, independent of network size. We conclude with conjectures about how these results might be used to infer the appropriate latent space geometry from observed networks.




k

A Conversation with Robert E. Kass

Sam Behseta.

Source: Statistical Science, Volume 34, Number 2, 334--348.

Abstract:
Rob Kass has been been on the faculty of the Department of Statistics at Carnegie Mellon since 1981; he joined the Center for the Neural Basis of Cognition (CNBC) in 1997, and the Machine Learning Department (in the School of Computer Science) in 2007. He served as Department Head of Statistics from 1995 to 2004 and served as Interim Co-Director of the CNBC 2015–2018. He became the Maurice Falk Professor of Statistics and Computational Neuroscience in 2016. Kass has served as Chair of the Section for Bayesian Statistical Science of the American Statistical Association, Chair of the Statistics Section of the American Association for the Advancement of Science, founding Editor-in-Chief of the journal Bayesian Analysis and Executive Editor of Statistical Science . He is an elected Fellow of the American Statistical Association, the Institute of Mathematical Statistics and the American Association for the Advancement of Science. He has been recognized by the Institute for Scientific Information as one of the 10 most highly cited researchers, 1995–2005, in the category of mathematics. Kass is the recipient of the 2017 Fisher Award and lectureship by the Committee of the Presidents of the Statistical Societies. This interview took place at Carnegie Mellon University in November 2017.




k

A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear

Gregorio Quintana-Ortí, Amelia Simó.

Source: Statistical Science, Volume 34, Number 2, 236--252.

Abstract:
This paper is focused on kernel regression when the response variable is the shape of a 3D object represented by a configuration matrix of landmarks. Regression methods on this shape space are not trivial because this space has a complex finite-dimensional Riemannian manifold structure (non-Euclidean). Papers about it are scarce in the literature, the majority of them are restricted to the case of a single explanatory variable, and many of them are based on the approximated tangent space. In this paper, there are several methodological innovations. The first one is the adaptation of the general method for kernel regression analysis in manifold-valued data to the three-dimensional case of Kendall’s shape space. The second one is its generalization to the multivariate case and the addressing of the curse-of-dimensionality problem. Finally, we propose bootstrap confidence intervals for prediction. A simulation study is carried out to check the goodness of the procedure, and a comparison with a current approach is performed. Then, it is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear.




k

A Conversation with Dick Dudley

Vladimir Koltchinskii, Richard Nickl, Philippe Rigollet.

Source: Statistical Science, Volume 34, Number 1, 169--175.

Abstract:
Richard Mansfield Dudley (Dick Dudley) was born in 1938. He received the A.B. from Harvard in 1952 and the Ph.D. from Princeton in 1962 (under the supervision of Gilbert Hunt and Edward Nelson). Following an appointment at UC Berkeley as an assistant professor, he joined the Department of Mathematics at MIT in 1967. Dick Dudley has made fundamental contributions to the theory of Gaussian processes and Probability in Banach Spaces. Among his major achievements is the development of a general framework for empirical processes theory, in particular, for uniform central limit theorems. These results have had and continue having tremendous impact in contemporary statistics and in mathematical foundations of machine learning. A more extensive biographical sketch is contained in the preface to the Selected works of R. M. Dudley (editors: E. Giné, V. Koltchinskii and R. Norvaisa) published in 2010. This conversation took place (mostly, via email) in the fall of 2017.




k

Rejoinder: Response to Discussions and a Look Ahead

Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, Dan Cervone.

Source: Statistical Science, Volume 34, Number 1, 94--99.

Abstract:
Response to discussion of Dorie (2017), in which the authors of that piece express their gratitude to the discussants, rebut some specific criticisms, and argue that the limitations of the 2016 Atlantic Causal Inference Competition represent an exciting opportunity for future competitions in a similar mold.




k

Matching Methods for Causal Inference: A Review and a Look Forward

Elizabeth A. Stuart

Source: Statist. Sci., Volume 25, Number 1, 1--21.

Abstract:
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.




k

Smart women don't smoke / Biman Mullick.

London (33 Stillness Road, London SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [1989?]




k

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

'Smoke gets in your eyes' / Biman Mullick.

London (33 Stllness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

'Smoking is slow-motion suicide' / Biman Mullick.

London (33 Stillness Rd, London, SE23 ING) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

Smoking affects us all. / Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

If you must smoke don't exhale / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

Passive smoking kills / Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Be nice to yourself and others / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Pollution / Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Cleanair not smoke / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

No smoking no hate / Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

No smoking zone / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Heart burn. / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Smoking is anti-social / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Tapadh leibh airson nach do smoc sibh / design : Biman Mullick.

London (33 Stillness Rd, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

No smoking is the norm / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

No smoking zone / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

We thank you for not smoking / Biman Mullick.

London : Cleanair, [1988?]




k

If you must smoke don't exhale / Biman Mullick.

London : Cleanair, [1988?]




k

Muchas gracias por no fumar / Biman Mullick.

London : Cleanair, [1988?]




k

Merci de ne pas fumer / Biman Mullick.

London : Cleanair, [1988?]




k

Elle est classe, elle ne fume pas / Biman Mullick.

London (33 Stillness Road, London SE23 1NG) : Cleanair, [1989?]




k

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




k

No smoking is the norm / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Be nice to yourself and others / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




k

दिल की जलन। = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [1989?]




k

Dila jalana = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Hārtabarna = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Ha gubin wadnahaaga! = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Hārta jbalē = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Heat burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




k

Gracias por no fumar / deseño : Biman Mullick.

[London] : Cleanair, Campaña para un Medio Ambiente Libre de Humo, [198-?]




k

No fumar es la moda / deseño : Biman Mullick.

[London] : Cleanair, Campaña para un Medio Ambiente Libre de Humo, [198-?]




k

Muchas gracias por no fumar / Biman Mullick.

[London] : Cleanair, [1989?]