sm

InBios receives Emergency Use Authorization for its Smart Detect...

InBios International, Inc. announces the U.S. Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for its diagnostic test that can be used immediately by CLIA...

(PRWeb April 08, 2020)

Read the full story at https://www.prweb.com/releases/inbios_receives_emergency_use_authorization_for_its_smart_detect_sars_cov_2_rrt_pcr_kit_for_detection_of_the_virus_causing_covid_19/prweb17036897.htm




sm

A smeary central limit theorem for manifolds with application to high-dimensional spheres

Benjamin Eltzner, Stephan F. Huckemann.

Source: The Annals of Statistics, Volume 47, Number 6, 3360--3381.

Abstract:
The (CLT) central limit theorems for generalized Fréchet means (data descriptors assuming values in manifolds, such as intrinsic means, geodesics, etc.) on manifolds from the literature are only valid if a certain empirical process of Hessians of the Fréchet function converges suitably, as in the proof of the prototypical BP-CLT [ Ann. Statist. 33 (2005) 1225–1259]. This is not valid in many realistic scenarios and we provide for a new very general CLT. In particular, this includes scenarios where, in a suitable chart, the sample mean fluctuates asymptotically at a scale $n^{alpha }$ with exponents $alpha <1/2$ with a nonnormal distribution. As the BP-CLT yields only fluctuations that are, rescaled with $n^{1/2}$, asymptotically normal, just as the classical CLT for random vectors, these lower rates, somewhat loosely called smeariness, had to date been observed only on the circle. We make the concept of smeariness on manifolds precise, give an example for two-smeariness on spheres of arbitrary dimension, and show that smeariness, although “almost never” occurring, may have serious statistical implications on a continuum of sample scenarios nearby. In fact, this effect increases with dimension, striking in particular in high dimension low sample size scenarios.




sm

Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries

Yicheng Li, Adrian E. Raftery.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.

Abstract:
Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods.




sm

Bayesian factor models for probabilistic cause of death assessment with verbal autopsies

Tsuyoshi Kunihama, Zehang Richard Li, Samuel J. Clark, Tyler H. McCormick.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 241--256.

Abstract:
The distribution of deaths by cause provides crucial information for public health planning, response and evaluation. About 60% of deaths globally are not registered or given a cause, limiting our ability to understand disease epidemiology. Verbal autopsy (VA) surveys are increasingly used in such settings to collect information on the signs, symptoms and medical history of people who have recently died. This article develops a novel Bayesian method for estimation of population distributions of deaths by cause using verbal autopsy data. The proposed approach is based on a multivariate probit model where associations among items in questionnaires are flexibly induced by latent factors. Using the Population Health Metrics Research Consortium labeled data that include both VA and medically certified causes of death, we assess performance of the proposed method. Further, we estimate important questionnaire items that are highly associated with causes of death. This framework provides insights that will simplify future data




sm

BART with targeted smoothing: An analysis of patient-specific stillbirth risk

Jennifer E. Starling, Jared S. Murray, Carlos M. Carvalho, Radek K. Bukowski, James G. Scott.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 28--50.

Abstract:
This article introduces BART with Targeted Smoothing, or tsBART, a new Bayesian tree-based model for nonparametric regression. The goal of tsBART is to introduce smoothness over a single target covariate $t$ while not necessarily requiring smoothness over other covariates $x$. tsBART is based on the Bayesian Additive Regression Trees (BART) model, an ensemble of regression trees. tsBART extends BART by parameterizing each tree’s terminal nodes with smooth functions of $t$ rather than independent scalars. Like BART, tsBART captures complex nonlinear relationships and interactions among the predictors. But unlike BART, tsBART guarantees that the response surface will be smooth in the target covariate. This improves interpretability and helps to regularize the estimate. After introducing and benchmarking the tsBART model, we apply it to our motivating example—pregnancy outcomes data from the National Center for Health Statistics. Our aim is to provide patient-specific estimates of stillbirth risk across gestational age $(t)$ and based on maternal and fetal risk factors $(x)$. Obstetricians expect stillbirth risk to vary smoothly over gestational age but not necessarily over other covariates, and tsBART has been designed precisely to reflect this structural knowledge. The results of our analysis show the clear superiority of the tsBART model for quantifying stillbirth risk, thereby providing patients and doctors with better information for managing the risk of fetal mortality. All methods described here are implemented in the R package tsbart .




sm

Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model

Emily Berg, Danhyang Lee.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.

Abstract:
Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation.




sm

On estimation of nonsmooth functionals of sparse normal means

O. Collier, L. Comminges, A.B. Tsybakov.

Source: Bernoulli, Volume 26, Number 3, 1989--2020.

Abstract:
We study the problem of estimation of $N_{gamma }( heta )=sum_{i=1}^{d}| heta _{i}|^{gamma }$ for $gamma >0$ and of the $ell _{gamma }$-norm of $ heta $ for $gamma ge 1$ based on the observations $y_{i}= heta _{i}+varepsilon xi _{i}$, $i=1,ldots,d$, where $ heta =( heta _{1},dots , heta _{d})$ are unknown parameters, $varepsilon >0$ is known, and $xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $ heta $ and we propose estimators achieving this rate.




sm

Efficient estimation in single index models through smoothing splines

Arun K. Kuchibhotla, Rohit K. Patra.

Source: Bernoulli, Volume 26, Number 2, 1587--1618.

Abstract:
We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the parametric and the nonparametric components given independent and identically distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under mild assumption and prove asymptotic efficiency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated.




sm

Tail expectile process and risk assessment

Abdelaati Daouia, Stéphane Girard, Gilles Stupfler.

Source: Bernoulli, Volume 26, Number 1, 531--556.

Abstract:
Expectiles define a least squares analogue of quantiles. They are determined by tail expectations rather than tail probabilities. For this reason and many other theoretical and practical merits, expectiles have recently received a lot of attention, especially in actuarial and financial risk management. Their estimation, however, typically requires to consider non-explicit asymmetric least squares estimates rather than the traditional order statistics used for quantile estimation. This makes the study of the tail expectile process a lot harder than that of the standard tail quantile process. Under the challenging model of heavy-tailed distributions, we derive joint weighted Gaussian approximations of the tail empirical expectile and quantile processes. We then use this powerful result to introduce and study new estimators of extreme expectiles and the standard quantile-based expected shortfall, as well as a novel expectile-based form of expected shortfall. Our estimators are built on general weighted combinations of both top order statistics and asymmetric least squares estimates. Some numerical simulations and applications to actuarial and financial data are provided.




sm

Descendants of John & Barbara Cheesman, 1839-1999 / Gary Cheesman.

Cheesman, John -- Family.




sm

Traegers in Australia. 3, Ernst's story : the story of Ernst Wilhelm Traeger and Johanne Dorothea nee Lissmann, and their descendants, 1856-2018.

Traeger, Ernst Wilhelm, 1805-1874.




sm

How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations

Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19.

The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief.




sm

What Districts Want From Assessments, as They Grapple With the Coronavirus

EdWeek Market Brief asked district officials in a nationwide survey about their most urgent assessment needs, as they cope with COVID-19 and tentatively plan for reopening schools.

The post What Districts Want From Assessments, as They Grapple With the Coronavirus appeared first on Market Brief.




sm

Smart research for HSC students: Better searching with online resources

In this online session, we simplify searching for you so that the skills you need in one resource will work wherever you are.




sm

Smart research for HSC students: Citing your work and avoiding plagiarism

This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses.




sm

Smart research for HSC students: Essential Library resources for your research and study

This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses.




sm

Implicit Copulas from Bayesian Regularized Regression Smoothers

Nadja Klein, Michael Stanley Smith.

Source: Bayesian Analysis, Volume 14, Number 4, 1143--1171.

Abstract:
We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors—a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection—and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions.




sm

Model Criticism in Latent Space

Sohan Seth, Iain Murray, Christopher K. I. Williams.

Source: Bayesian Analysis, Volume 14, Number 3, 703--725.

Abstract:
Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model's structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes.




sm

Smart women don't smoke / Biman Mullick.

London (33 Stillness Road, London SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [1989?]




sm

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

'Smoke gets in your eyes' / Biman Mullick.

London (33 Stllness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

'Smoking is slow-motion suicide' / Biman Mullick.

London (33 Stillness Rd, London, SE23 ING) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

Smoking affects us all. / Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

If you must smoke don't exhale / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

Passive smoking kills / Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

Cleanair not smoke / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

No smoking no hate / Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

No smoking zone / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

Smoking is anti-social / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

Tapadh leibh airson nach do smoc sibh / design : Biman Mullick.

London (33 Stillness Rd, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

No smoking is the norm / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

No smoking zone / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

We thank you for not smoking / Biman Mullick.

London : Cleanair, [1988?]




sm

If you must smoke don't exhale / Biman Mullick.

London : Cleanair, [1988?]




sm

We thank you for not smoking / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




sm

No smoking is the norm / design : Biman Mullick.

London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?]




sm

Tapadh leibh airson nach do smoc sibh / design: Biman Mullick.

London (33 Stillness Road London SE23 1NG) : Cleanair Campaign for a Smoke-free Environment, [198-?]




sm

Cleanair posters to create a smoke-free environment / designed by Biman Mullick ; published by Cleanair.

London (33 Stillness Road, London SE23 ING) : Cleanair, [198-?]




sm

Smoking is bad for your image / design : Biman Mullick.

[London?], [199-?]




sm

Each year in Britain 9,300 babies are killed by their smoking mums. / Biman Mullick.

[London?], [6th June 1990]




sm

How can the smoker and the nonsmoker be equally free in the same place? George Bernard Shaw / Biman Mullick.

[London?], [199-?]




sm

[Silhouette of a pregant woman smoking with death skull inside womb, 29 January 1994] / design: Biman Mullick.

London, [29 January 1994]




sm

Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018.

[London], 2019.




sm

Gabrielle Union's Mesmerizing Tie Dye Activewear Set Is On Sale for Black Friday

The rainbow sports bra and leggings set from Splits59 is a must-have for anyone craving a pop of color in their workout wardrobe.




sm

Metacognitive Mechanisms Underlying Lucid Dreaming

Elisa Filevich
Jan 21, 2015; 35:1082-1088
BehavioralSystemsCognitive




sm

Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus

Timothy J. Schoenfeld
May 1, 2013; 33:7770-7777
BehavioralSystemsCognitive




sm

Readiness Potential and Neuronal Determinism: New Insights on Libet Experiment

Karim Fifel
Jan 24, 2018; 38:784-786
Journal Club




sm

Sleep Deprivation Biases the Neural Mechanisms Underlying Economic Preferences

Vinod Venkatraman
Mar 9, 2011; 31:3712-3718
BehavioralSystemsCognitive




sm

{Delta}9-Tetrahydrocannabinol and Cannabinol Activate Capsaicin-Sensitive Sensory Nerves via a CB1 and CB2 Cannabinoid Receptor-Independent Mechanism

Peter M. Zygmunt
Jun 1, 2002; 22:4720-4727
Behavioral