ex A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages By www.mcponline.org Published On :: 2020-12-01 Felicia GrassoDec 1, 2020; 19:1986-1996Research Full Article
ex Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals By www.mcponline.org Published On :: 2020-12-01 Tricia RowlisonDec 1, 2020; 19:2090-2103Research Full Article
ex Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry By www.mcponline.org Published On :: 2020-12-01 Yadong YuDec 1, 2020; 19:1997-2014Research Full Article
ex Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target By www.mcponline.org Published On :: 2020-12-01 Alison M. KurimchakDec 1, 2020; 19:2068-2089Research Full Article
ex Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection By www.mcponline.org Published On :: 2020-12-22 Julia KnöckelDec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432Research Full Article
ex A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective By www.mcponline.org Published On :: 2020-12-08 Xinting ZhangDec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306Research Full Article
ex Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts By www.mcponline.org Published On :: 2020-11-30 Juntuo ZhouNov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384Research Full Article
ex A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia By www.mcponline.org Published On :: 2020-11-30 Ka-Won KangNov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169Research Full Article
ex Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function. Full Article
ex Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved. Full Article
ex Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors. Full Article
ex Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection. Full Article
ex Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer. Full Article
ex PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
ex Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology [Computational Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static. Full Article
ex Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila By www.jlr.org Published On :: 2020-12-01 Stephanie E. HoodDec 1, 2020; 61:1720-1732Research Articles Full Article
ex Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice By www.jlr.org Published On :: 2020-12-01 Abudukadier AbuliziDec 1, 2020; 61:1565-1576Research Articles Full Article
ex Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects By www.jlr.org Published On :: 2020-11-03 Akemi KakinoNov 3, 2020; 0:jlr.RA120000767v1-jlr.RA120000767Research Articles Full Article
ex Problem Notes for SAS®9 - 66527: Updating counts in a Link node in SAS Customer Intelligence Studio produces the error "Link: MAIQService:executeFastPath:" By Published On :: Tue, 1 Sep 2020 10:53:01 EST In SAS Customer Intelligence Studio, the following error is displayed when you update a new Link node in a diagram: imgalt="Link: MAIQService:executeFastPath:" src="{fusion_665 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
ex Problem Notes for SAS®9 - 58465: SAS Life Science Analytics Framework 4.6 - Group membership removal fails with an exception for Process Flows that exist in the Recycle Bin By Published On :: Wed, 26 Aug 2020 16:27:10 EST In SAS Life Science Analytics Framework 4.6, group membership removal fails with an exception if a user is set as assignee, a candidate, or a notification recipient in a user task for a Process Flow . The Process Full Article LSAFOFR+SAS+Life+Science+Analytics+Frame
ex Problem Notes for SAS®9 - 33449: An error might occur when you use SAS 9 BULKLOAD= and BULKEXTRACT= options to load data to or extract data from the HP Neoview database on the HP Itanium platform By Published On :: Wed, 26 Aug 2020 16:21:08 EST An error might occur when you use the SAS 9 BULKLOAD= and BULKEXTRACT= options load data to or extract data from HP Neoview on the HP Itanium platform. The problem occurs because Hewlett-Packard changed the name of one of Full Article NEOVIEW+SAS/ACCESS+Interface+to+HP+Neovi
ex Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
ex Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects [Research Articles] By www.jlr.org Published On :: 2020-11-03T06:36:28-08:00 Adiponectin, an adipocyte-derived protein, has anti-atherogenic and anti-diabetic effects, but how it confers the anti-atherogenic effects is not well understood. To study the anti-atherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low-density lipoprotein (LDL) to attenuate LDL’s atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1–derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti–apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1–expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-B activation and ERK phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and ERK phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate–activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the anti-atherogenic mechanisms of adiponectin. Full Article
ex First case of Zika virus spread through sexual contact is detected in UK By www.bmj.com Published On :: Thursday, December 1, 2016 - 15:45 Full Article
ex UK clinics may be able to offer mitochrondrial donation next spring By www.bmj.com Published On :: Thursday, December 1, 2016 - 15:46 Full Article
ex Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output [Research Articles] By www.jlr.org Published On :: 2020-11-01T00:05:43-07:00 N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation. Full Article
ex Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinNLS), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring. Full Article
ex Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp–/–) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp–/– mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp–/– mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp–/– mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp–/– mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp–/– mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp–/– mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp–/– mice. Full Article
ex Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity [Lipids] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases. Full Article
ex Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network [Research] By www.mcponline.org Published On :: 2020-09-01T00:05:24-07:00 Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize. Full Article
ex The Insulin Receptor Adaptor IRS2 is an APC/C Substrate That Promotes Cell Cycle Protein Expression and a Robust Spindle Assembly Checkpoint [Research] By www.mcponline.org Published On :: 2020-09-01T00:05:24-07:00 Insulin receptor substrate 2 (IRS2) is an essential adaptor that mediates signaling downstream of the insulin receptor and other receptor tyrosine kinases. Transduction through IRS2-dependent pathways is important for coordinating metabolic homeostasis, and dysregulation of IRS2 causes systemic insulin signaling defects. Despite the importance of maintaining proper IRS2 abundance, little is known about what factors mediate its protein stability. We conducted an unbiased proteomic screen to uncover novel substrates of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that controls the abundance of key cell cycle regulators. We found that IRS2 levels are regulated by APC/C activity and that IRS2 is a direct APC/C target in G1. Consistent with the APC/C's role in degrading cell cycle regulators, quantitative proteomic analysis of IRS2-null cells revealed a deficiency in proteins involved in cell cycle progression. We further show that cells lacking IRS2 display a weakened spindle assembly checkpoint in cells treated with microtubule inhibitors. Together, these findings reveal a new pathway for IRS2 turnover and indicate that IRS2 is a component of the cell cycle control system in addition to acting as an essential metabolic regulator. Full Article
ex MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures [Technological Innovation and Resources] By www.mcponline.org Published On :: 2020-10-01T00:05:25-07:00 Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures. Full Article
ex Agonists of Orally Expressed TRP Channels Stimulate Salivary Secretion and Modify the Salivary Proteome [Research] By www.mcponline.org Published On :: 2020-10-01T00:05:25-07:00 Natural compounds that can stimulate salivary secretion are of interest in developing treatments for xerostomia, the perception of a dry mouth, that affects between 10 and 30% of the adult and elderly population. Chemesthetic transient receptor potential (TRP) channels are expressed in the surface of the oral mucosa. The TRPV1 agonists capsaicin and piperine have been shown to increase salivary flow when introduced into the oral cavity but the sialogogic properties of other TRP channel agonists have not been investigated. In this study we have determined the influence of different TRP channel agonists on the flow and protein composition of saliva. Mouth rinsing with the TRPV1 agonist nonivamide or menthol, a TRPM8 agonist, increased whole mouth saliva (WMS) flow and total protein secretion compared with unstimulated saliva, the vehicle control mouth rinse or cinnamaldehyde, a TRPA1 agonist. Nonivamide also increased the flow of labial minor gland saliva but parotid saliva flow rate was not increased. The influence of TRP channel agonists on the composition and function of the salivary proteome was investigated using a multi-batch quantitative MS method novel to salivary proteomics. Inter-personal and inter-mouth rinse variation was observed in the secreted proteomes and, using a novel bioinformatics method, inter-day variation was identified with some of the mouth rinses. Significant changes in specific salivary proteins were identified after all mouth rinses. In the case of nonivamide, these changes were attributed to functional shifts in the WMS secreted, primarily the over representation of salivary and nonsalivary cystatins which was confirmed by immunoassay. This study provides new evidence of the impact of TRP channel agonists on the salivary proteome and the stimulation of salivary secretion by a TRPM8 channel agonist, which suggests that TRP channel agonists are potential candidates for developing treatments for sufferers of xerostomia. Full Article
ex Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors [Research] By www.mcponline.org Published On :: 2020-10-01T00:05:25-07:00 Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon- induces a similar signature in vitro. We identified 10 different temporal protein expression patterns, classifying the Interferon- protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches. Full Article
ex Examining and Fine-tuning the Selection of Glycan Compositions with GlyConnect Compozitor [Research] By www.mcponline.org Published On :: 2020-10-01T00:05:25-07:00 A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database. Full Article
ex Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes [Research] By www.mcponline.org Published On :: 2020-11-01T00:05:37-07:00 Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies – Spearman and Kendall correlations – and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric—Euclidean distance—delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation. Full Article
ex High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy [Research] By www.mcponline.org Published On :: 2020-11-01T00:05:37-07:00 Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC. Full Article
ex Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research] By www.mcponline.org Published On :: 2020-12-01T00:05:33-08:00 Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals. Full Article
ex Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target [Research] By www.mcponline.org Published On :: 2020-12-01T00:05:33-08:00 Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC. Full Article
ex Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry [Research] By www.mcponline.org Published On :: 2020-12-01T00:05:33-08:00 AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried – from expression host – six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution. Full Article
ex A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages [Research] By www.mcponline.org Published On :: 2020-12-01T00:05:33-08:00 Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles. In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules. Full Article
ex Quels sont les effets secondaires de seroplex ? By www.orthodfr.org Published On :: Fri, 02 Aug 2024 09:39:45 +0000 Les médicaments utilisés pour le traitement des troubles mentaux peuvent avoir des effets secondaires plus ou moins graves sur la santé des patients. C’est le cas de seroplex, un médicament largement utilisé comme traitement dans le domaine de la santé mentale. Mais en réalité, quelle est la composition de ce médicament et quels sont ses […] L’article Quels sont les effets secondaires de seroplex ? est apparu en premier sur Ortho Doc France. Full Article Santé
ex WITHDRAWN: Extraordinary apolipoprotein oxidation in chronic hepatitis C and liver cirrhosis [13. Other] By www.mcponline.org Published On :: 2007-09-05T09:37:40-07:00 Withdrawn by Author. Full Article
ex Multiple hypothesis testing in proteomics: A strategy for experimental work [Invited] By www.mcponline.org Published On :: 2010-12-07T11:37:01-08:00 In quantitative proteomics work, the differences in expression of many separate proteins are routinely examined to test for significant differences between treatments. This leads to the multiple hypothesis testing problem: when many separate tests are performed many will be significant by chance and be false positive results. Statistical methods such as the false discovery rate (FDR) method that deal with this problem have been disseminated for more than one decade. However a survey of proteomics journals shows that such tests are not widely implemented in one commonly used technique, quantitative proteomics using two-dimensional electrophoresis (2-DE). We outline a selection of multiple hypothesis testing methods, including some that are well known and some lesser known, and present a simple strategy for their use by the experimental scientist in quantitative proteomics work generally. The strategy focuses on the desirability of simultaneous use of several different methods, the choice and emphasis dependent on research priorities and the results in hand. This approach is demonstrated using case scenarios with experimental and simulated model data. Full Article
ex Oxidative stress-mediated regulation of proteasome complexes [Other] By www.mcponline.org Published On :: 2011-01-31T16:50:35-08:00 Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways. Full Article
ex Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays [Technology] By www.mcponline.org Published On :: 2015-09-25T14:31:13-07:00 Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring (PRM)-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor (EGF)-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported upregulation of MET, but also with upregulation of FLK2 and downregulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with PRM data. Multiplexed PRM assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706. Full Article
ex WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research] By www.mcponline.org Published On :: 2017-04-28T07:30:39-07:00 This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review. Full Article
ex Blockade of High-Fat Diet Proteomic Phenotypes using Exercise as Prevention or Treatment [Technological Innovation and Resources] By www.mcponline.org Published On :: 2020-10-29T10:35:15-07:00 The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the over-consumption of a high fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regime for animals on either HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and down-regulation of SERPINA1E, CFD (adipsin). Some of these changes were significantly reverted using exercise as a preventative measure, but not as a treatment regime. To determine if either the intensity, or duration, of exercise influenced the outcome, we compared high-intensity interval training (HIIT) and endurance running. Endurance running slightly out-performed HIIT exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the high-fat diet including SERPINA7, APOE, SERPINA1E, and CFD. Finally, we compared the changes induced by over-consumption of HFD to previous data from mice fed an isocaloric high saturated fat (SFA) or polyunsaturated fat (PUFA) diet. This identified several common changes including increased APOC2 and APOE, but also highlighted changes specific for either over-consumption of HFD (ALDOB, SERPINA7, CFD), SFA-based diets (SERPINA1E), or PUFA-based diets (Haptoglobin - Hp). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by high fat diet consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome. Full Article
ex The complexity and dynamics of the tissue glycoproteome associated with prostate cancer progression [Research] By www.mcponline.org Published On :: 2020-10-30T10:35:20-07:00 The complexity and dynamics of the immensely heterogeneous glycoproteome of the prostate cancer (PCa) tumour micro-environment remain incompletely mapped, a knowledge gap that impedes our molecular-level understanding of the disease. To this end, we have used sensitive glycomics and glycoproteomics to map the protein-, cell- and tumour grade-specific N- and O-glycosylation in surgically-removed PCa tissues spanning five histological grades (n = 10/grade) and tissues from patients with benign prostatic hyperplasia (n = 5). Quantitative glycomics revealed PCa grade-specific alterations of the oligomannosidic-, paucimannosidic- and branched sialylated complex-type N-glycans, and dynamic remodelling of the sialylated core 1- and core 2-type O-glycome. Deep quantitative glycoproteomics identified ~7,400 unique N-glycopeptides from 500 N-glycoproteins and ~500 unique O-glycopeptides from nearly 200 O-glycoproteins. With reference to a recent Tissue and Blood Atlas, our data indicate that paucimannosidic glycans of the PCa tissues arise mainly from immune cell-derived glycoproteins. Further, the grade-specific PCa glycosylation arises primarily from dynamics in the cellular makeup of the PCa tumour microenvironment across grades involving increased oligomannosylation of prostate-derived glycoproteins and decreased bisecting GlcNAcylation of N-glycans carried by the extracellular matrix proteins. Further, elevated expression of several oligosaccharyltransferase subunits and enhanced N-glycoprotein site occupancy were observed associated with PCa progression. Finally, correlations between the protein-specific glycosylation and PCa progression were observed including increased site-specific core 2-type O-glycosylation of collagen VI. In conclusion, integrated glycomics and glycoproteomics have enabled new insight into the complexity and dynamics of the tissue glycoproteome associated with PCa progression generating an important resource to explore the underpinning disease mechanisms. Full Article
ex Isolation of acetylated and unmodified protein N-terminal peptides by strong cation exchange chromatographic separation of TrypN-digested peptides [Technological Innovation and Resources] By www.mcponline.org Published On :: 2020-11-02T12:35:15-08:00 We developed a simple and rapid method to enrich protein N-terminal peptides, in which the protease TrypN is first employed to generate protein N-terminal peptides without Lys or Arg and internal peptides with two positive charges at their N-termini, and then the N-terminal peptides with or without N-acetylation are separated from the internal peptides by strong cation exchange chromatography according to a retention model based on the charge/orientation of peptides. This approach was applied to 20 μg of human HEK293T cell lysate proteins to profile the N-terminal proteome. On average, 1,550 acetylated and 200 unmodified protein N-terminal peptides were successfully identified in a single LC/MS/MS run with less than 3% contamination with internal peptides, even when we accepted only canonical protein N-termini registered in the Swiss-Prot database. Since this method involves only two steps, protein digestion and chromatographic separation, without the need for tedious chemical reactions, it should be useful for comprehensive profiling of protein N-termini, including proteoforms with neo-N-termini. Full Article