est

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases

Matthias Schittmayer
Dec 1, 2020; 19:2104-2114
Research




est

Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics]

Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.




est

Human glucocerebrosidase mediates formation of xylosyl-cholesterol by {beta}-xylosidase and transxylosidase reactions.

Daphne E.C. Boer
Dec 23, 2020; 0:jlr.RA120001043v1-jlr.RA120001043
Research Articles




est

Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood

Ryunosuke Ohkawa
Dec 1, 2020; 61:1577-1588
Research Articles




est

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis

Natalie Bruiners
Dec 1, 2020; 61:1617-1628
Research Articles




est

Accessible cholesterol is localized in bacterial plasma membrane protrusions

Michael E. Abrams
Dec 1, 2020; 61:1538-1538
Images in Lipid Research




est

Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation

Anja Jaeschke
Dec 9, 2020; 0:jlr.RA120001141v1-jlr.RA120001141
Research Articles




est

Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux

Oktawia Nilsson
Nov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920
Research Articles




est

Cholesterol homeostasis in the vertebrate retina: Biology and pathobiology [Thematic Reviews]

Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intra-retinal sterol transport, metabolism and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: a) cholesterol synthesis in the neural retina; b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); c) cholesterol efflux from the neural retina and the RPE; and d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps as well as opportunities in the field that beg further research in this topic area.




est

Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles]

Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics.




est

Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation [Research Articles]

The LDL receptor-related protein-1 (LRP1) is highly expressed in numerous cell types, and its impairment is associated with obesity, diabetes, and fatty liver disease. However, the mechanisms linking LRP1 to metabolic disease are not completely understood. Here, we compared the metabolic phenotype of C57BL/6J wild type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low fat (LF) diet or high fat diets with (HFHC) or without (HF) cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as increased adiposity with adipose tissue inflammation and liver steatosis. However, when animals were fed the HF diet supplemented with cholesterol, the LRP1 NPxY mutation prevents hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, insulin signaling is impaired in LRP1 NPxY mutant hepatocytes and this mutation does not protect against HFHC-induced insulin resistance. The selective metabolic improvement observed in HFHC-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lowering of plasma and hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice in response to HF or HFHC diet feeding indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development.




est

Human glucocerebrosidase mediates formation of xylosyl-cholesterol by {beta}-xylosidase and transxylosidase reactions. [Research Articles]

Deficiency of glucocerebrosidase (GBA), a lysosomal β-glucosidase, causes Gaucher disease. The enzyme hydrolyzes β-glucosidic substrates and transglucosylates cholesterol to cholesterol-β-glucoside. Here we show that recombinant human GBA also cleaves β-xylosides and transxylosylates cholesterol. The xylosyl-cholesterol formed acts as acceptor for subsequent formation of di-xylosyl-cholesterol. Common mutant forms of GBA from patients with Gaucher disease with reduced β-glucosidase activity were similarly impaired in β-xylosidase, transglucosidase and transxylosidase activities, except for a slightly reduced xylosidase/glucosidase activity ratio of N370S GBA and a slightly reduced transglucosylation/glucosidase activity ratio of D409H GBA. XylChol was found to be reduced in spleen from Gaucher disease patients. The origin of newly identified XylChol in mouse and human tissues was investigated. Cultured human cells exposed to exogenous β-xylosides generated XylChol in a manner dependent on active lysosomal GBA but not the cytosol-facing β-glucosidase GBA2. We later sought an endogenous β-xyloside acting as donor in transxylosylation reactions, identifying xylosylated ceramide (XylCer) in cells and tissues that serve as donor in the formation of XylChol. UDP-glucosylceramide synthase (GCS) was unable to synthesize XylChol but could catalyse formation of XylCer. Thus, food-derived β-D-xyloside and XylCer are potential donors for the GBA-mediated formation of XylChol in cells. The enzyme GCS produces XylCer at a low rate. Our findings point to further catalytic versatility of GBA and prompt a systematic exploration of the distribution and role of xylosylated lipids.




est

Esterification of 4{beta}-hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT [Patient-Oriented and Epidemiological Research]

The acyltransferase LCAT mediates FA esterification of plasma cholesterol. In vitro studies have shown that LCAT also FA-esterifies several oxysterols, but in vivo evidence is lacking. Here, we measured both free and FA-esterified forms of sterols in 206 healthy volunteers and 8 individuals with genetic LCAT deficiency, including familial LCAT deficiency (FLD) and fish-eye disease (FED). In the healthy volunteers, the mean values of the ester-to-total molar ratios of the following sterols varied: 4β-hydroxycholesterol (4βHC), 0.38; 5,6α-epoxycholesterol (5,6αEC), 0.46; 5,6β-epoxycholesterol (5,6βEC), 0.51; cholesterol, 0.70; cholestane-3β,5α,6β-triol (CT), 0.70; 7-ketocholesterol (7KC), 0.75; 24S-hydroxycholesterol (24SHC), 0.80; 25-hydroxycholesterol (25HC), 0.81; 27-hydroxycholesterol (27HC), 0.86; and 7α-hydroxycholesterol (7αHC), 0.89. In the individuals with LCAT deficiency, the plasma levels of the FA-esterified forms of cholesterol, 5,6αEC, 5,6βEC, CT, 7αHC, 7KC, 24SHC, 25HC, and 27HC, were significantly lower than those in the healthy volunteers. The individuals with FLD had significantly lower FA-esterified forms of 7αHC, 24SHC, and 27HC than those with FED. It is of note that, even in the three FLD individuals with negligible plasma cholesteryl ester, substantial amounts of the FA-esterified forms of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC were present. We conclude that LCAT has a major role in the FA esterification of many plasma oxysterols but contributes little to the FA esterification of 4βHC. Substantial FA esterification of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC is independent of LCAT.




est

Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance [Research Articles]

Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3’s novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.




est

Serum lipoprotein (a) associates with a higher risk of reduced renal function: a prospective investigation [Research Articles]

Lipoprotein (a) [Lp(a)] is a well-known risk factor for cardiovascular disease, but analysis on Lp(a) and renal dysfunction is scarce. We aimed to investigate prospectively the association of serum Lp(a) with the risk of reduced renal function, and further investigated whether diabetic or hypertensive status modified such association. Six thousand two hundred and fifty-seven Chinese adults aged ≤40 years and free of reduced renal function at baseline were included in the study. Reduced renal function was defined as estimated glomerular filtration rate <60 ml/min/1.73 m2. During a mean follow-up of 4.4 years, 158 participants developed reduced renal function. Each one-unit increase in log10-Lp(a) (milligrams per deciliter) was associated with a 1.99-fold (95% CI 1.15–3.43) increased risk of incident reduced renal function; the multivariable-adjusted odds ratio (OR) for the highest tertile of Lp(a) was 1.61 (95% CI 1.03–2.52) compared with the lowest tertile (P for trend = 0.03). The stratified analysis showed the association of serum Lp(a) and incident reduced renal function was more prominent in participants with prevalent diabetes [OR 4.04, 95% CI (1.42–11.54)] or hypertension [OR 2.18, 95% CI (1.22–3.89)]. A stronger association was observed in the group with diabetes and high Lp(a) (>25 mg/dl), indicating a combined effect of diabetes and high Lp(a) on the reduced renal function risk. An elevated Lp(a) level was independently associated with risk of incident reduced renal function, especially in diabetic or hypertensive patients.




est

Accessibility of cholesterol at cell surfaces [Images In Lipid Research]




est

Genetic susceptibility, dietary cholesterol intake, and plasma cholesterol levels in a Chinese population [Patient-Oriented and Epidemiological Research]

Accompanied with nutrition transition, non-HDL-C levels of individuals in Asian countries has increased rapidly, which has caused the global epicenter of nonoptimal cholesterol to shift from Western countries to Asian countries. Thus, it is critical to underline major genetic and dietary determinants. In the current study of 2,330 Chinese individuals, genetic risk scores (GRSs) were calculated for total cholesterol (TC; GRSTC, 57 SNPs), LDL-C (GRSLDL-C, 45 SNPs), and HDL-C (GRSHDL-C, 65 SNPs) based on SNPs from the Global Lipid Genetics Consortium study. Cholesterol intake was estimated by a 74-item food-frequency questionnaire. Associations of dietary cholesterol intake with plasma TC and LDL-C strengthened across quartiles of the GRSTC (effect sizes: –0.29, 0.34, 2.45, and 6.47; Pinteraction = 0.002) and GRSLDL-C (effect sizes: –1.35, 0.17, 5.45, and 6.07; Pinteraction = 0.001), respectively. Similar interactions with non-HDL-C were observed between dietary cholesterol and GRSTC (Pinteraction = 0.001) and GRSLDL-C (Pinteraction = 0.004). The adverse effects of GRSTC on TC (effect sizes across dietary cholesterol quartiles: 0.51, 0.82, 1.21, and 1.31; Pinteraction = 0.023) and GRSLDL-C on LDL-C (effect sizes across dietary cholesterol quartiles: 0.66, 0.52, 1.12, and 1.56; Pinteraction = 0.020) were more profound in those having higher cholesterol intake compared with those with lower intake. Our findings suggest significant interactions between genetic susceptibility and dietary cholesterol intake on plasma cholesterol profiles in a Chinese population.




est

Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer [Research Articles]

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.




est

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




est

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis [Research Articles]

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin’s anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.




est

Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood [Research Articles]

Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1–/– mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.




est

Accessible cholesterol is localized in bacterial plasma membrane protrusions [Images In Lipid Research]




est

Solvent accessibility changes in a Na+-dependent C4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism [Membrane Biology]

The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site–associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.




est

Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing [Research]

As the COVID-19 pandemic continues to spread, thousands of scientists around the globe have changed research direction to understand better how the virus works and to find out how it may be tackled. The number of manuscripts on preprint servers is soaring and peer-reviewed publications using MS-based proteomics are beginning to emerge. To facilitate proteomic research on SARS-CoV-2, the virus that causes COVID-19, this report presents deep-scale proteomes (10,000 proteins; >130,000 peptides) of common cell line models, notably Vero E6, Calu-3, Caco-2, and ACE2-A549 that characterize their protein expression profiles including viral entry factors such as ACE2 or TMPRSS2. Using the 9 kDa protein SRP9 and the breast cancer oncogene BRCA1 as examples, we show how the proteome expression data can be used to refine the annotation of protein-coding regions of the African green monkey and the Vero cell line genomes. Monitoring changes of the proteome on viral infection revealed widespread expression changes including transcriptional regulators, protease inhibitors, and proteins involved in innate immunity. Based on a library of 98 stable-isotope labeled synthetic peptides representing 11 SARS-CoV-2 proteins, we developed PRM (parallel reaction monitoring) assays for nano-flow and micro-flow LC–MS/MS. We assessed the merits of these PRM assays using supernatants of virus-infected Vero E6 cells and challenged the assays by analyzing two diagnostic cohorts of 24 (+30) SARS-CoV-2 positive and 28 (+9) negative cases. In light of the results obtained and including recent publications or manuscripts on preprint servers, we critically discuss the merits of MS-based proteomics for SARS-CoV-2 research and testing.




est

The Neuroproteomic Basis of Enhanced Perception and Processing of Brood Signals That Trigger Increased Reproductive Investment in Honeybee (Apis mellifera) Workers [Research]

The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.




est

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases [Research]

Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.




est

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research]

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.




est

Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry [Research]

AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried – from expression host – six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.




est

Quel est l’IMC normal pour une femme ?

Contrairement à ce qu’on pourrait croire, bien plus de femmes se préoccupent de leurs poids et y font attention. Pour ces femmes, comprendre ce qu’est un indice de masse corporelle (IMC) normal peut permettre de maintenir une bonne santé et savoir quand faire appel à un médecin pour leurs poids. C’est quoi l’IMC ou indice de masse […]

L’article Quel est l’IMC normal pour une femme ? est apparu en premier sur Ortho Doc France.




est

Quelle est la meilleure recette minceur à base de biscuits aux flocons d’avoine ?

Pour beaucoup de personnes, la perte de poids rime obligatoirement avec une période de privation. Mais contrairement à ces idées reçues, il est bien possible d’observer un régime pour perdre du poids tout en vous faisant plaisir. Découvrez notre recette minceur de biscuits croquants sans beurre aux flocons d’avoine qui raviront vos papilles sans pour autant vous apporter […]

L’article Quelle est la meilleure recette minceur à base de biscuits aux flocons d’avoine ? est apparu en premier sur Ortho Doc France.




est

Multiple hypothesis testing in proteomics: A strategy for experimental work [Invited]

In quantitative proteomics work, the differences in expression of many separate proteins are routinely examined to test for significant differences between treatments. This leads to the multiple hypothesis testing problem: when many separate tests are performed many will be significant by chance and be false positive results. Statistical methods such as the false discovery rate (FDR) method that deal with this problem have been disseminated for more than one decade. However a survey of proteomics journals shows that such tests are not widely implemented in one commonly used technique, quantitative proteomics using two-dimensional electrophoresis (2-DE). We outline a selection of multiple hypothesis testing methods, including some that are well known and some lesser known, and present a simple strategy for their use by the experimental scientist in quantitative proteomics work generally. The strategy focuses on the desirability of simultaneous use of several different methods, the choice and emphasis dependent on research priorities and the results in hand. This approach is demonstrated using case scenarios with experimental and simulated model data.




est

Isolation of acetylated and unmodified protein N-terminal peptides by strong cation exchange chromatographic separation of TrypN-digested peptides [Technological Innovation and Resources]

We developed a simple and rapid method to enrich protein N-terminal peptides, in which the protease TrypN is first employed to generate protein N-terminal peptides without Lys or Arg and internal peptides with two positive charges at their N-termini, and then the N-terminal peptides with or without N-acetylation are separated from the internal peptides by strong cation exchange chromatography according to a retention model based on the charge/orientation of peptides. This approach was applied to 20 μg of human HEK293T cell lysate proteins to profile the N-terminal proteome. On average, 1,550 acetylated and 200 unmodified protein N-terminal peptides were successfully identified in a single LC/MS/MS run with less than 3% contamination with internal peptides, even when we accepted only canonical protein N-termini registered in the Swiss-Prot database. Since this method involves only two steps, protein digestion and chromatographic separation, without the need for tedious chemical reactions, it should be useful for comprehensive profiling of protein N-termini, including proteoforms with neo-N-termini.




est

Moscow Rules: What Drives Russia to Confront the West

Moscow Rules: What Drives Russia to Confront the West Book sysadmin 17 January 2019

Keir Giles surveys Russia’s history and the present day to explain why its current leadership feels it has no choice but to challenge and attack the West. Recognising and accepting that this will not change in the near future will help the West find a way of dealing with Russia without risking a deeper conflict.

This book is for anyone that cannot understand why Russia and its leaders behave as they do.

The relationship between Russia and the West is once again deep in crisis. A major reason is that Western leaders have too often believed or hoped that Russia sees the world as they do — but things look very different from Moscow. This book shows that efforts at engagement with Russia that do not take this into account are a key reason for repeated disappointment and crisis.

In confronting the West, Russia is implementing strategic and doctrinal approaches that have been consistent for centuries. The roots of current Russian behaviour and demands can be traced not just to the Soviet era, but back into Tsarist foreign and domestic policy, and further to the structure and rules of Russian society. But this also gives the US and the West pointers for how to behave — and how not to — in order to manage the challenge of Russia effectively, based on past experience of both successful and unsuccessful engagement with Moscow.

The book recognizes the reality of confrontation and provides an essential introduction to grasping why Russia sees it as inevitable. Consequently, it offers a basis for building a less crisis-prone relationship with Russia.

This book is part of the Insights series.

Praise for Moscow Rules

My only regret is that I did not have this book 35 years ago

Toomas Ilves, former President of Estonia

Should be required reading for all who deal with Western policy towards Russia

Roderic Lyne, former British Ambassador to Moscow

About the author

Keir Giles is a senior consulting fellow at Chatham House, the Royal Institute of International Affairs. He also works with the Conflict Studies Research Centre (CSRC), a group of subject matter experts in Eurasian security with a particular focus on the wide range of security challenges coming from Russia.

Purchase




est

War Time: Temporality and the Decline of Western Military Power

War Time: Temporality and the Decline of Western Military Power Book dora.popova 22 February 2021

In War Time the Western way of war, its pace and timing, are discussed and analysed by experts who question the West’s ability to maintain its military superiority given the political and strategic failures of interventions in Iraq and Afghanistan.

In War Time, war studies experts examine the trajectory of Western military power. They discuss conflicting perceptions of time anchored within Western political and military institutions, and the Western attachment to fast-paced warfare at the expense of longer-term political solutions.

Divided into three sections, the book covers ‘civic militarism’ and the trajectory of Western power, Western perceptions of time and the international normative order, and military operations and temporality. War Time explains why the West has been overwhelmingly powerful on the battlefield and yet strategically and politically weak as exemplified by the return of the Taliban and the hasty evacuation of troops and personnel from Afghanistan.

The book identifies policies that decision-makers must adopt to stave off the decline of Western military dominance.

This book is part of the Insights series.

 

Watch the event

A special event was held in March 2021 to mark the launch of the book. View the event here.

Praise for War Time

War Time is a provocative consideration of the many aspects of modern military power in politics and international affairs. Though the nature of war doesn’t change, this book is particularly relevant given the changing character of modern war as we see in the Caucasus, Ukraine, the Sahel, and the Indo-Pacific region. Essential reading for political leaders, diplomats, and strategic thinkers.

Lt. Gen. (Ret.) Ben Hodges, Pershing Chair in Strategic Studies, Center for European Policy Analysis; Commander, United States Army Europe, 2014–2017

About the editors

Sten Rynning is professor of war studies at the University of Southern Denmark.

Olivier Schmitt is professor with special responsibilities at the Center for War Studies, University of Southern Denmark, and currently director of research and studies at the French Institute for Higher National Defence Studies.

Amelie Theussen is assistant professor at the Center for War Studies, University of 
Southern Denmark.

Purchase




est

Kinetic investigation of the polymerase and exonuclease activities of human DNA polymerase &epsiv; holoenzyme [DNA and Chromosomes]

In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3'→5' exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3'→5' exonuclease activity of the hPolε holoenzyme. Together, the 3'→5' exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.




est

These are MLB's 10 best position player duos

MLB.com looked at each team's two highest-ranked position players in WAR, according to the Steamer projections. Here are the top 10, but keep in mind that things could change once Manny Machado and Bryce Harper find homes.




est

Previewing the AL West's biggest questions

Our weekly series previewing each of baseball's six divisions begins with the American League West. Let's take a team-by-team look at the biggest questions this season.




est

Simmons ranks among game's best

MLB Network's countdown of baseball's best players at each position continued with the third installment of the "Top 10 Right Now!" series, featuring the game's top left and center fielders.




est

Francona: Allen 'one of the best competitors'

The Angels have a new closer in Cody Allen and there isn't any manager in baseball who knows him better than Indians skipper Terry Francona.




est

Test for syphilis in people with possible symptoms, says UKHSA, as cases rise




est

Healthcare comes to standstill in east Aleppo as last hospitals are destroyed




est

South Africa After the Elections: Balancing Domestic and International Policy Priorities

South Africa After the Elections: Balancing Domestic and International Policy Priorities 16 May 2019 — 1:30PM TO 2:30PM Anonymous (not verified) 9 May 2019 Chatham House | 10 St James's Square | London | SW1Y 4LE

The government that emerges from the 8 May election in South Africa faces immediate domestic and international foreign policy demands. Attracting Foreign Direct Investment to stimulate job growth, accelerating anti-corruption and good governance efforts are at the forefront of the new government’s agenda.

International ambitions will be upgraded such as UN security council reform, maximizing South Africa’s G20, BRICS and IBSA membership and preparing for South Africa’s chairmanship of the African Union (AU) in 2020.

At this meeting, the speakers – Moeletsi Mbeki, deputy chairman of SAIIA and author with Nobantu Mbeki of A Manifesto for Social Change: How to Save South Africa, and Elizabeth Sidiropoulos, chief executive of SAIIA and currently co-editing a volume on A South African Foreign Policy for the 2020s which will be published in 2019 – will reflect on the election and discuss the new government’s domestic and international policy agenda. The meeting will be chaired by Ann Grant, former British High Commissioner to South Africa (2000-05) with past experience working for Oxfam, Standard Chartered Bank and Tullow Oil.




est

Patients taking dabigatran to prevent stroke should avoid simvastatin and lovastatin, study suggests




est

Swimming, aerobics, and racquet sports are linked to lowest risk of cardiovascular death




est

Stroke: Take test for genetic variant to ensure clopidogrel works for prevention, says NICE




est

Type 1 diabetes: Randox removes adverts after claims that it was using fear to sell genetic test




est

Covid-19: Progression to clinical type 1 diabetes accelerated after infection, study suggests




est

Iran: Protests, politics and power

Iran: Protests, politics and power 16 November 2022 — 6:00PM TO 7:00PM Anonymous (not verified) 18 October 2022 Online

Join Robert Macaire, UK ambassador to Iran (2018-21), and others to discuss what the protests mean for Iran’s domestic, regional and global power.

Protests in Iran, spurred after Masha Amini died in police custody, have drawn focus on how Iranians feel about state repression, a struggling economy and global isolation. Iran is facing the most adamant challenge to its power structure since the ‘green movement’ in 2009 with protests taking place in more than 50 cities and towns across the country. There is no sign that the government will back down but what will that decision mean for the power it can wield at home and abroad?

This conversation examines how the protests impact Iran’s domestic power, its regional relationships and its relations with the US.

  • What do the protests demonstrate about Iran’s power domestically and regionally?

  • How do the protests influence the JCPOA?

  • What will the government gain if they hold a hard line on protesters?

  • How do the protests impact Iran’s regional activities?

As with all members events, questions from the audience drive the conversation.

Read the transcript. 




est

Rammya Mathew: GPs have to be able to request MRI scans for patients in primary care

At a recent clinical meeting, I heard that GPs local to me are about to lose the ability to request magnetic resonance imaging (MRI) scans for patients presenting with musculoskeletal symptoms. We’re instead advised to refer our patients to a musculoskeletal clinical assessment and triage service (CATS)—staffed largely by musculoskeletal advanced practitioners, who will assess our patients and determine whether imaging is warranted.The hope is that fewer patients will have unnecessary imaging and that this will reduce the potential harms of overdiagnosis. Radiologists rarely report musculoskeletal MRI scans as entirely normal, and it can be hard to know what to do with abnormal findings on an MRI. More often than not, patients with abnormal scans are referred to orthopaedic teams, even though there may not necessarily be a surgical target.At a population level, this is problematic on two fronts. Firstly, MRI scans are expensive and need to be used judiciously....




est

The West must face down Putin

The West must face down Putin The World Today MVieira 1 February 2022

If Russia’s ambitions are not checked, the implications will be global, warns James Nixey

After seven years of invasions, annexations, assassinations, abuses and now the current crisis in European security over the fate of Ukraine, one thing has been laid bare: the true nature of the Russian state.

Moscow made its ambition clear in mid-December with the unprecedented and public issuing of ultimatums in the form of draft treaty proposals.

Portrayed by Russia as an attempt to end Nato’s expansion eastwards, the Kremlin is in fact demanding that the United States and western institutions roll back their security guarantees to Eastern Europe. 

These are not two sides of the same coin if one believes and accepts the principles of the Helsinki Accords that the successor states to the Soviet Union are just as independent and sovereign as Russia.

Russia’s demands laid bare equate to giving it a free hand in Eastern Europe. This should not be reduced to simplistic labels such as ‘territorial expansionism’ or a ‘return to the Soviet Union’, both of which can be picked at for a lack of accuracy.

Russia has gone beyond being an awkward player at the negotiation table or a bully who can be dealt with further down the line

But it is, in Russia’s own words, the most explicit statement yet of its long-standing desire to return to a former age, where great powers directed their respective spheres of influence – a yearning for a time of empire and a disregard for the flow of history.

The intense diplomatic and media focus since then suggests there is a consensus that Russia has gone beyond being an awkward player at the negotiation table or a bully who can be dealt with further down the line.

But this has not as yet led to the operational conclusion that Russia must be challenged and ultimately faced down, no matter how unpalatable.

The logical response to the exposure of Russia’s true intentions would be an overhaul of western policy. Yet the West persists in its article of faith that dialogue with Russia will bring about a change in its behaviour – despite all evidence to the contrary. 

Western politicians have been anxious to avoid direct confrontation with Russia. But the Kremlin is likely to see this course of action as confirmation that it can proceed unchecked. When Moscow has chosen the path of conflict, efforts at dialogue rarely bring a peaceful resolution. 

When Moscow has chosen the path of conflict, efforts at dialogue rarely bring a peaceful resolution

Russia is blessed with particularly talented negotiators. While it has its fair share of angry ultra-nationalists who are easily dismissed, it also has more subtle brains at official and unofficial levels with whom western politicians are eager to engage to claim morsels of intelligence or to show that the Kremlin is not beyond redemption.

Sergei Lavrov, Russia’s foreign minister, is an intelligent and experienced man, who is adept at dismissing the protests of most of his western counterparts. In such circumstances, and with such a pressing need to avoid a war, dialogue must be tightly contained as it has the potential to lead to compromise in areas where there should be none.

Russia’s ambitions for a land empire

Eastern European states which were part of the Soviet Union or signatories to the Warsaw Pact are geographically closer to Russia and as a result more physically at risk. But their history and close relations with Moscow in the past have allowed them to acquire experience and expertise in dealing with their more powerful neighbour.

They uphold principled stances on sovereign rights, which has led the Kremlin to brand the Baltic states, Ukraine and more recently Moldova as traitors. To the West, on the other hand, they can often be seen as awkward or getting in the way.

While the sandwiched eastern states may have much to teach us about dealing with Russia, some central European countries have a closer relationship with Moscow. Serbia’s security services have recently been exposed as being under the influence of Russia’s own FSB, the Federal Security Service, successor to the KGB, and have colluded in repressing Moscow’s political opponents. At the same time, Viktor Orbán’s Hungary continues to defy the European Union with its repressions and is one of the few states that looks to Russia as a model. 

By failing to address the real nature of Russia’s demands, Europe is avoiding critical decisions

What is at stake here is a basic grasp of the nature of relations between states in the 21st century. What Russia is insisting on is its right to a land empire which is entirely at odds with the principles of statehood that now govern Europe, and indeed much of the rest of the world.

By failing to address the real nature of Russia’s demands, Europe is avoiding critical decisions that will affect its future security for generations to come. The implications of that avoidance do not only affect Europe – they are global in importance. 

Other powers, most notably China, will watch closely how the West responds to Russia and gauge its willingness to support allies, friends and partners against aggression.

Any failure to respond firmly to Russia’s approach of demanding limits on the sovereignty of its neighbours, backed by the threat of military force, can only encourage similar strong-arm tactics elsewhere. It is notable that, from Chechnya to Syria, Russia has not yet suffered an unambiguous defeat when it has asserted its ambitions through military power. 

Facing down Russia will take skill, time, spine, money, grit and self-sacrifice

Resolving the incompatibility between the way Russia sees itself and what the rest of Europe views as the acceptable limits of Russian power will be a long, painful process. Facing down Russia will take skill, time, spine, money, grit and self-sacrifice. Sanctions, for example, hurt those imposing them as well as the receiver. These are attributes in short supply in what Russia considers to be the weak, decadent West. 

Since such resources are unlikely to be found, the unappetizing future for relations is most likely to involve Russia continuing to chip away at European sovereignty while its own structural flaws further weaken it to the point of irrelevance, or to push it to take ever more extreme risks.