Diagnostic Accuracy of PET Tracers for the Differentiation of Tumor Progression from Treatment-Related Changes in High-Grade Glioma: A Systematic Review and Metaanalysis
Posttreatment high-grade gliomas are usually monitored with contrast-enhanced MRI, but its diagnostic accuracy is limited as it cannot adequately distinguish between true tumor progression and treatment-related changes. According to recent Response Assessment in Neuro-Oncology recommendations, PET overcomes this limitation. However, it is currently unknown which tracer yields the best results. Therefore, a systematic review and metaanalysis were performed to compare the diagnostic accuracy of the different PET tracers in differentiating tumor progression from treatment-related changes in high-grade glioma patients. Methods: PubMed, Web of Science, and Embase were searched systematically. Study selection, data extraction, and quality assessment were performed independently by 2 authors. Metaanalysis was performed using a bivariate random-effects model when at least 5 studies were included. Results: The systematic review included 39 studies (11 tracers). 18F-FDG (12 studies, 171 lesions) showed a pooled sensitivity and specificity of 84% (95% confidence interval, 72%–92%) and 84% (95% confidence interval, 69%–93%), respectively. O-(2-18F-fluoroethyl)-