edi Pediatric restorative dentistry By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319934266 (electronic bk.) Full Article
edi Pediatric radiation oncology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319435459 (electronic bk.) Full Article
edi Pediatric pelvic and proximal femoral osteotomies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319780337 978-3-319-78033-7 Full Article
edi Pediatric liver intensive care By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811313042 (electronic bk.) Full Article
edi Pediatric injectable drugs : the teddy bear book By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781585285402 (electronic bk.) Full Article
edi Pediatric critical care : current controversies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319964997 (electronic bk.) Full Article
edi Pediatric allergy : a case-based collection with MCQs. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030182823 (electronic bk.) Full Article
edi Passive and active measurement : 21st International Conference, PAM 2020, Eugene, Oregon, USA, March 30-31, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: PAM (Conference) (21st : 2020 : Eugene, Oregon)Callnumber: OnlineISBN: 9783030440817 Full Article
edi Nursing care planning made incredibly easy! By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781496382566 paperback Full Article
edi Natural remedies for pest, disease and weed control By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 0128193050 Full Article
edi Nanoencapsulation of food ingredients by specialized equipment By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128156728 (electronic bk.) Full Article
edi Nanobiomaterial engineering : concepts and their applications in biomedicine and diagnostics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789813298408 (electronic bk.) Full Article
edi NanoBioMedicine By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789813298989 (electronic bk.) Full Article
edi Medical pharmacology at a glance By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Neal, M. J., author.Callnumber: OnlineISBN: 9781119548096 (epub) Full Article
edi Management of Hereditary Colorectal Cancer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030262341 978-3-030-26234-1 Full Article
edi Machine learning in medicine : a complete overview By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Cleophas, Ton J. M., authorCallnumber: OnlineISBN: 9783030339708 (electronic bk.) Full Article
edi Lovell and Winter's pediatric orthopaedics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781975108663 (hardcover) Full Article
edi Irwin and Rippe's intensive care medicine By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781496306081 hardcover Full Article
edi Intelligent wavelet based techniques for advanced multimedia applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Singh, Rajiv, authorCallnumber: OnlineISBN: 9783030318734 (electronic bk.) Full Article
edi Information retrieval technology : 15th Asia Information Retrieval Societies Conference, AIRS 2019, Hong Kong, China, November 7-9, 2019, proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Asia Information Retrieval Societies Conference (15th : 2019 : Hong Kong, China)Callnumber: OnlineISBN: 9783030428358 Full Article
edi Geriatric Medicine : a Problem-Based Approach By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811032530 Full Article
edi General medicine and surgery for dental practitioners By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Greenwood, M. (Mark), author.Callnumber: OnlineISBN: 9783319977379 (electronic book) Full Article
edi Ethnoveterinary medicine : present and future concepts By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030322700 (electronic bk.) Full Article
edi Encyclopedia of social insects By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319903064 electronic book Full Article
edi Encyclopedia of signaling molecules By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781461464389 (electronic bk.) Full Article
edi Encyclopedia of renewable and sustainable materials By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128131961 (print) Full Article
edi Encyclopedia of molecular pharmacology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030215736 (electronic bk.) Full Article
edi Encyclopedia of cancer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783642278419 (electronic bk.) Full Article
edi Deep learning in medical image analysis : challenges and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030331283 (electronic bk.) Full Article
edi DNA beyond genes : from data storage and computing to nanobots, nanomedicine, and nanoelectronics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Demidov, Vadim V., authorCallnumber: OnlineISBN: 9783030364342 (electronic bk.) Full Article
edi Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319445359 (electronic bk.) Full Article
edi Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: PROPOR (Conference) (14th : 2020 : Evora, Portugal)Callnumber: OnlineISBN: 9783030415051 (electronic bk.) Full Article
edi Communications and networking : 14th EAI International Conference, ChinaCom 2019, Shanghai, China, November 29 - December 1, 2019, proceedings. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: ChinaCom (Conference) (14th : 2019 : Shanghai, China)Callnumber: OnlineISBN: 9783030411176 Full Article
edi Commercial status of plant breeding in India By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Tiwari, Aparna, author.Callnumber: OnlineISBN: 9789811519062 Full Article
edi Characterization of nanoencapsulated food ingredients By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128156681 (electronic bk.) Full Article
edi Cell biology and translational medicine. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030378455 (electronic bk.) Full Article
edi Bioremediation and biotechnology : sustainable approaches to pollution degradation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030356910 (electronic bk.) Full Article
edi Biomedical product development : bench to bedside By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030356262 (electronic bk.) Full Article
edi An encyclopaedia of British bridges By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: McFetrich, David, author.Callnumber: OnlineISBN: 9781526752963 (electronic bk.) Full Article
edi African edible insects as alternative source of food, oil, protein and bioactive components By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030329525 (electronic bk.) Full Article
edi Optimal prediction in the linearly transformed spiked model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Edgar Dobriban, William Leeb, Amit Singer. Source: The Annals of Statistics, Volume 48, Number 1, 491--513.Abstract: We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods. Full Article
edi A hierarchical Bayesian model for predicting ecological interactions using scaled evolutionary relationships By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Mohamad Elmasri, Maxwell J. Farrell, T. Jonathan Davies, David A. Stephens. Source: The Annals of Applied Statistics, Volume 14, Number 1, 221--240.Abstract: Identifying undocumented or potential future interactions among species is a challenge facing modern ecologists. Recent link prediction methods rely on trait data; however, large species interaction databases are typically sparse and covariates are limited to only a fraction of species. On the other hand, evolutionary relationships, encoded as phylogenetic trees, can act as proxies for underlying traits and historical patterns of parasite sharing among hosts. We show that, using a network-based conditional model, phylogenetic information provides strong predictive power in a recently published global database of host-parasite interactions. By scaling the phylogeny using an evolutionary model, our method allows for biological interpretation often missing from latent variable models. To further improve on the phylogeny-only model, we combine a hierarchical Bayesian latent score framework for bipartite graphs that accounts for the number of interactions per species with host dependence informed by phylogeny. Combining the two information sources yields significant improvement in predictive accuracy over each of the submodels alone. As many interaction networks are constructed from presence-only data, we extend the model by integrating a correction mechanism for missing interactions which proves valuable in reducing uncertainty in unobserved interactions. Full Article
edi Hierarchical infinite factor models for improving the prediction of surgical complications for geriatric patients By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Elizabeth Lorenzi, Ricardo Henao, Katherine Heller. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2637--2661.Abstract: Nearly a third of all surgeries performed in the United States occur for patients over the age of 65; these older adults experience a higher rate of postoperative morbidity and mortality. To improve the care for these patients, we aim to identify and characterize high risk geriatric patients to send to a specialized perioperative clinic while leveraging the overall surgical population to improve learning. To this end, we develop a hierarchical infinite latent factor model (HIFM) to appropriately account for the covariance structure across subpopulations in data. We propose a novel Hierarchical Dirichlet Process shrinkage prior on the loadings matrix that flexibly captures the underlying structure of our data while sharing information across subpopulations to improve inference and prediction. The stick-breaking construction of the prior assumes an infinite number of factors and allows for each subpopulation to utilize different subsets of the factor space and select the number of factors needed to best explain the variation. We develop the model into a latent factor regression method that excels at prediction and inference of regression coefficients. Simulations validate this strong performance compared to baseline methods. We apply this work to the problem of predicting surgical complications using electronic health record data for geriatric patients and all surgical patients at Duke University Health System (DUHS). The motivating application demonstrates the improved predictive performance when using HIFM in both area under the ROC curve and area under the PR Curve while providing interpretable coefficients that may lead to actionable interventions. Full Article
edi On Bayesian new edge prediction and anomaly detection in computer networks By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Silvia Metelli, Nicholas Heard. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2586--2610.Abstract: Monitoring computer network traffic for anomalous behaviour presents an important security challenge. Arrivals of new edges in a network graph represent connections between a client and server pair not previously observed, and in rare cases these might suggest the presence of intruders or malicious implants. We propose a Bayesian model and anomaly detection method for simultaneously characterising existing network structure and modelling likely new edge formation. The method is demonstrated on real computer network authentication data and successfully identifies some machines which are known to be compromised. Full Article
edi Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.Abstract: Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available. Full Article
edi Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Emily Berg, Danhyang Lee. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.Abstract: Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation. Full Article
edi Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.Abstract: Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies. Full Article
edi Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.Abstract: In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods. Full Article
edi On frequentist coverage errors of Bayesian credible sets in moderately high dimensions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Keisuke Yano, Kengo Kato. Source: Bernoulli, Volume 26, Number 1, 616--641.Abstract: In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory. Full Article
edi Prediction and estimation consistency of sparse multi-class penalized optimal scoring By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Irina Gaynanova. Source: Bernoulli, Volume 26, Number 1, 286--322.Abstract: Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes. Full Article