teaching

Presenting an Alternative Source Code Plagiarism Detection Framework for Improving the Teaching and Learning of Programming




teaching

A Debate over the Teaching of a Legacy Programming Language in an Information Technology (IT) Program




teaching

Teaching an Introductory Programming Language in a General Education Course




teaching

Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We present a classic brain teaser that is used to communicate and demonstrate advanced software development concepts and techniques. Our results show that students with varied academic experiences and goals, assuming at least one procedural/structured programming pre-requisite, can benefit from and also be challenged by such an exercise. Although this problem has been used by others in the classroom, we believe that our use of this problem in imparting such a broad range of topics to a diverse student population is unique.




teaching

Learning Circles: A Collaborative Technology-Mediated Peer-Teaching Workshop

This research study explores peer teaching and learning without a domain expert teacher, within the context of an activity where teams of second level students (~16 years old) are required to create a learning experience for their peers. The study looks at how participants would like to be taught and how they would teach their peers if given the opportunity and examines the support they require, their motivation levels, and if they actually learn curriculum content using this approach. An exploratory case study methodology was used, and the findings suggest that students want varied learning experiences that include many of the elements which would fall under the heading of 21st century learning, that with some support and encouragement they can create innovative learning experiences for their peers, and that they can learn curriculum content from the process.




teaching

Teaching Social Media in Business

The ways people connect, interact, share, and communicate have changed due to recent developments in information technology. These developments, categorized as social media, have captured the attention of business executives, technologists, and education professionals alike, and have altered many business models. Additionally, the concept of social media impacts numerous sub-disciplines within business and has become an important issue with operational, tactical, and strategic considerations. Despite this interest, many business schools do not have courses involving social media technologies and applications. In those that do, the placement and focus of the course varies considerably. This article provides motivation and insight into the process of developing an approach for effectively teaching social media use in business. Additionally, it offers implementation examples of courses taught at three major universities. The article concludes with lessons-learned that will give instructors practical guidance and ensure that social media courses taught in a business school provide students with a solid basis for integrating social media into business practice.




teaching

Teaching Quality Evaluation: Online vs. Manually, Facts and Myths

Aim/Purpose: This study aimed to examine whether there is a difference between manual feedback and online feedback with regard to feedback quality, respondents’ percentage, reliability and the amount of verbal comments written by students. Background: The quality of teaching is an important component of academic work. There are various methods for testing the quality of teaching; one of these methods is through students’ feedback. Methodology: This study used a quantitative approach, including the quantification of qualitative verbal data collected through an open question in the questionnaire. A sample of 180 courses was randomly chosen, 90 courses were evaluated manually and 90 were evaluated online. The number of students ranges from 7 to 60 students per course. In total 4678 students participated in the study. Contribution: The findings show that there is almost an identical pattern of feedback of manual and online course teaching evaluation. These findings encourage a continued use of this evaluation method. Findings: No significant differences were found between manual feedback and online feedback in the students’ evaluation of the lecturer/course. The percentage of respondents was significantly higher in the manual feedback than in the online feedback. The number of qualitative comments was significantly greater in the online feedback than in the manual feedback. Impact on Society: The findings of this study refute the claims with regard to the unreliability of an online teaching evaluation. These findings reflect the advantages of using online feedback, such as cost savings, granting more time to students in order to provide feedback, and reducing disturbance during lectures. Future Research: The gender aspect was not taken into account in the study. Therefore, we recommend conducting a follow-up study that will examine gender differences in directions of- difference between male and female lecturers, and differences between male and female students in teaching evaluation.




teaching

The Influence of Teaching Methods on Learners’ Perception of E-safety

Aim/Purpose: The traditional method of teaching e-safety by lecturing is not very effective. Despite learners often being equipped with the right knowledge, they reject the need to act accordingly. There is a need to improve the way digital e-safety is taught. Background: The study compares four different teaching styles, examining how each affected the way students perceive a range of e-safety keywords and consequently the way they approach this issue. Methodology: The semantic differential technique was used to carry out the research. Students completed a semantic differential questionnaire before and after lessons. A total of 405 first year undergraduates took part in the study. Contribution: The paper contributes to the debate on appropriate methods for teaching e-safety, with an aim to influence learners’ attitudes. Findings: Experience-based learning seems to be very effective, confronting students with an e-safety situation and providing them with a negative experience. This teaching method had the biggest influence on students who were deceived by the prepared e-safety risk situation. Recommendations for Practitioners: E-safety instruction can be enhanced by ensuring that lessons provide students with a personal experience. Recommendation for Researchers: The semantic differential technique can be used to measure changes in learners’ attitudes during the teaching process. Impact on Society: Our findings may bring improvements to the way e-safety topics are taught, which could, in turn, evoke in learners a more positive e-safety attitude and a desire to improve their e-safety behavior. Future Research: More research needs to be carried out to examine how the experiential learning method affects the attitudes of younger learners (primary, middle, and high school students).




teaching

The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams, and readings was applied in a course of wireless communications. Contribution: Five wireless networking labs, related to wireless local networks, wireless security, and wireless sensor networks, were developed for students to complete all of the required hands-on lab activities. Findings: Both development and implementation of the labs achieved a successful outcome and provided students with a very effective learning experience. Students expressed that they had a better understanding of different wireless network technologies after finishing the labs. Recommendations for Practitioners: Detailed instructional lab manuals should be developed so that students can carry out hands-on activities in a step-by-step fashion. Recommendation for Researchers: Hands-on lab exercises can not only help students understand the abstract technical terms in a meaningful way, but also provide them with hands-on learning experience in terms of wireless network configuration, implementation, and evaluation. Impact on Society: With the help of a wireless network simulator, students have successfully enhanced their practical skills and it would benefit them should they decide to pursue a career in wireless network design or implementation. Future Research: Continuous revision of the labs will be made according to the feedback from students. Based on the experience, more wireless networking labs and network issues could be studied in the future.




teaching

Activity Oriented Teaching Strategy for Software Engineering Course: An Experience Report

Aim/Purpose: This paper presents the findings of an Activity-Oriented Teaching Strategy (AOTS) conducted for a postgraduate level Software Engineering (SE) course with the aim of imparting meaningful software development experience for the students. The research question is framed as whether the activity-oriented teaching strategy helps students to acquire practical knowledge of Software Engineering and thus bridge the gap between academia and software industry. Background: Software Engineering Education (SEE) in India is mainly focused on teaching theoretical concepts rather than emphasizing on practical knowledge in software development process. It has been noticed that many students of CS/IT background are struggling when they start their career in the software industry due to inadequate familiarity with the software development process. In the current context of SE education, there is a knowledge gap between the theory learned in the classroom and the actual requirement demanded by the software industry. Methodology: The methodology opted for in this study was action research since the teachers are trying to solve the practical problems and deficiencies encountered while teaching SE. There are four pedagogies in AOTS for fulfilling the requirements of the desired teaching strategy. They are flipped classroom, project role-play for developing project artifacts, teaching by example, and student seminars. The study was conducted among a set of Postgraduate students of the Software Engineering programme at Cochin University of Science and Technology, India. Contribution: AOTS can fulfil both academic and industrial requirements by actively engaging the students in the learning process and thus helping them develop their professional skills. Findings: AOTS can be molded as a promising teaching strategy for learning Software Engineering. It focuses on the essential skill sets demanded by the software industry such as communication, problem-solving, teamwork, and understanding of the software development processes. Impact on Society: Activity-oriented teaching strategies can fulfil both academic and industrial requirements by actively engaging the students in the SE learning process and thus helping them in developing their professional skills. Future Research: AOTS can be refined by adding/modifying pedagogies and including different features like an online evaluation system, virtual classroom etc.




teaching

A Study on the Effectiveness of an Undergraduate Online Teaching Laboratory With Semantic Mechanism From a Student Perspective

Aim/Purpose: The current study was conducted to investigate the students’ perceived satisfaction with the use of a semantic-based online laboratory, which provides students with a search mechanism for laboratory resources, such as instruments and devices. Background: The increasing popularity of using online teaching labs, as an important element of experiential learning in STEM education, is because they represent a collection of integrated tools that allow students and teachers to interact and work collaboratively, whereas they provide an enriched learning content delivery mechanism. Moreover, several research studies have proposed various approaches for online teaching laboratories. However, there are hardly any studies that examine the student satisfaction provided by online laboratories based on students’ experiential learning. Methodology: To measure the effectiveness of the laboratory, we performed a case study in a Computer Fundamentals online course in which undergraduate students were able to manage devices and instruments remotely. Participants were a sample of 50 third semester students of Bachelor’s degree in Information Technology Administration who were divided in experimental and control groups (online laboratory vs. traditional manner). Given a laboratory assignment, students were able to carry out the management of devices and instruments through a LabView virtual environment and web services. The data of the experiment were collected through two questionnaires from both groups. The first is a system usability score (SUS) questionnaire concerning lab usability and the second one students’ cognitive load. Contribution: The results of the study showed a high correlation between usability and cognitive load-satisfaction of students who used the online teaching laboratory compared to the students who did not use it. Findings: On the one hand, the online laboratory provided students with an easy way to share and deploy instruments and devices, thus enhancing system usability. On the other hand, it offered important facilities which enabled students to customize the search for instruments and devices, which certainly had a positive impact on the relationship between cognitive load and satisfaction. Recommendations for Practitioners: In this work we propose an intuitive laboratory interface as well as easiness to use but challenging and capable of providing similar experiences to the traditional laboratory. Recommendation for Researchers: This study is one of the first to analyze the cognitive load-satisfaction relationship and compare it with usability scores. Impact on Society: Our analyses make an important contribution to the literature by suggesting a correlation analysis comparing the results of experimental and control groups that participated in this research work, in terms of usability and cognitive load-satisfaction. Future Research: Future work will also investigate other methodological aspects of instructional design with the aim to improve personalized learning and reinforce collaborative experiences, as well as to deal with problems related to laboratory access, such as authentication, scheduling, and interoperability.




teaching

Innovative Pedagogical Strategies of Streaming, Just-in-Time Teaching, and Scaffolding: A Case Study of Using Videos to Add Business Analytics Instruction Across a Curriculum

Aim/Purpose: Business analytics is a cross-functional field that is important to implement for a college and has emerged as a critically important core component of the business curriculum. It is a difficult task due to scheduling concerns and limits to faculty and student resources. This paper describes the process of creating a central video repository to serve as a platform for just in time teaching and the impact on student learning outcomes. Background: Industry demand for employees with analytical knowledge, skills, and abilities requires additional analytical content throughout the college of business curriculum. This demand needs other content to be added to ensure that students have the prerequisite skills to complete assignments. Two pedagogical approaches to address this issue are Just-in-Time Teaching (JiTT) and scaffolding, grounded in the Vygoskian concept of “Zone of Proximal Development. Methodology: This paper presents a case study that applies scaffolding and JiTT teaching to create a video repository to add business analytics instruction to a curriculum. The California Critical Thinking Skills Test (CCTST) and Major Field Test (MFT) scores were analyzed to assess learning outcomes. Student and faculty comments were considered to inform the results of the review. Contribution: This paper demonstrates a practical application of scaffolding and JiTT theory by outlining the process of using a video library to provide valuable instructional resources that support meaningful learning, promote student academic achievement, and improve program flexibility. Findings: A centrally created library is a simple and inexpensive way to provide business analytics course content, augmenting standard content delivery. Assessment of learning scores showed an improvement, and a summary of lessons learned is provided to guide implications. Recommendations for Practitioners: Pedagogical implications of this research include the observation that producing a central library of instructor created videos and assignments can help address knowledge and skills gaps, augment the learning of business analytics content, and provide a valuable educational resource throughout the college of business curriculum. Recommendation for Researchers: This paper examines the use of scaffolding and JiTT theories. Additional examination of these theories may improve the understanding and limits of these concepts as higher education evolves due to the combination of market forces changing the execution of course delivery. Impact on Society: Universities are tasked with providing new and increasing skills to students while controlling the costs. A centrally created library of instructional videos provides a means of delivering meaningful content while controlling costs. Future Research: Future research may examine student success, including the immediate impact of videos and longitudinally using video repositories throughout the curriculum. Studies examining the approach across multiple institutions may help to evaluate the success of video repositories. Faculty acceptance of centrally created video libraries and assignments should be considered for the value of faculty recruiting and use in the classroom. The economic impact on both the university and students should be evaluated.




teaching

Unveiling the Digital Equation Through Innovative Approaches for Teaching Discrete Mathematics to Future Computer Science Educators

Aim/Purpose: This study seeks to present a learning model of discrete mathematics elements, elucidate the content of teaching, and validate the effectiveness of this learning in a digital education context. Background: Teaching discrete mathematics in the realm of digital education poses challenges, particularly in crafting the optimal model, content, tools, and methods tailored for aspiring computer science teachers. The study draws from both a comprehensive review of relevant literature and the synthesis of the authors’ pedagogical experiences. Methodology: The research utilized a system-activity approach and aligned with the State Educational Standard. It further integrated the theory of continuous education as its psychological and pedagogical foundation. Contribution: A unique model for instructing discrete mathematics elements to future computer science educators has been proposed. This model is underpinned by informative, technological, and personal competencies, intertwined with the mathematical bedrock of computer science. Findings: The study revealed the importance of holistic teaching of discrete mathematics elements for computer science teacher aspirants in line with the Informatics educational programs. An elective course, “Elements of Discrete Mathematics in Computer Science”, comprising three modules, was outlined. Practical examples spotlighting elements of mathematical logic and graph theory of discrete mathematics in programming and computer science were showcased. Recommendations for Practitioners: Future computer science educators should deeply integrate discrete mathematics elements in their teaching methodologies, especially when aligning with professional disciplines of the Informatics educational program. Recommendation for Researchers: Further exploration is recommended on the seamless integration of discrete mathematics elements in diverse computer science curricula, optimizing for varied learning outcomes and student profiles. Impact on Society: Enhancing the quality of teaching discrete mathematics to future computer science teachers can lead to better-educated professionals, driving advancements in the tech industry and contributing to societal progress. Future Research: There is scope to explore the wider applications of the discrete mathematics elements model in varied computer science sub-disciplines, and its adaptability across different educational frameworks.




teaching

COVID-19 Pandemic and the Use of Emergency Remote Teaching (ERT) Platforms: Lessons From a Nigerian University

Aim/Purpose: This study examines the use of the Emergency Remote Teaching (ERT) platform by undergraduates of the University of Ibadan, Nigeria, during the COVID-19 pandemic using the constructs of the UTAUT2 model. Five constructs of the UTAUT2 model were adopted to investigate the use of the ERT platform by undergraduates of the university. Background: The Coronavirus (COVID-19) outbreak disrupted academic activities in educational institutions, leading to an unprecedented school closure globally. In response to the pandemic, higher educational institutions adopted different initiatives aimed at ensuring the uninterrupted flow of their teaching and learning activities. However, there is little research on the use of ERT platforms by undergraduates in Nigerian universities. Methodology: The descriptive survey research design was adopted for the study. The multi-stage random sampling technique was used to select 334 undergraduates at the University of Ibadan, Nigeria, while a questionnaire was used to collect data from 271 students. Quantitative data were collected and analyzed using frequency counts, percentages, mean and standard deviation, Pearson Product Moment Correlation, and regression analysis. Contribution: The study contributes to understanding ERT use in the educational institutions of Nigeria – Africa’s most populous country. Furthermore, the study adds to the existing body of knowledge on how the UTAUT2 Model could explain the use of information technologies in different settings. Findings: Findings revealed that there was a positive significant relationship between habit, hedonic motivation, price value, and social influence on the use of ERT platforms by undergraduates. Hedonic motivation strongly predicted the use of ERT platforms by most undergraduates. Recommendations for Practitioners: As a provisional intervention in times of emergencies, the user interface, navigation, customization, and other aesthetic features of ERT platforms should be more appealing and enjoyable to ensure their optimum utilization by students. Recommendation for Researchers: More qualitative research is required on users’ satisfaction, concerns, and support systems for ERT platforms in educational institutions. Future studies could consider the use of ERT by students in different countries and contexts such as students participating in English as a Foreign Language (EFL) and the English for Speakers of other languages (ESOL) programs. Impact on Society: As society faces increased uncertainties of the next global pandemic, this article reiterates the crucial roles of information technology in enriching teaching and learning activities in educational institutions. Future Research: Future research should focus on how different technology theories and models could explain the use of ERT platforms at different educational institutions in other geographical settings and contexts.




teaching

Playable Experiences Through Technologies: Opportunities and Challenges for Teaching Simulation Learning and Extended Reality Solution Creation

Aim/Purpose: This paper describes a technologies education model for introducing Simulation Learning and Extended Reality (XR) solution creation skills and knowledge to students at the tertiary education level, which is broadly applicable to higher education-based contexts of teaching and learning. Background: This work is made possible via the model’s focus on advancing knowledge and understanding of a range of digital resources, and the processes and production skills to teach and produce playable educational digital content, including classroom practice and applications. Methodology: Through practice-based learning and technology as an enabler, to inform the development of this model, we proposed a mixed-mode project-based approach of study within a transdisciplinary course for Higher Education students from the first year through to the post-graduate level. Contribution: An argument is also presented for the utility of this model for upskilling Pre-service Teachers’ (PSTs) pedagogical content knowledge in Technologies, which is especially relevant to the Australian curriculum context and will be broadly applicable to various educative and non-Australian settings. Findings: Supported by practice-based research, work samples and digital projects of Simulation Learning and XR developed by the authors are demonstrated to ground the discussion in examples; the discussion that is based around some of the challenges and the technical considerations, and the scope of teaching digital solutions creation is provided. Recommendations for Practitioners: We provide a flexible technologies teaching and learning model for determining content for inclusion in a course designed to provide introductory Simulation Learning and XR solution creation skills and knowledge. Recommendation for Researchers: The goal was to provide key criteria and an outline that can be adapted by academic researchers and learning designers in various higher education-based contexts of teaching and inclusive learning design focused on XR. Impact on Society: We explore how educators work with entities in various settings and contexts with different priorities, and how we recognise expertise beyond the institutional interests, beyond discipline, and explore ‘what is possible’ through digital technologies for social good and inclusivity. Future Research: The next step for this research is to investigate and explore how XR and Simulation Learning could be utilised to accelerate student learning in STEM and HASS disciplines, to promote knowledge retention and a higher level of technology-enhanced learning engagement.




teaching

Student advisement on courses sequencing in teaching-focused business-schools

Students in teaching-focused business-schools need a level of assistance and advisement broader and more profound than what is needed in R1&R2 schools. We investigate the informal interdependencies among marketing, finance, operation, and management core courses in these schools. By conducting hypothesis tests on a large dataset, we identify a flexible network showing the preferred sequencing of these courses to improve students' performance as measured by the course grade. Better performances in this context may also lead to higher retention-rates and lower time-to-degree. We recommend taking Finance or Finance and Management as the first course(s). Marketing should be the next course before or concurrent with Operations Management. Regarding the lower division courses, it is recommended to take Statistics before Economics and Accounting courses and Accounting before or concurrent with Economics. We also consider the significant role of a milestone course that links the lower division and core courses.




teaching

International Journal of Teaching and Case Studies




teaching

Evaluation method for the effectiveness of online course teaching reform in universities based on improved decision tree

Aiming at the problems of long evaluation time and poor evaluation accuracy of existing evaluation methods, an improved decision tree-based evaluation method for the effectiveness of college online course teaching reform is proposed. Firstly, the teaching mode of college online course is analysed, and an evaluation system is constructed to ensure the applicability of the evaluation method. Secondly, AHP entropy weight method is used to calculate the weights of evaluation indicators to ensure the accuracy and authority of evaluation results. Finally, the evaluation model based on decision tree algorithm is constructed and improved by fuzzy neural network to further optimise the evaluation results. The parameters of fuzzy neural network are adjusted and gradient descent method is used to optimise the evaluation results, so as to effectively evaluate the effect of college online course teaching reform. Through experiments, the evaluation time of the method is less than 5 ms, and the evaluation accuracy is more than 92.5%, which shows that the method is efficient and accurate, and provides an effective evaluation means for the teaching reform of online courses in colleges and universities.




teaching

A method for evaluating the quality of college curriculum teaching reform based on data mining

In order to improve the evaluation effect of current university teaching reform, a new method for evaluating the quality of university course teaching reform is proposed based on data mining algorithms. Firstly, the optimal data clustering criterion was used to select evaluation indicators and a quality evaluation system for university curriculum teaching reform was established. Next, a reform quality evaluation model is constructed using BP neural network, and the training process is improved through genetic algorithm to obtain the model weight and threshold of the optimal solution. Finally, the calculated parameters are substituted into the model to achieve accurate evaluation of the quality of university curriculum teaching reform. Selecting evaluation accuracy and evaluation efficiency as evaluation indicators, the practicality of the proposed method was verified through experiments. The experimental results showed that the proposed method can mine teaching reform data and evaluate the quality of teaching reform. Its evaluation accuracy is higher than 96.3%, and the evaluation time is less than 10ms, which is much better than the comparison method, fully demonstrating the practicality of the method.




teaching

Evaluation method of teaching reform quality in colleges and universities based on big data analysis

Research on the quality evaluation of teaching reforms plays an important role in promoting improvements in teaching quality. Therefore, an evaluation method of teaching reform quality in colleges and universities based on big data analysis is proposed. A multivariate logistic model is used to select the evaluation indicators for the quality evaluation of teaching reforms in universities. And clustering and cleaning of the evaluation indicator data are performed through big data analysis. The evaluation indicator data is used as input vectors, and the results of the teaching reform quality evaluation are used as output vectors. A support vector machine model based on the whale algorithm is built to obtain the relevant evaluation results. Experimental results show that the proposed method achieves a minimum recall rate of 98.7% for evaluation indicator data, the minimum data processing time of 96.3 ms, the accuracy rate consistently above 97.1%.




teaching

A personalised recommendation method for English teaching resources on MOOC platform based on data mining

In order to enhance the accuracy of teaching resource recommendation results and optimise user experience, a personalised recommendation method for English teaching resources on the MOOC platform based on data mining is proposed. First, the learner's evaluation of resources and resource attributes are abstracted into the same space, and resource tags are established using the Knowledge graph. Then, interest preference constraints are introduced to mine sequential patterns of user historical learning behaviour in the MOOC platform. Finally, a graph neural network is used to construct a recommendation model, which adjusts users' short-term and short-term interest parameters to achieve dynamic personalised teaching recommendation resources. The experimental results show that the accuracy and recall of the resource recommendation results of the research method are always higher than 0.9, the normalised sorting gain is always higher than 0.5.




teaching

Integrating MOOC online and offline English teaching resources based on convolutional neural network

In order to shorten the integration and sharing time of English teaching resources, a MOOC English online and offline mixed teaching resource integration model based on convolutional neural networks is proposed. The intelligent integration model of MOOC English online and offline hybrid teaching resources based on convolutional neural network is constructed. The intelligent integration unit of teaching resources uses the Arduino device recognition program based on convolutional neural network to complete the classification of hybrid teaching resources. Based on the classification results, an English online and offline mixed teaching resource library for Arduino device MOOC is constructed, to achieve intelligent integration of teaching resources. The experimental results show that when the regularisation coefficient is 0.00002, the convolutional neural network model has the best training effect and the fastest convergence speed. And the resource integration time of the method in this article should not exceed 2 s at most.




teaching

A method for evaluating the quality of teaching reform based on fuzzy comprehensive evaluation

In order to improve the comprehensiveness of evaluation results and reduce errors, a teaching reform quality evaluation method based on fuzzy comprehensive evaluation is proposed. Firstly, on the premise of meeting the principles of indicator selection, factor analysis is used to construct an evaluation indicator system. Then, calculate the weights of various evaluation indicators through fuzzy entropy, establish a fuzzy evaluation matrix, and calculate the weight vector of evaluation indicators. Finally, the fuzzy cognitive mapping method is introduced to improve the fuzzy comprehensive evaluation method, obtaining the final weight of the evaluation indicators. The weight is multiplied by the fuzzy evaluation matrix to obtain the comprehensive evaluation result. The experimental results show that the maximum relative error of the proposed method's evaluation results is about 2.0, the average comprehensive evaluation result is 92.3, and the determination coefficient is closer to 1, verifying the application effect of this method.




teaching

An evaluation of English distance information teaching quality based on decision tree classification algorithm

In order to overcome the problems of low evaluation accuracy and long evaluation time in traditional teaching quality evaluation methods, a method of English distance information teaching quality evaluation based on decision tree classification algorithm is proposed. Firstly, construct teaching quality evaluation indicators under different roles. Secondly, the information gain theory in decision tree classification algorithm is used to divide the attributes of teaching resources. Finally, the rough set theory is used to calculate the index weight and establish the risk evaluation index factor set. The result of teaching quality evaluation is obtained through fuzzy comprehensive evaluation method. The experimental results show that the accuracy rate of the teaching quality evaluation of this method can reach 99.2%, the recall rate of the English information teaching quality evaluation is 99%, and the time used for the English distance information teaching quality evaluation of this method is only 8.9 seconds.




teaching

Research on construction of police online teaching platform based on blockchain and IPFS technology

Under the current framework of police online teaching, in order to effectively solve the lack of high-quality resources of the traditional platform, backward sharing technology, poor performance of the digital platform and the privacy problems faced by each subject in sharing. This paper designs and implements the online teaching platform based on blockchain and interplanetary file system (IPFS). Based on the architecture of a 'decentralised' police online teaching platform, the platform uses blockchain to store hashes of encrypted private information and user-set access control policies, while the real private information is stored in IPFS after encryption. In the realisation of privacy information security storage at the same time to ensure the effective control of the user's own information. In order to achieve flexible rights management, the system classifies private information. In addition, the difficulties of police online teaching and training reform in the era of big data are solved one by one from the aspects of communication mode, storage facilities, incentive mechanism and confidentiality system, which effectively improves the stability and security of police online teaching.




teaching

Quantitative evaluation method of ideological and political teaching achievements based on collaborative filtering algorithm

In order to overcome the problems of large error, low evaluation accuracy and long evaluation time in traditional evaluation methods of ideological and political education, this paper designs a quantitative evaluation method of ideological and political education achievements based on collaborative filtering algorithm. First, the evaluation index system is constructed to divide the teaching achievement evaluation index data in a small scale; then, the quantised dataset is determined and the quantised index weight is calculated; finally, the collaborative filtering algorithm is used to generate a set with high similarity, construct a target index recommendation list, construct a quantitative evaluation function and solve the function value to complete the quantitative evaluation of teaching achievements. The results show that the evaluation error of this method is only 1.75%, the accuracy can reach 98%, and the time consumption is only 2.0 s, which shows that this method can improve the quantitative evaluation effect.




teaching

The performance evaluation of teaching reform based on hierarchical multi-task deep learning

The research goal is to solve the problems of low accuracy and long time existing in traditional teaching reform performance evaluation methods, a performance evaluation method of teaching reform based on hierarchical multi-task deep learning is proposed. Under the principle of constructing the evaluation index system, the evaluation indicator system should be constructed. The weight of the evaluation index is calculated through the analytic hierarchy process, and the calculation result of the evaluation weight is taken as the model input sample. A hierarchical multi-task deep learning model for teaching reform performance evaluation is built, and the final teaching reform performance score is obtained. Through relevant experiments, it is proved that compared with the experimental comparison method, this method has the advantages of high evaluation accuracy and short time, and can be further applied in relevant fields.




teaching

Online allocation of teaching resources for ideological and political courses in colleges and universities based on differential search algorithm

In order to improve the classification accuracy and online allocation accuracy of teaching resources and shorten the allocation time, this paper proposes a new online allocation method of college ideological and political curriculum teaching resources based on differential search algorithm. Firstly, the feedback parameter model of teaching resources cleaning is constructed to complete the cleaning of teaching resources. Secondly, according to the results of anti-interference consideration, the linear feature extraction of ideological and political curriculum teaching resources is carried out. Finally, the online allocation objective function of teaching resources for ideological and political courses is constructed, and the differential search algorithm is used to optimise the objective function to complete the online allocation of resources. The experimental results show that this method can accurately classify the teaching resources of ideological and political courses, and can shorten the allocation time, with the highest allocation accuracy of 97%.




teaching

Exploring Change and Innovation by ICT Teaching Staff in the New Zealand Polytechnic Sector




teaching

A Comparison of Learning and Teaching Styles – Self-Perception of IT Students




teaching

Teaching and Learning with BlueJ: an Evaluation of a Pedagogical Tool




teaching

A Single Case Study Approach to Teaching: Effects on Learning and Understanding




teaching

Does Technology Impact on Teaching Styles or Do Teaching Styles Impact on Technology in the Delivery of Higher Education?




teaching

A Framework for Teaching Mobile and Wireless Technology




teaching

Towards an Information System Making Transparent Teaching Processes and Applying Informing Science to Education




teaching

Teaching System Access Control




teaching

New Pathways to Learning: The Team Teaching Approach. A Library and Information Science Case Study




teaching

The Development, Use and Evaluation of a Program Design Tool in the Learning and Teaching of Software Development




teaching

Experimenting with eXtreme Teaching Method – Assessing Students’ and Teachers’ Experiences




teaching

Befriending Computer Programming: A Proposed Approach to Teaching Introductory Programming




teaching

Teaching Mobile Communication in an e-Learning Environmnet




teaching

Proposal of an Instructional Design for Teaching the Requirement Process for Designing Information Systems




teaching

Teaching in Virtual Worlds: Opportunities and Challenges




teaching

DigiStylus: A Socio-Technical Approach to Teaching and Research in Paleography




teaching

The Need to Balance the Blend: Online versus Face-to-Face Teaching in an Introductory Accounting Subject




teaching

Finding Diamonds in Data: Reflections on Teaching Data Mining from the Coal Face




teaching

Animated Courseware Support for Teaching Database Design




teaching

Would Cloud Computing Revolutionize Teaching Business Intelligence Courses?




teaching

Improving Teaching and Learning in an Information Systems Subject: A Work in Progress




teaching

Teaching Undergraduate Software Engineering Using Open Source Development Tools