reactor

Alec Baldwin knocks nuclear power, calls reactors 'filthy'

For some opponents of nuclear power, no amount of planning or patching is enough. Among those critics is actor Alec Baldwin, whose thoughts on the subject carry



  • Arts & Culture

reactor

Design of new U.S. reactors puts priority on cooling

The United States has approved construction of new nuclear reactors for the first time in three decades. The two new reactors approved on Feb. 9 for Georgia wou




reactor

Kodak had a 'secret' nuclear reactor

A new report reveals that the Kodak industrial facility in upstate New York was home to a small nuclear reactor filled with weapons-grade uranium for more than




reactor

How a viable nuclear fusion reactor really could change the world

Lockheed Martin recently claimed to have designed a fusion reactor that can fit on the back of a truck. If viable, it really could change the world.




reactor

Mini nuclear reactors may soon appear in a town near you

Experts argue that the downsized power sources can provide safe, efficient energy.




reactor

Pulsotron Thermonuclear Fusion Reactors on Sale Worldwide

The World cannot wait for 30 years to have fusion clean energy, so that PULSOTRON "B" plan is designed to reach ignition in less than 3 years that is by far the fastest way as it was demonstrated by certify ignition in 2013




reactor

ARC Canada to Host Small Modular Reactor Update With New Brunswick Energy Minister Mike Holland




reactor

World's First Biofuel Scale Continuous Flow Reactor for Biorefineries and Biochemicals

Produce High Value Biochemicals at Investor Friendly Cost Effective Capex




reactor

Reactor

A liquid/gas reactor includes a bulk catalyst bed and means for supplying fresh feed and recycled at least partially converted liquid product stream to the bulk catalyst bed. The reactor also includes means for collecting an at least partially converted liquid product stream from the bulk catalyst bed and recycling at least a portion thereto. A minor catalyst bed extends substantially vertically through the bulk catalyst bed. Means for supplying recycled at least partially converted product stream only to the minor catalyst bed is also provided. A separating wall is disposed between the bulk catalyst bed and the minor catalyst bed.




reactor

Integrated hydrogenation/dehydrogenation reactor in a catalytic reforming process configuration for improved aromatics production

A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.




reactor

Co-current catalyst flow with feed for fractionated feed recombined and sent to high temperature reforming reactors

A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.




reactor

Integrated hydrogenation/dehydrogenation reactor in a platforming process

A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.




reactor

Integrated hydrogenation/dehydrogenation reactor in a platforming process

A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.




reactor

Method for quenching paraffin dehydrogenation reaction in counter-current reactor

A process is presented for quenching a process stream in a paraffin dehydrogenation process. The process comprises cooling a propane dehydrogenation stream during the hot residence time after the process stream leaves the catalytic bed reactor section. The process includes cooling and compressing the product stream, taking a portion of the product stream and passing the portion of the product stream to the mix with the process stream as it leaves the catalytic bed reactor section.




reactor

Synthesis of sequestration resins for water treatment in light water reactors

An organic synthesis of materials to achieve removal of low molecular weight ionic species, such as transition metal ions including cobalt, iron, nickel, and zinc, from aqueous solutions. The synthesis includes the steps of providing a cation exchange resin, functionalizing the cation exchange resin using a chloride intermediate to form a sulfonyl chloride resin, and reacting a multi-amine based ligand with the sulfonyl chloride resin to form a sequestration resin. The synthesis further includes the steps of cooling the sequestration resin, and washing and drying the sequestration resin.




reactor

Polymerization reactor for producing super absorbent polymers and method of producing super absorbent polymers using the polymerization reactor

The present invention provides a polymerization reactor for producing a super absorbent polymer comprising: a reaction unit; a monomer composition supply unit being connected to the reaction unit and supplying a monomer composition solution containing a monomer, a photoinitiator, and a solvent; an agitating shaft extended in the reaction unit from one end of the reaction unit connected to the monomer composition supply unit to the other end of the reaction unit; a plurality of agitating blades installed around the agitating shaft; and a light irradiation unit providing light to the monomer composition solution furnished from the monomer composition supply unit, and a method of producing super absorbent polymers by using the same.




reactor

Combination reactor system

The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.




reactor

Reactor and agitator useful in a process for making 1-chloro-3,3,3-trifluoropropene

Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal;(b) ceramics on the rotating faces of the seal;(c) ceramics on the static faces of seal;(d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and(e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.




reactor

Process to reduce ethanol recycled to hydrogenation reactor

The present invention is directed to processes for recovering ethanol obtained from the hydrogenation of acetic acid. Acetic acid is hydrogenated in the presence of a catalyst in a hydrogenation reactor to form a crude ethanol product. The crude ethanol product is separated in one or more columns to recover ethanol. In some embodiments, less than 10 wt. % ethanol is recycled to the hydrogenation reactor.




reactor

Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol

Disclosed herein are processes for alcohol production by reducing ethyl acetate produced by hydrogenating acetic acid in the presence of a suitable catalyst. The product of the acetic acid hydrogenation is fed directly to a decanter to separate the hydrogenation product into an aqueous phase comprising water and ethanol and an organic phase comprising ethyl acetate. The organic phase is reduced with hydrogen in the presence of a catalyst to obtain a crude reaction mixture comprising the alcohol, in particular ethanol, which may be separated from the crude reaction mixture. Thus, ethanol may be produced from acetic acid through an ethyl acetate intermediate without an esterification step. This may reduce the recycle of ethanol in the hydrogenolysis process and improve ethanol productivity.




reactor

Reactor and process for propane oxidation

The amount of propionic acid produced in the process of oxidizing propane to acrylic acid is reduced by using a reactor with a length/diameter ratio >10 and/or maintaining the difference between the target reaction temperature and the peak temperature within the reactor to less than 20° C.




reactor

Counter-current multistage fischer tropsch reactor systems

The invention discloses an improved multistage fischer tropsch process scheme for the production of hydrocarbon fuels comprising feeding gaseous phase syngas and liquid stream hydrocarbons in a counter current manner such as herein described into the reaction vessel at a number of stages containing reaction catalysts; wherein fresh syngas enters into the stage where the product liquid stream leaves and the fresh liquid stream enters into the stage where the unreacted syngas leaves; wherein further the temperature of each stage can be controlled independently. More particularly the invention relates to improving the heat release in different reactors, product selectivity and reactor productivity of FT reactors.




reactor

Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor

Disclosed is a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. Also disclosed is a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.




reactor

System, process and reactor for conducting a synthesis gas conversion reaction

A synthesis gas conversion process and system are disclosed. Fresh syngas from a methane reformer is used as a sweep zone gas feed which is caused to flow across a water permselective membrane in a membrane reactor. The water permselective membrane is adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane and passes out of the reactor with the sweep zone gas. The water is then removed from the sweep zone gas forming a modified gas feed which is fed to the reaction zone. The modified gas feed has a preferred H2/CO ratio to feed into the reaction zone.




reactor

Slurry bubble column reactor

A slurry bubble column reactor with a gas distribution arrangement comprising an upper sparger, a lower sparger, and an open-ended tube. Gas from the lower sparger enters the tube and lowers the density of slurry in the tube. The difference in slurry density causes the slurry in the tube to rise, causing slurry outside the tube to move down, maintaining circulation and flushing catalyst from the vessel wall.




reactor

Chemical reactor with a plate heat exchanger

A steam cooled chemical reactor (1) comprising a vertical vessel (2), a plate heat exchanger embedded in a catalytic bed, to cool the catalytic bed by evaporation of a cooling water flow, wherein a water inlet and a steam outlet are located underneath the heat exchanger, and the plates and related piping are arranged so that the path of the cooling flow comprises a first ascending path from bottom to top of the catalytic bed, and a second descending path from top to the bottom of catalytic bed, and wherein internal evaporation channels of the plates provide the second descending or the first ascending path, and water upcomers or respectively steam downcomers provide the other of said first and second path.




reactor

Sidewall and bottom electrode arrangement for electrical smelting reactors and method for feeding such electrodes

Metallurgical reactors having cooling capability and electrode feed capability are disclosed. The reactors may include a shell having a sidewall and a bottom, where the shell is adapted to contain a molten material. The reactors may include at least one consumable electrode protruding through an opening of the shell and into the molten material. The reactors may include a current contact clamp configured to conduct operating current to the electrode, where the current clamp is in contact with the electrode, and where the current clamp comprises at least one internal channel, wherein the internal channel is configured to circulate a cooling medium. The reactors may include an electric isolation ring disposed between the electrode and the opening of the shell, wherein the electric isolation ring is configured to sealingly engage the electrode and the opening so as to restrict flow of the molten material out of the shell.




reactor

Nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Illustrative embodiments provide a nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system.




reactor

Reactor installation and removal tools

A reactor installation tool and method for installing a reactor unit in a reactor tube. A reactor installation tool including a movable assembly and a fixed assembly linked together such that the movable assembly can be adjusted relative to the fixed assembly. The movable assembly including a reactor sleeve attachment means for releasably securing a reactor sleeve loaded with a reactor unit to the tool. The fixed assembly including an expandable clamping unit for releasably securing the tool to a reactor tube. A reactor unit can be installed in the reactor tube by adjusting the movable assembly to extract the reactor unit from the reactor sleeve as the fixed assembly is rigidly secured to the reactor tube. The fixed assembly can be released from the reactor tube and the reactor installation tool can be removed from the reactor tube.




reactor

Method for designing a fuel assembly optimized as a function of the stresses in use in light-water nuclear reactors, and resulting fuel assembly

A method for design of a fuel assembly for nuclear reactors, including structural components made from zirconium alloy: the mean uniaxial tensile or compressive stress to which the components are subjected during the assembly life is calculated, the zirconium alloy of which the components are made is selected according to the following criteria: those components subjected to an axial or transverse compressive stress of between −10 et −20 MPa are made from an alloy with a content of Sn between Sn=(=0.025σ−0.25)% and Sn=−0.05σ%: those components subjected to such a stress of between 0 et −10 MPa are made from an alloy the Sn content of which is between Sn=traces and Sn=(0.05σ+1)%: those components subjected to such a stress of between 0 and +10 MPa are made from an alloy the Sn content of which is between Sn=0.05% and Sn=(0.07σ+1)%: and those components subjected to such a stress of between +10 and +20 MPa are made from an alloy the content of SN of which is between 0.05% and 1.70%. A fuel assembly made according to the method.




reactor

Nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Illustrative embodiments provide a nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system.




reactor

Method of installing reactor units

A reactor installation tool and method for installing a reactor unit in a reactor tube. A reactor installation tool including a movable assembly and a fixed assembly linked together such that the movable assembly can be adjusted relative to the fixed assembly. The movable assembly including a reactor sleeve attachment means for releasably securing a reactor sleeve loaded with a reactor unit to the tool. The fixed assembly including an expandable clamping unit for releasably securing the tool to a reactor tube. A reactor unit can be installed in the reactor tube by adjusting the movable assembly to extract the reactor unit from the reactor sleeve as the fixed assembly is rigidly secured to the reactor tube. The fixed assembly can be released from the reactor tube and the reactor installation tool can be removed from the reactor tube.




reactor

Method for measuring the neutron flux in the core of a nuclear reactor using a cobalt detector and associated device

A method for measuring the neutron flux in the core of a nuclear reactor, the method including several steps recurrently performed at instants separated by a period, the method comprising at each given instant the following steps: acquiring a total signal by a cobalt neutron detector placed inside the core of the reactor; assessing a calibration factor representative of the delayed component of the total signal due to the presence of cobalt 60 in the neutron detector; assessing a corrected signal representative of the neutron flux at the detector from the total signal and from the calibration factor; assessing a slope representative of the time-dependent change of the calibration factor between the preceding instant and the given instant; the calibration factor at the given instant being assessed as a function of the calibration factor assessed at the preceding instant, of the slope, and of the time period separating the given instant from the preceding instant.




reactor

Nuclear fission reactor, vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Disclosed embodiments include methods of assembling a vented nuclear fission fuel module. Given by way of non-limiting example and not of limitation, an illustrative method of assembling a vented nuclear fission fuel module includes receiving a nuclear fission fuel element capable of generating a gaseous fission product. A valve body is coupled to the nuclear fission fuel element, and the valve body defines a plenum therein for receiving the gaseous fission product. A valve is disposed in communication with the plenum for controllably venting the gaseous fission product from the plenum. A flexible diaphragm is coupled to the valve for moving the valve. A cap is mounted on the valve, and a manipulator extendable to the cap for manipulating the cap is received.




reactor

Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

A zirconium alloy nuclear reactor cylindrical cladding has an inner Zr substrate surface (10), an outer volume of protective material (22), and an integrated middle volume (20) of zirconium oxide, zirconium and protective material, where the protective material is applied by impaction at a velocity greater than 340 meters/second to provide the integrated middle volume (20) resulting in structural integrity for the cladding.




reactor

Integral helical coil pressurized water nuclear reactor

An integral pressurized water nuclear reactor for the production of steam utilizing a helical coil steam generator, a plurality of internal circulation pumps, and an internal control rod drive mechanism structure.




reactor

Apparatus, method and program for monitoring nuclear thermal hydraulic stability of nuclear reactor

An apparatus for monitoring nuclear thermal hydraulic stability of a nuclear reactor, contains: a calculation unit configured to calculate a stability index of a nuclear thermal hydraulic phenomenon based on nuclear instrumentation signals, the signals being outputted by a plurality of nuclear instrumentation detectors placed at regular intervals in a reactor core; a simulation unit configured to simulate the nuclear thermal hydraulic phenomenon based on a physical model by using information on an operating state of the nuclear reactor as an input condition; a limit value updating unit configured to update a limit value of the nuclear thermal hydraulic phenomenon based on a result of the simulation; and a determination unit configured to determine, based on the stability index and the limit value, whether or not to activate a power oscillation suppressing device.




reactor

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Compact nuclear reactor

A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.




reactor

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Pressurized water reactor with upper vessel section providing both pressure and flow control

A pressurized water reactor (PWR) includes a vertical cylindrical pressure vessel having a lower portion containing a nuclear reactor core and a vessel head defining an internal pressurizer. A reactor coolant pump (RCP) mounted on the vessel head includes an impeller inside the pressure vessel, a pump motor outside the pressure vessel, and a vertical drive shaft connecting the motor and impeller. The drive shaft does not pass through the internal pressurizer. A central riser may be disposed concentrically inside the pressure vessel, and the RCP impels primary coolant downward into a downcomer annulus between the central ser and the pressure vessel. A steam generator may be disposed in the downcomer annulus and spaced apart from with the impeller by an outlet plenum, A manway may access the outlet plenum so tube plugging can be performed on the steam generator via access through the manway without removing the RCP.




reactor

Chemistry probe assemblies and methods of using the same in nuclear reactors

Electrochemical corrosion potential (ECP) probe assemblies may be used to monitor ECP of materials due to coolant chemistry in an operating nuclear reactor. Example embodiment assemblies include at least one ECP probe that detects ECP of potentially several different materials, a structural body providing a fluid flow path for the coolant over the ECP probes, and a signal transmitter that transmits or carries ECP data to an external receiver. The ECP probes may be of any number and/or type, so as to detect ECP for different component materials, including stainless steel, a zirconium alloys, etc. The ECP probes may further detect ECP due to ion concentration, pH, etc. The ECP data may be transmitted through wired or wireless signal transmitters. Example methods include installing and using example embodiment ECP probe assemblies in nuclear reactors and facilities.




reactor

System and method for annealing nuclear fission reactor materials

Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.




reactor

Nuclear reactor green and sintered fuel pellets, corresponding fuel rod and fuel assembly

A sintered fuel pellet for a water nuclear reactor fuel rod including a peripheral wall extending along a central axis and two end faces. At least one of the end faces includes at least a first chamfer extending from the peripheral wall towards the central axis with a first non-zero slope with respect to a plane perpendicular to the central axis and a second chamfer extending from the first chamfer towards the central axis with a second non-zero slope with respect to a plane perpendicular to the central axis, wherein the first slope is different from the second slope.




reactor

Compact nuclear reactor

A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.




reactor

Compact nuclear reactor with integral steam generator

In an illustrative embodiment, a pressurized water nuclear reactor (PWR) includes a pressure vessel (12, 14, 16), a nuclear reactor core (10) disposed in the pressure vessel, and a vertically oriented hollow central riser (36) disposed above the nuclear reactor core inside the pressure vessel. A once-through steam generator (OTSG) (30) disposed in the pressure vessel includes vertical tubes (32) arranged in an annular volume defined by the central riser and the pressure vessel. The OTSG further includes a fluid flow volume surrounding the vertical tubes and having a feedwater inlet (50) and a steam outlet (52). The PWR has an operating state in which feedwater injected into the fluid flow volume at the feedwater inlet is converted to steam by heat emanating from primary coolant flowing inside the tubes of the OTSG, and the steam is discharged from the fluid flow volume at the steam outlet.




reactor

Catalytic reactor including one cellular area having controlled macroporosity and a controlled microstructure and one area having a standard microstructure

The invention relates to a catalytic reactor including: at least one first architecture/microstructure including a ceramic and/or metal cellular architecture having a pore size of 2 to 80 ppi and a macroporosity of more than 85%, and a microstructure having a grain size of 100 nm to 5 microns, and skeleton densification of more than 95%, and a catalytic layer; and at least one second architecture/microstructure including a spherical or cylindrical architecture having a pore size of 0.1 to 100 μm and a macroporosity of less than 60%, and a microstructure having a grain size of 20 nm to 10 μm and a skeleton densification of 20% to 90%, and a catalytic layer; the first and second architecture/microstructure being stacked inside said reactor.




reactor

Method and device for cleaning exhaust gases by way of fluidized bed reactors

The invention relates to a method for cleaning exhaust gases, in which an exhaust gas and a sorbent are combined in a fluidized bed reactor. In a subsequent filter system, solid matter is segregated, and thereafter, up to 99 per cent of the sorbent is re-channeled into the fluidized bed reactor, wherein the gas is subjected to a rotation around the flow axis in the fluidized bed reactor.




reactor

Method and device for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas

A method for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas. The sensible heat of a synthesis gas produced from hydrocarbons and steam can be used so that two types of vapor are produced during the heating and evaporation of boiler feed water and process condensate. The method also includes a conversion of the carbon monoxide contained in the synthesis gas. The method includes an optional heating of the boiler feed water using the flue gas from the heating of the reforming reactor. The sensible heat of the synthesis gas and of the flue gas originating from the heating can be used more efficiently. The disadvantages from the flue gas heating, which are caused by the fluctuating heat supply in the flue gas duct, are avoided. A system for practicing the method is also disclosed.




reactor

Fluidized bed reactor

A fluidized bed reactor includes a bottom portion, a roof portion, and side walls vertically extending between the bottom portion and the roof portion, forming a reaction chamber of the reactor. At least one side wall of the reaction chamber forms at least one vertical indentation in the reaction chamber, which indentation extends from the plane of the at least one side wall towards the reaction chamber. The indentation extending from the plane of the at least one side wall towards the reaction chamber is formed of a portion of the at least one side wall, protruding from the plane of the at least one side wall towards the reaction chamber, and the portion of the at least one side wall includes at least two substantially vertical indenting wall portions deviating from the plane of the at least one side wall at vertical lines within a distance from each other.




reactor

Systems and methods for real-time catalyst particle size control in a polymerization reactor

Polymerization reactor systems providing real-time control of the average particle size of catalyst system components are disclosed. Methods for operating such polymerization reactor systems also are described.




reactor

Reactor tank

Disclosed is an improved water treatment cavitation reactor cone. The tank operates on a continuous flow of fluids which are subjected to ultrasonic waves in combination with a high level of injected ozone. The treatment tank includes a tangential inlet that induces a rotating flow into the tank thereby increasing the mixing of the ozone within the effluent. The effluent is further treated with DC current. The treatment tank provides a cost efficient and environmentally friendly process and apparatus for cleaning and recycling fluids as contaminated as frac water, used to stimulate gas production from shale formations, as well as other types of fluids having various levels of contaminants such as aerobic and anaerobic bacteria and suspended solids. The calcium carbonate scaling tendency is reduced to an acceptable level without the use of acids, ion exchange materials, or anti scaling chemicals which is of economical and environmental significance and benefit.