prostate cancer

Common Prostate Cancer Drugs Were Less Safe: New Study

Men taking either abiraterone or enzalutamide for advanced prostate cancer who had also undergone hormone therapy were at increased risk of serious metabolic




prostate cancer

Remodelling Signal Pathways in Prostate Cancer - A New Therapeutic Target!

medlinkCancer/medlink-causing mutations in prostate cancer hyperactivate PI3K signaling, leading to cancer cell growth. PLEKHS1, a largely unknown




prostate cancer

Dual Treatment Boosts Survival Rate in Metastatic Prostate Cancer

Dual treatment has improved the survival rates for men with metastatic prostate cancer by an average of six months. Dual treatment includes both standard




prostate cancer

Combination Therapy Holds Promise for Advanced Prostate Cancer Treatment

Decitabine, a medlinkprostate cancer/medlink drug, that inhibits DNA methylation, effectively cuts tumor growth in prostate cancer with neuroendocrine features or loss of the gene RB1.




prostate cancer

Is Prostate Cancer Treatment Worth the Risk?

New report outlines long-term risks of prostate cancer treatment, highlighting potential impacts on quality of life and need for informed decisions.




prostate cancer

What is stereotactic radiation therapy for prostate cancer? How does it compare to other treatments?

Stereotactic radiotherapy uses high doses of radiation to target and kill cancer cells; it uses newer machines that can deliver very focused radiation beams




prostate cancer

Hormone Therapy for Prostate Cancer

A fact sheet that describes hormone therapy and its role in treating prostate cancer. Includes information about the different types of hormone therapy, how they are used, and possible side effects.




prostate cancer

NIH study links neighborhood environment to prostate cancer risk in men with West African genetic ancestry

A new study suggests, for men with West African genetic ancestry, living in a disadvantaged neighborhood was associated with a higher risk of prostate cancer. The researchers posit that chronic stress—such as from racial profiling, housing discrimination, and exposure to violence—may be a possible driver.




prostate cancer

Relationships of dietary habits with prostate cancer risk: results from Mendelian randomization analyses and the National Health and Nutrition Examination Survey

Food Funct., 2024, 15,10823-10837
DOI: 10.1039/D4FO03859B, Paper
Zhen Zhou, Jin Xu, Yang Zhao, Yuanjie Niu
Prior investigations identified correlations between dietary habits and the risk of prostate cancer (PCa); however, the causative dynamics are unclear.
The content of this RSS Feed (c) The Royal Society of Chemistry




prostate cancer

Tailored peptide nanomaterials for receptor targeted prostate cancer imaging

Nanoscale, 2024, Advance Article
DOI: 10.1039/D4NR03273J, Paper
Fátima Santillán, Carlie L. Charron, Betty C. Galarreta, Leonard G. Luyt
This study reports on a cancer targeted nanomaterial created from cyclic octapeptides that is tailored for the optical imaging of prostate cancer. The strategy focuses on the co-assembly of four specific templates into cyclic peptide nanotubes.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




prostate cancer

Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer

Biomater. Sci., 2024, 12,1617-1629
DOI: 10.1039/D3BM01894F, Review Article
Mengjun Huang, Qiliang Teng, Fei Cao, Jinsheng Huang, Jun Pang
Existing treatments could be sensitized by targeting the ferroptosis pathway in prostate cancer.
The content of this RSS Feed (c) The Royal Society of Chemistry




prostate cancer

Photothermal therapy: a novel potential treatment for prostate cancer

Biomater. Sci., 2024, Advance Article
DOI: 10.1039/D4BM00057A, Review Article
Zirui Dong, Kaming Xue, Anushikha Verma, Jian Shi, Zhihao Wei, Xiaotian Xia, Keshan Wang, Xiaoping Zhang
This review discussed photothermal therapy from basic information to its circumstances and potential in protate cancer treatment.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




prostate cancer

METHODS AND KITS FOR THE PROGNOSIS AND TREATMENT OF PROSTATE CANCER

Provided herein are methods for the prognosis of prostate cancer progression in a patient by analyzing the gene expression in a tumor sample obtained from the patient the prognosis of prostate cancer progression in a patient by analyzing the gene expression in a tumor sample obtained from the patient. In particular, gene expression levels of GCOM1, MEX3D, TRPM4, ATPAF1, PTRF, GLYATL1, FLNA, OBSCN, STRA13, WHSCl, ARFGAP3, KDM2A, FAM83H, CLDN7, CNOT6, and B3GNT9 are measured. Kits containing means for the measurement of gene expression as described herein and methods for treatment of prostate cancer are also provided.




prostate cancer

MATERIALS AND METHODS FOR DIAGNOSIS, PROGNOSIS AND ASSESSMENT OF THERAPEUTIC/PROPHYLACTIC TREATMENT OF PROSTATE CANCER

A method to detect prostate cancer comprising contacting a sample of prostate cells from the patient with a set of detectably labeled probes under hybridization conditions and determining the presence of chromosomal abnormalities in prostate tumor tissue, PIN (intra-epithelial neoplasia), histologically benign tissue and benign prostatic hyperplasia (BPH); a method to combine immunofluorescence and FISH (IF-FISH) to facilitate the assessment of chromosomal abnormalities; a set of probes; and a kit comprising the set of probes and instructions for diagnosing prostate cancer in a patient.




prostate cancer

Prostate cancer nurse says not enough said about impact on sex, calls for support

This specialist nurse teaches thousands of prostate cancer survivors how to revitalise their sex life after diagnosis, but she is the only one of her kind in an area spanning 48,000 square kilometres.




prostate cancer

CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti–CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.




prostate cancer

Androgen-deprivation treatments for prostate cancer could protect men from COVID-19

(European Society for Medical Oncology) A study of 4,532 men in the Veneto region of Italy has found that those who were being treated for prostate cancer with androgen-deprivation therapies (ADT) were less likely to develop the coronavirus COVID-19 and, if they were infected, the disease was less severe. The study is published in Annals of Oncology.




prostate cancer

18F-DCFPyL PET/CT Imaging in Patients with Biochemical Recurrence Prostate Cancer after Primary Local Therapy

Objective: To investigate the lesion detection rate of 18F-DCFPyL-PET/CT, a prostate-specific membrane antigen (PSMA) targeted PET agent, in biochemical relapse prostate cancer patients after primary local therapy. Methods: This is a prospective institutional review board-approved study of 90 patients with documented biochemical recurrence (median PSA 2.5 ng/mL, range 0.21-35.5 ng/mL) with negative conventional imaging after primary local therapies, including radical prostatectomy (n = 38), radiation (n = 27) or combination (n = 25). Patients on androgen deprivation therapy were excluded. Patients underwent whole-body 18F-DCFPyL-PET/CT (299.9±15.5 MBq) at 2 h p.i. PSMA-PET lesion detection rate was correlated with PSA, PSA kinetics and original primary tumor grade. Results: Seventy patients (77.8%) showed a positive PSMA-PET scan, identifying a total of 287 lesions: 37 prostate bed foci, 208 lymph nodes, and 42 bone/organ distant sites; 11 patients had a negative scan and 9 patients showed indeterminate lesions, which were considered negative in this study. The detection rates were 47.6% (n = 10/21), 50% (n = 5/10), 88.9% (n = 8/9), and 94% (n = 47/50) for PSA >0.2 to <0.5, 0.5 to <1.0, 1 to <2.0, and ≥2.0 ng/mL, respectively. In post-surgical patients, PSA, PSAdt and PSAvel correlated with PET results but the same was not true for post-radiation patients. These parameters also correlated with the extent of disease on PET (intrapelvic vs. extrapelvic). There was no significant difference between the rate of positive scans in patients with higher grade vs lower grade primary tumors (Gleason score ≥4+3 vs <3+4). Tumor recurrence was histology confirmed in 40% (28/70) of patients. On a per-patient basis, positive predictive value was 93.3% (95% CI, 77.6-99.2%) by histopathologic validation, and 96.2% (95% CI, 86.3-99.7%) by the combination of histology and imaging/clinical follow-up. Conclusion: 18F-DCFPyL-PET/CT imaging offers high detection rates in biochemically recurrent prostate cancer patients; and is positive in about 50% of patients with PSA <0.5 ng/mL, which could substantially impact clinical management. In post-surgical patients, 18F-DCFPyL-PET/CT correlates with PSA, PSAdt and PSAvel suggesting it may have prognostic value. 18F-DCFPyL-PET/CT is highly promising for localizing sites of recurrent prostate cancer.




prostate cancer

Can fluorescence-guided surgery help identify all lesions in unknown locations or is the integrated use of a roadmap created by preoperative imaging mandatory? A blinded study in prostate cancer patients.

Rationale: Lymphatic tracers can help visualize the lymphatic drainage patterns and sentinel nodes of individual prostate cancer patients. To determine the role of nuclear medicine, in particular the positional guidance of a SPECT/CT-based 3D imaging roadmap, in this process we studied to which extend fluorescence-guidance underestimated the number of target lesions. Methods: SPECT/CT imaging was performed after intraprostatic tracer administration of either ICG-99mTc-nanocolloid (hybrid tracer group) or 99mTc-nanocolloid to create a roadmap that depicted all sentinel nodes (SNs). Patients who received 99mTc-nanocolloid were injected with "free" ICG immediately prior to surgery ("free" ICG group). Before unblinding, fluorescence-guidance was used for intraoperative SN identification. This was followed by extended pelvic lymph node dissection (ePLND). Following unblinding of the SPECT/CT images, the number of missed SN’s were recorded and their resection was pursued when the anatomy allowed. Results: Preoperative SPECT/CT revealed no differences in the SN identification rate between ICG-99mTc-nanocolloid and 99mTc-nanocolloid. However, fluorescence-guidance only allowed intraoperative removal of all SNs in 40% of patients in the hybrid tracer group and in 20% of patients in the "free" ICG group. Overall, 75.9% of the intraoperatively resected SNs in the hybrid tracer group and 51.8% of the SNs in the "free" ICG group were removed solely under fluorescence-guidance. During ePLND 22 additional SNs were resected (7 in the hybrid tracer group and 15 in the "free" ICG group). After unblinding 18 remaining SNs were identified (6 in the hybrid group and 12 in the "free" ICG group). In the "free" ICG group, ex vivo evaluation of the excised specimens revealed that 14 SNs removed under ePLND or after unblinding contained radioactivity but no fluorescence. Conclusion: The preoperative imaging roadmap provided by SPECT/CT enhanced the detection of prostate SNs in more ectopic locations in 17 of the 25 patients and the hybrid tracer ICG-99mTc-nanocolloid was shown to outperform "free" ICG. Overall, fluorescence-guided pelvic nodal surgery underestimated the number of SNs in 60-80% of patients.




prostate cancer

Long term follow-up and outcomes of re-treatment in an expanded 50 patient single-center phase II prospective trial of Lutetium-177 (177Lu) PSMA-617 theranostics in metastatic castrate-resistant prostate cancer

Objectives: Lutetium-177 (177Lu)-PSMA-617 (LuPSMA) is a radioligand with high affinity for prostate specific membrane antigen (PSMA) enabling targeted beta-irradiation of prostate cancer. We have previously reported favorable activity with low toxicity in a prospective phase II trial involving 30 men with metastatic castrate-resistant prostate cancer (mCRPC). We now report their longer-term outcomes including a 20 patient extension cohort and outcomes of subsequent systemic treatments following completion of trial therapy. Methods: 50 patients with PSMA-avid mCRPC who had progressed after standard therapies received up to 4 cycles of LuPSMA every 6 weeks. Endpoints included PSA response (PCWG2), toxicity (CTCAE v4.03), imaging response, patient-reported health-related quality of life (QoL), progression-free and overall survival. We also describe, as a novel finding, outcomes of men who subsequently progressed and had further systemic therapies, including LuPSMA. Results: 75 men were screened to identify 50 patients eligible for treatment. Adverse prognostic features of the cohort included short median PSA doubling time (2.3 months) and extensive prior treatment including prior docetaxel (84%), cabazitaxel (48%), and abiraterone and/or enzalutamide (90%). The mean administered radioactivity was 7.5 GBq/cycle. PSA decline ≥ 50% was achieved in 32 of 50 patients (64%, 95% CI 50-77%), including 22 patients (44%, 95% CI 30-59%) with ≥ 80% decrease. Of 27 patients with measurable soft tissue disease, 15 (56%) achieved an objective response by RECIST 1.1. The most common toxicities attributed to LuPSMA were self-limiting G1-2 dry mouth (66%), transient G1-2 nausea (48%), G3-4 thrombocytopenia (10%) and G3 anemia (10%). Brief pain inventory severity and interference scores decreased at all time points including at the 3 month follow-up with a decrease of -1.2 (95% CI -0.5 to -1.9, P = 0.001) and 1.0 (95% CI -0.2 to -0.18, P = 0.013), respectively. At a median follow-up of 31.4 months, median OS was 13.3 months (95% CI 10.5-18.7) with a significantly longer survival of 18.4 months (95% CI 13.8-23.8) in patients achieving a PSA decline ≥ 50%. At progression following prior response, further LuPSMA was administered to 15 (30%) patients (median 2 cycles commencing 359 days from enrolment) with PSA decline ≥ 50% in 11 patients (73%). 4 of 21 patients (19%) receiving other systemic therapies upon progression experienced PSA decline ≥ 50%. There were no unexpected adverse events with LuPSMA re-treatment. Conclusion: This expanded 50 patient cohort of men with extensive prior therapy confirms our earlier report of high response rates, low toxicity and improved QoL with LuPSMA radioligand therapy. Upon progression, re-challenge LuPSMA demonstrated higher response rates than other systemic therapies.




prostate cancer

Diagnostic value of 68Ga-PSMA PET/CT for detection of PTEN expression in prostate cancer: a pilot study

Purpose: To explore the value of 68Ga-PSMA-PET/CT for detection of phosphatase and tensin homolog (PTEN) - loss prostate cancer (PCa). Methods: We retrospectively enrolled 75 patients who underwent multiparametric MRI (mpMRI) and 68Ga-PSMA PET/CT before radical prostatectomy. Lesions were outlined on pathological images and regions of interest were drawn on matched mpMRI and PET/CT images. Imaging parameters including average apparent diffusion coefficient (ADCmean) and maximum standardized uptake value (SUVmax) were derived. Immunohistochemical staining was carried out to evaluate the PTEN status. The diagnostic performance of imaging parameters was analyzed by receiver operating characteristics (ROC) analysis. A univariate logistic regression analyses were used to evaluate the association between clinical and imaging variables and PTEN status. Results: Totally, 103 lesions from 54 patients were analyzed. Of these lesions, 34 of 103 (33.0%) showed PTEN-loss status. Our study showed a strong association between SUVmax and PTEN-loss tumors both in the per-patient analysis (P < 0.01) and per-lesion analysis (P < 0.01), yielding the sensitivity and specificity of 0.80 and 0.77 in the per-patient analysis and 0.83 and 0.74 in the per-lesion analysis. Meanwhile, higher pathological PSMA expression was found in the PTEN-deficiency tumors. However, there was no significant difference between PTEN-loss tumors and PTEN-intact tumors using parameters including ADCmean (P > 0.05) and PI-RADS score (P > 0.05). Surprisingly, SUVmax was a significant predictor for detection of PTEN-loss tumors (odds ratio: 7.56, 95% confidence interval: 2.18-26.24, per-patient analysis; odds ratio: 13.66, 95% confidence interval: 4.32-43.24, per-lesion analysis). Conclusion: 68Ga-PSMA-PET/CT could effectively detect aggressive PTEN-loss tumors.




prostate cancer

Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors

Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake.




prostate cancer

Mapping prostate cancer lesions pre/post unsuccessful salvage lymph node dissection using repeat PSMA-PET

Introduction: The aim of this study was to analyze patterns of persistent versus recurrent or new PET lesions in a selected patient cohort with PSA persistence following salvage lymph node dissection (SLND) and pre/post procedure prostate-specific membrane antigen ligand positron emission tomography (PSMA-PET). Material and Methods: 16 patients were included in this multicenter study. Inclusion criteria were: a) PSMA-PET performed for biochemical recurrence before SLND (pre-SLND PET) and b) repeat PSMA-PET performed for persistently elevated PSA level (≥0.1 ng/mL) ≥6 weeks after SLND (post-SLND PET). Image analysis was performed by three independent nuclear medicine physicians applying the molecular imaging TNM system PROMISE. Lesions were confirmed by histopathology, presence on correlative CT/MRI/bone scan or PSA response after focal therapy. Results: post-SLND PET identified PCa-lesions in 88% (14/16) of patients with PSA persistence after SLND. Median PSA was 1.2 ng/mL (IQR, 0.6-2.8 ng/mL). Disease was confined to the pelvis in 56% of patients (9/16) and most of these men had common iliac (6/16, 38%) and internal iliac lymph node metastases (6/16, 38%). Extrapelvic disease was detected in 31% of patients (5/16). In pre- and post-SLND PET comparison, 10/16 had at least one lesion already detected at baseline (63% PET persistence); 4/16 had new lesions only (25% PET recurrence); 2 had no disease on post-SLND PET. All validated regions (11 regions in 9 patients) were true positive. 9/14 (64%) patients underwent repeat local therapies after SLND (7/14 radiotherapy, 2/14 surgery). Conclusion: SLND of pelvic nodal metastases was often not complete according to PSMA-PET. About two thirds of patients had PET positive nodal disease after SLND already seen on pre-SLND PSMA-PET. Notably, about one quarter of patients had new lesions, not detected by pre-surgical PSMA-PET.




prostate cancer

11C-choline PET/CT in recurrent prostate cancer: retrospective analysis in a large US patient series

Purpose: To evaluate 11C-choline PET/CT detection performance for biochemically recurrent prostate cancer (PCa) in a large non-European cohort in the context of emerging evidence for PSMA PET in this setting, and to map patterns of PCa recurrence. Methods: We retrospectively analyzed 11C-choline PET/CT scans from 287 patients who were enrolled onto an imaging protocol based on rising prostate-specific antigen (PSA) levels (mean:3.43 ng/mL, median:0.94 ng/mL, range:0.15–89.91) and suspected recurrent PCa. A total of 187 patients had undergone primary radical prostatectomy (RP; 79/187 had secondary radiotherapy), 30 had undergone primary radiotherapy (RT), and 70 had persistent PSA elevation after receiving initial treatment (69 post-RP, 1 post-RT). The level of suspicion for recurrence on 11C-choline PET/CT was scored (0:negative, 1:equivocal, 2:positive) by two readers. The correlation between 11C-choline PET/CT positivity and initial treatment, Gleason score, NCCN stage, PSA level, PSA doubling time, PSA velocity, and time between initial treatment and PET imaging was evaluated. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria were used to map 11C-choline recurrence patterns. Results: Considering scores 1 and 2 as positives, consensus between the two readers deemed 66% of the 11C-choline PET/CT scans as positive. When sorted by PSA level, 45% of patients with PSA<0.5 ng/mL, 56% of patients with PSA 0.5–0.99 ng/mL, 70% of patients with PSA 1.0–1.99 ng/mL, and 90% of patients with PSA ≥2.0 ng/mL scored either 1 or 2 on 11C-choline PET/CT scans. When considering scores of 2 only, 11C-choline PET/CT positivity was 54% (28%, 46%, 62%, and 81%, respectively, for patients with PSA <0.5 ng/mL, 0.5–0.99 ng/mL, 1.0–1.99 ng/mL, and ≥2.0 ng/mL). In multivariate analysis, only the PSA level was significantly associated with scan positivity. Pattern analysis showed that pelvic lymph nodes were the most common site of recurrence, and 28% of patients had 11C-choline-positive suspected recurrences outside the initial treatment field. Conclusion: 11C-choline PET/CT can detect PCa recurrence even among patients with low PSA levels when interpretation accounts for the clinical context, providing a certain pre-test probability. Until PSMA agents are fully approved for PCa, choline PET/CT may provide clinical utility.




prostate cancer

Repeatability of Quantitative 18F-DCFPyL PET/CT Measurements in Metastatic Prostate Cancer.

Quantitative evaluation of radiolabeled Prostate-Specific Membrane Antigen (PSMA) PET scans may be used to monitor treatment response in patients with prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim of this study was to investigate the repeatability of quantitative 18F-DCFPyL (a second generation 18F-PSMA-ligand) PET/CT measurements in patients with PCa. Methods: Twelve patients with metastatic PCa were prospectively included, of which 2 were excluded from final analyses. Patients received two whole-body 18F-DCFPyL PET/CT scans (median dose 317 MBq; uptake time 120 min), within median 4 days (range 1-11 days). After semi-automatic (isocontour-based) tumor delineation, the following lesion-based metrics were derived: Tumor-to-Blood ratio (TBRmean, TBRpeak, and TBRmax), Standardized Uptake Value (SUVmean, SUVpeak, SUVmax, normalized to bodyweight), tumor volume, and total lesion tracer uptake (TLU). Additionally, patient-based Total Tumor Volume (sum of PSMA-positive tumor volumes; TTV) and Total Tumor Burden (sum of all lesion TLUs; TTB) were derived. Repeatability was analyzed using repeatability coefficients (RC) and intra-class correlations (ICC). Additionally, the effect of point spread function (PSF) image reconstruction on the repeatability of uptake metrics was evaluated. Results: In total, 36 18F-DCFPyL PET positive lesions were analyzed (up to 5 lesions per patient). RCs of TBRmean, TBRpeak, and TBRmax were 31.8%, 31.7%, and 37.3%, respectively. For SUVmean, SUVpeak, SUVmax the RCs were 24.4%, 25.3% and 31.0%, respectively. All ICC were ≥0.97. Tumor volume delineations were well repeatable, with RC 28.1% for individual lesion volumes and RC 17.0% for TTV. TTB had a RC of 23.2% and 33.4%, when based on SUVmean and TBRmean, respectively. Small lesions (<4.2mL) had worse repeatability for volume measurements. The repeatability of SUVpeak, TLU, and all patient-level metrics were not affected by PSF-reconstruction. Conclusion: 18F-DCFPyL uptake measurements are well repeatable and can be used for clinical validation in future treatment response assessment studies. Patient-based TTV may be preferred for multicenter studies since its repeatability was both high and robust to different image reconstructions.




prostate cancer

Impact of 68Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single Center Study

The impact of prostate specific membrane antigen (PSMA) PET/CT on management of prostate cancer (PCa) patients with biochemical recurrence (BCR) is well-established. However, whether and how PSMA PET/CT affects the management of patients undergoing scans for other clinical indications remains unknown. The goal of this study was to determine the impact of 68Ga-PSMA-11 PET/CT on initial and subsequent management decisions in a cohort of PCa patients referred for various indications ("basket trial") excluding the two main classical indications: BCR and presurgical staging. Methods: This was a prospective study of 197 patients that aimed to determine the impact of 68Ga-PSMA-11 PET/CT on PCa stage and management. Indications for PSMA PET/CT were: initial staging of non-surgical candidates (30 patients) and re-staging after definitive treatment (n = 168). The re-staging cohort comprised: patients re-staged with known advanced metastatic disease (n = 103), after androgen deprivation therapy only (n = 16), after surgery with serum PSA levels <0.2 ng/ml (n = 13), after radiation therapy (RT) not meeting the Phoenix criteria (n = 22) and after other primary local treatments [i.e. high-intensity focused ultrasound (HIFU), focal laser ablation, cryoablation, hyperthermia or irreversible electroporation] (n = 13). Patients with BCR and candidates for curative surgery were excluded. Impact on management was assessed using pre- and post-PET questionnaires completed by referring physicians, electronic chart review and/or patient telephone encounters. Results: PSMA PET/CT changed disease stage in 135/197 (69%) patients (38% up-stage, 30% down-stage and no changes in stage in 32%). Management was affected in 104/182 (57%) patients. Specifically, PSMA PET/CT impacted management of patients who were re-staged after RT without meeting the Phoenix criteria for BCR, after other definitive local treatments and with advanced metastatic disease in 13/18 (72%), 8/12 (67%) and 59/96 (61%), respectively. Conclusion: PSMA PET/CT has a profound impact on stage and management of PCa patients outside of the two main classical indications (BCR and presurgical staging) across all examined clinical scenarios.




prostate cancer

PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies

The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population.




prostate cancer

Multi-phasic 68Ga-PSMA PET/CT in detection of early recurrence in prostate cancer patients with PSA < 1 ng/ml: a prospective study of 135 cases.

Purpose: The main objective of this prospective study was to determine the impact of multi-phasic acquisition of 68Ga-PSMA PET/CT in the detection of recurrent prostate cancer (PCa) in the early stage of biochemical recurrence (BR) with prostate-serum-antigen (PSA) level <1ng/ml. Also, 68Ga-PSMA PET/CT positivity was correlated with clinical parameters for the assessment of predictive markers. Methods: A prospective monocentric study was conducted on 135 PCa patients with BR and PSA<1ng/ml. All patients have undergone initial prostatectomy with additional radiation therapy in 19.3% and androgen-deprivation therapy (ADT) in 7.4% of patients. Dynamic acquisition [1–8min. post-injection (p.i.)] from the prostate bed, standard whole-body (60min. p.i.) and limited bed positions of delayed studies (120-150min. p.i.), were performed. Studies were reviewed by two board-certified nuclear medicine specialists, independently. A combination of visual and semi-quantitative analyses and correlation with morphological (e.g. MRI) and/or clinical follow-up findings was used for the final interpretation of abnormal lesions as benign or malignant. 68Ga-PSMA PET/CT positivity was also correlated with primary clinical findings. Results: Incorporating the information of all phases, 116 lesions were detected in 49.6% of patients (22 local recurrences, 63 lymph nodes, and 31 distant metastases). The detection rates were 31.8%, 44.9%, and 71.4% for PSA<0.2ng/ml, 0.2≤PSA<0.5, and 0.5≤PSA<1, respectively. Additional dynamic and/or delayed phases resulted in better determination of equivocal lesions and a higher diagnostic performance in 25.9% of patients. Stand-alone dynamic and delayed images led to better interpretation of equivocal findings in the prostate bed (31.4%) and other (lymph node/bone) lesions (20%), respectively. Conclusion: 68Ga-PSMA PET/CT revealed promising results for the early detection of recurrent disease in patients with PSA level of 0.5-1.0ng/ml. However, it showed limited value in cases with PSA<0.5ng/ml. Multi-phasic 68Ga-PSMA PET/CT led to better determination of equivocal findings. Although, dynamic images may provide helpful information in assessment of the prostate bed; however, delayed acquisitions seem to have higher impact in clarifying of the equivocal findings.




prostate cancer

Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer

Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA.




prostate cancer

68Ga-PSMA guided bone biopsies for molecular diagnostics in metastatic prostate cancer patients

For individual treatment decisions in patients with metastatic prostate cancer (mPC), molecular diagnostics are increasingly used. Bone metastases are frequently the only source for obtaining metastatic tumor tissue. However, the success rate of computed tomography (CT)-guided bone biopsies for molecular analyses in mPC patients is only ~40%. Positron emission tomography (PET) using Gallium-68 prostate specific membrane antigen (68Ga-PSMA) is a promising tool to improve the harvest rate of bone biopsies for molecular analyses. Aim of this study was to determine the success rate of 68Ga-PSMA guided bone biopsies for molecular diagnostics in mPC patients. Methods: Within a prospective multicenter whole-genome sequencing trial (NCT01855477), 69 mPC patients underwent 68Ga-PSMA PET/CT prior to bone biopsy. Primary endpoint was success rate (tumor percentage ≥30%) of 68Ga-PSMA guided bone biopsies. At biopsy sites, 68Ga-PSMA uptake was quantified using rigid body image registration of 68Ga-PSMA PET/CT and interventional CT. Actionable somatic alterations were identified. Results: Success rate of 68Ga-PSMA guided biopsies for molecular analyses was 70%. At biopsy sites categorized as positive, inconclusive, or negative for 68Ga-PSMA uptake, 70%, 64%, and 36% of biopsies were tumor positive (≥30%), respectively (P = 0.0610). In tumor positive biopsies, 68Ga-PSMA uptake was significantly higher (P = 0.008), whereas radiodensity was significantly lower (P = 0.006). With an area under the curve of 0.84 and 0.70, both 68Ga-PSMA uptake (maximum standardized uptake value) and radiodensity (mean Hounsfield Units) were strong predictors for a positive biopsy. Actionable somatic alterations were detected in 73% of the sequenced biopsies. Conclusion: In patients with mPC, 68Ga-PSMA PET/CT improves the success rate of CT-guided bone biopsies for molecular analyses, thereby identifying actionable somatic alterations in more patients. Therefore, 68Ga-PSMA PET/CT may be considered for guidance of bone biopsies in both clinical practice and clinical trials.




prostate cancer

Neuroendocrine Differentiation and Response toPSMA-Targeted Radioligand Therapy in Advanced Metastatic Castration-Resistant Prostate Cancer: a Single-Center Retrospective Study

Introduction: Neuroendocrine differentiation is associated with treatment failure and poor outcome in metastatic castration-resistant prostate cancer (mCRPC). We investigated the effect of circulating neuroendocrine biomarkers on the efficacy of PSMA-targeted radioligand therapy (RLT). Methods: Neuroendocrine biomarker profiles (progastrin-releasing peptide, neuron-specific enolase, and chromogranin-A) were analyzed in 50 patients commencing 177Lu-PSMA-617 RLT. The primary endpoint was PSA response in relation to baseline neuroendocrine marker profiles. Additional endpoints included progression-free survival. Tumor uptake on post-therapeutic scans, a known predictive marker for response, was used as control-variable. Results: Neuroendocrine biomarker profiles were abnormal in the majority of patients. Neuroendocrine biomarker levels did not predict treatment failure or early progression (P ≥ 0.13). By contrast, intense PSMA-ligand uptake in metastases predicted both treatment response (P = 0.0030) and reduced risk of early progression (P = 0.0111). Conclusion: Neuroendocrine marker profiles do not predict adverse outcome of RLT. By contrast, high ligand uptake was confirmed to be crucial for achieving tumor-response.




prostate cancer

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




prostate cancer

Factors predicting metastatic disease in 68Ga-PSMA-11 PET positive osseous lesions in prostate cancer

Bone is the most common site of distant metastatic spread in prostate adenocarcinoma. Prostate-specific membrane antigen uptake has been described in both benign and malignant bone lesions, which can lead to false-positive findings on 68Ga-prostate-specific membrane antigen-11 positron emission tomography (68Ga-PSMA-11 PET). The purpose of this study was to evaluate the diagnostic accuracy of 68Ga-PSMA-11 PET for osseous prostate cancer metastases and improve bone uptake interpretation using semi-quantitative metrics. METHODS: 56 prostate cancer patients (18 pre-prostatectomy, 38 biochemical recurrence) who underwent 68Ga-PSMA-11 PET/MRI or PET/CT examinations with osseous PSMA-ligand uptake were included in the study. Medical records were reviewed retrospectively by board-certified nuclear radiologists to determine true or false positivity based on a composite endpoint. For each avid osseous lesion, biological volume, size, PSMA-RADS rating, maximum standardized uptake value (SUVmax), and ratio of lesion SUVmax to liver, blood pool, and background bone SUVmax were measured. Differences between benign and malignant lesions were evaluated for statistical significance, and cut-off values for these parameters were determined to maximize diagnostic accuracy. RESULTS: Among 56 participants, 13 patients (22.8%) had false-positive osseous 68Ga-PSMA-11 findings and 43 patients (76.8%) had true-positive osseous 68Ga-PSMA-11 findings. Twenty-two patients (39%) had 1 osseous lesion, 18 (32%) had 2-4 lesions, and 16 (29%) had 5 or more lesions. Cut-off values resulting in statistically significant (p<0.005) differences between benign and malignant lesions were: PSMA-RADS ≥4, SUVmax ≥4.1, SUVmax ratio of lesion to blood pool ≥2.11, to liver ≥0.55, and to bone ≥4.4. These measurements corresponded to lesion-based 68Ga-PSMA-11 PET lesion detection rate for malignancy of 80%, 93%, 89%, 21%, 89%, and a specificity of 73%, 73%, 73%, 93%, 60%, respectively. CONCLUSION: PSMA-RADS rating, SUVmax, and SUVmax ratio of lesion to blood pool can help differentiate benign from malignant lesions on 68Ga-PSMA-11 PET. SUVmax ratio to blood pool above 2.2 is a reasonable parameter to support image interpretation and presented superior lesion detection rate and specificity when compared to visual interpretation by PSMA RADS. These parameters hold clinical value by improving diagnostic accuracy for metastatic prostate cancer on 68Ga-PSMA-11 PET/MRI and PET/CT.




prostate cancer

Semi-automatically quantified tumor volume using Ga-68-PSMA-11-PET as biomarker for survival in patients with advanced prostate cancer

Prostate specific membrane antigen (PSMA) targeting Positron Emission Tomography (PET) imaging is becoming the reference standard for prostate cancer (PC) staging, especially in advanced disease. Yet, the implications of PSMA-PET derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be due to the fact that (semi-) automated quantification of whole-body tumor volume as PSMA-PET biomarker is an unmet clinical challenge. Therefore, a novel semi-automated software is proposed and evaluated by the present study, which enables the semi-automated quantification of PSMA-PET biomarkers such as whole-body tumor volume. Methods: The proposed quantification is implemented as a research prototype (MI Whole Body Analysis Suite, v1.0, Siemens Medical Solutions USA, Inc., Knoxville, TN). PSMA accumulating foci were automatically segmented by a percental threshold (50% of local SUVmax). Neural networks were trained to segment organs in PET-CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semi-automatically excluded from the analysis. Pretherapeutic PSMA-PET-CTs of 40 consecutive patients treated with 177Lu-PSMA-617 therapy were evaluated in this analysis. The volumetric whole-body tumor volume (PSMATV50), SUVmax, SUVmean and other whole-body imaging biomarkers were calculated for each patient. Semi-automatically derived results were compared with manual readings in a sub-cohort (by one nuclear medicine physician using syngo.MM Oncology software, Siemens Healthineers, Knoxville, TN). Additionally, an inter-observer evaluation of the semi-automated approach was performed in a sub-cohort (by two nuclear medicine physicians). Results: Manually and semi automatically derived PSMA metrics were highly correlated (PSMATV50: R2=1.000; p<0.001; SUVmax: R2=0.988; p<0.001). The inter-observer agreement of the semi-automated workflow was also high (PSMATV50: R2=1.000; p<0.001; ICC=1.000; SUVmax: R2=0.988; p<0.001; ICC=0.997). PSMATV50 [ml] was a significant predictor of overall survival (HR: 1.004; 95%CI: 1.001-1.006, P = 0.002) and remained so in a multivariate regression including other biomarkers (HR: 1.004; 95%CI: 1.001-1.006 P = 0.004). Conclusion: PSMATV50 is a promising PSMA-PET biomarker that is reproducible and easily quantified by the proposed semi-automated software. Moreover, PSMATV50 is a significant predictor of overall survival in patients with advanced prostate cancer that receive 177Lu-PSMA-617 therapy.




prostate cancer

177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer

Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted.




prostate cancer

Impact of 68Ga-PSMA-11 PET on the Management of recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial

Introduction: Prostate-specific membrane antigen ligand positron emission tomography (PSMA PET) induces management changes in patients with prostate cancer. We aim to better characterize the impact of PSMA PET on management of recurrent prostate cancer in a large prospective cohort. Methods: We report management changes following PSMA PET, a secondary endpoint of a prospective multicenter trial in men with prostate cancer biochemical recurrence. Pre-PET (Q1), Post-PET (Q2) and Post-Treatment (Q3) questionnaires were sent to referring physicians recording site of recurrence, intended (Q1 to Q2 change) and implemented (Q3) therapeutic and diagnostic management. Results: Q1/Q2 response was collected for 382/635 (60%, intended cohort), Q1/Q2/Q3 for 206 patients (32%, implemented cohort). Intended management change (Q1/2) occurred in 260/382 (68%) patients. Intended change (Q1/2) was considered major in 176/382 (46%) patients. Major changes occurred most often for patients with PSA of 0.5 to <2.0 ng/mL (81/147, 55%). By analysis of stage-groups, management change was consistent with PET disease location, i.e. majority of major changes towards active surveillance (47%) for unknown disease site (103/382, 27%), towards local/focal therapy (56%) for locoregional disease (126/382, 33%), and towards systemic therapy (69% M1a; 43% M1b/c) for metastatic disease (153/382, 40%). According to Q3 responses, intended management was implemented in 160/206 (78%) patients. A total of 150 intended diagnostic tests, mostly CT (n = 43, 29%) and bone Scans/NaF-PET (n = 52, 35%), were prevented by PSMA PET; 73 tests, mostly biopsies (n = 44, 60%) as requested by the study protocol, were triggered (Q1/2). Conclusion: According to referring physicians, sites of recurrence were clarified by PSMA PET and disease localization translated into management changes in more than half of patients with biochemical recurrence of prostate cancer.




prostate cancer

The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study.

The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications.




prostate cancer

Talk evidence - cancer causing food, prostate cancer and disease definitions

Helen Macdonald and Carl Heneghan are back again talking about what's happened in the world of evidence this month. (1.05) Carl rants about bacon causing cancer (7.10) Helen talks about prostate cancer, and we hear from the author of the research paper which won Research Paper Of The Year at the BMJ awards. We also cover disease definition and...




prostate cancer

Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment




prostate cancer

Prospective Evaluation of 18F-DCFPyL PET/CT in Biochemically Recurrent Prostate Cancer in an Academic Center: A Focus on Disease Localization and Changes in Management

18F-DCFPyL (2-(3-{1-carboxy-5-[(6-18F-fluoropyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) is a promising PET radiopharmaceutical targeting prostate-specific membrane antigen (PSMA). We present our experience with this single-academic-center prospective study evaluating the positivity rate of 18F-DCFPyL PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). Methods: We prospectively enrolled 72 men (52–91 y old; mean ± SD, 71.5 ± 7.2) with BCR after primary definitive treatment with prostatectomy (n = 42) or radiotherapy (n = 30). The presence of lesions compatible with PC was evaluated by 2 independent readers. Fifty-nine patients had scans concurrent with at least one other conventional scan: bone scanning (24), CT (21), MR (20), 18F-fluciclovine PET/CT (18), or 18F-NaF PET (14). Findings from 18F-DCFPyL PET/CT were compared with those from other modalities. Impact on patient management based on 18F-DCFPyL PET/CT was recorded from clinical chart review. Results: 18F-DCFPyL PET/CT had an overall positivity rate of 85%, which increased with higher prostate-specific antigen (PSA) levels (ng/mL): 50% (PSA < 0.5), 69% (0.5 ≤ PSA < 1), 100% (1 ≤ PSA < 2), 91% (2 ≤ PSA < 5), and 96% (PSA ≥ 5). 18F-DCFPyL PET detected more lesions than conventional imaging. For anatomic imaging, 20 of 41 (49%) CT or MRI scans had findings congruent with 18F-DCFPyL, whereas 18F-DCFPyL PET was positive in 17 of 41 (41%) cases with negative CT or MRI findings. For bone imaging, 26 of 38 (68%) bone or 18F-NaF PET scans were congruent with 18F-DCFPyL PET, whereas 18F-DCFPyL PET localized bone lesions in 8 of 38 (21%) patients with negative results on bone or 18F-NaF PET scans. In 8 of 18 (44%) patients, 18F-fluciclovine PET had located the same lesions as did 18F-DCFPyL PET, whereas 5 of 18 (28%) patients with negative 18F-fluciclovine findings had positive 18F-DCFPyL PET findings and 1 of 18 (6%) patients with negative 18F-DCFPyL findings had uptake in the prostate bed on 18F-fluciclovine PET. In the remaining 4 of 18 (22%) patients, 18F-DCFPyL and 18F-fluciclovine scans showed different lesions. Lastly, 43 of 72 (60%) patients had treatment changes after 18F-DCFPyL PET and, most noticeably, 17 of these patients (24% total) had lesion localization only on 18F-DCFPyL PET, despite negative results on conventional imaging. Conclusion: 18F-DCFPyL PET/CT is a promising diagnostic tool in the work-up of biochemically recurrent PC, given the high positivity rate as compared with Food and Drug Administration–approved currently available imaging modalities and its impact on clinical management in 60% of patients.




prostate cancer

Prostate-Specific Membrane Antigen PET/CT Combined with Sentinel Node Biopsy for Primary Lymph Node Staging in Prostate Cancer

Our objective was to determine the diagnostic capabilities of combined prostate-specific membrane antigen (PSMA) PET/CT and sentinel node (SN) biopsy in PSMA PET/CT–negative patients for primary lymph node (LN) staging in prostate cancer (PCa) patients. Methods: Between January 2017 and March 2019, retrospectively, all consecutive patients with diagnosed intermediate- or high-risk primary PCa who underwent preoperative PSMA PET/CT (68Ga or 18F-DCFPyL) followed by robot-assisted radical prostatectomy and extended pelvic LN dissection (ePLND) were included. All patients without suspected LN metastases on PSMA PET/CT were considered candidates for SN biopsy with indocyanine green–99mTc-nanocolloid or 99mTc-nanocolloid with free indocyanine green used as tracers. The ePLND was used as a reference standard. Results: Of 53 patients, 22 had positive PSMA PET/CT results and 31 underwent subsequent SN biopsy after negative PSMA PET/CT results. In total, 23 patients (43%) were pN1, of whom 6 (26%) had negative PSMA PET/CT results and underwent subsequent SN biopsy. The combined use of SN biopsy and PSMA PET/CT identified all pN1 patients (100% sensitivity; 95% confidence interval, 86%–100%) and performed correct nodal staging in 50 of 53 patients (94% diagnostic accuracy; 95% confidence interval, 84%–99%). SN biopsy identified significantly smaller LN metastases (median diameter, 2.0 mm; interquartile range, 1.0–3.8 mm) than PSMA PET/CT (median diameter, 5.5 mm; interquartile range, 2.6–9.3 mm; P = 0.007). Conclusion: Combining both modalities led to a 94% accuracy for nodal staging in diagnosed intermediate- and high-risk primary PCa. Adding SN biopsy in patients with negative PSMA PET/CT results increased the combined sensitivity to 100% for detecting nodal metastases at ePLND. This diagnostic accuracy may provide valuable information for directing further treatment in PCa patients, such as the use of PSMA PET/CT and SN biopsy rather than ePLND as the preferred approach for staging before radiotherapy.




prostate cancer

Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard

18F-PSMA-1007 is a novel prostate-specific membrane antigen (PSMA)–based radiopharmaceutical for imaging prostate cancer (PCa). The aim of this study was to compare the diagnostic accuracy of 18F-PSMA-1007 with 68Ga-PSMA-11 PET/CT in the same patients presenting with newly diagnosed intermediate- or high-risk PCa. Methods: Sixteen patients with intermediate- or high-risk PCa underwent 18F-PSMA-1007 and 68Ga-PSMA-11 PET/CT within 15 d. PET findings were compared between the 2 radiotracers and with reference-standard pathologic specimens obtained from radical prostatectomy. The Cohen -coefficient was used to assess the concordance between 18F-PSMA-1007 and 68Ga-PSMA-11 for detection of intraprostatic lesions. The McNemar test was used to assess agreement between intraprostatic PET/CT findings and histopathologic findings. Sensitivity, specificity, positive predictive value, and negative predictive value were reported for each radiotracer. SUVmax was measured for all lesions, and tumor-to-background activity was calculated. Areas under receiver-operating-characteristic curves were calculated for discriminating diseased from nondiseased prostate segments, and optimal SUV cutoffs were calculated using the Youden index for each radiotracer. Results: PSMA-avid lesions in the prostate were identified in all 16 patients with an almost perfect concordance between the 2 tracers ( ranged from 0.871 to 1). Aside from the dominant intraprostatic lesion, similarly detected by both radiotracers, a second less intense positive focus was detected in 4 patients only with 18F-PSMA-1007. Three of these secondary foci were confirmed as Gleason grade 3 lesions, whereas the fourth was shown on pathologic examination to represent chronic prostatitis. Conclusion: This pilot study showed that both 18F-PSMA-1007 and 68Ga-PSMA-11 identify all dominant prostatic lesions in patients with intermediate- or high-risk PCa at staging. 18F-PSMA-1007, however, may detect additional low-grade lesions of limited clinical relevance.




prostate cancer

Lose Weight, Lower Prostate Cancer Risk

Title: Lose Weight, Lower Prostate Cancer Risk
Category: Health News
Created: 3/6/2020 12:00:00 AM
Last Editorial Review: 3/9/2020 12:00:00 AM




prostate cancer

Prostate Cancer Vaccine May Get FDA Approval

Title: Prostate Cancer Vaccine May Get FDA Approval
Category: Health News
Created: 4/27/2010 8:10:00 AM
Last Editorial Review: 4/27/2010 12:00:00 AM




prostate cancer

Provenge Approved for Advanced Prostate Cancer

Title: Provenge Approved for Advanced Prostate Cancer
Category: Health News
Created: 4/29/2010 2:10:00 PM
Last Editorial Review: 4/30/2010 12:00:00 AM




prostate cancer

FDA Approves Prostate Cancer Drug Zytiga

Title: FDA Approves Prostate Cancer Drug Zytiga
Category: Health News
Created: 4/29/2011 11:01:00 AM
Last Editorial Review: 4/29/2011 12:00:00 AM




prostate cancer

Could Certain Fatty Foods Be Linked to Aggressive Prostate Cancer?

Title: Could Certain Fatty Foods Be Linked to Aggressive Prostate Cancer?
Category: Health News
Created: 4/22/2016 12:00:00 AM
Last Editorial Review: 4/25/2016 12:00:00 AM




prostate cancer

One High Dose of Radiation May Be Enough for Early Prostate Cancer

Title: One High Dose of Radiation May Be Enough for Early Prostate Cancer
Category: Health News
Created: 4/30/2019 12:00:00 AM
Last Editorial Review: 4/30/2019 12:00:00 AM




prostate cancer

SLFN11 Expression in Advanced Prostate Cancer and Response to Platinum-based Chemotherapy

Expression of the DNA/RNA helicase schlafen family member 11 (SLFN11) has been identified as a sensitizer of tumor cells to DNA-damaging agents including platinum chemotherapy. We assessed the impact of SLFN11 expression on response to platinum chemotherapy and outcomes in patients with metastatic castration-resistant prostate cancer (CRPC). Tumor expression of SLFN11 was assessed in 41 patients with CRPC treated with platinum chemotherapy by RNA sequencing (RNA-seq) of metastatic biopsy tissue (n = 27) and/or immunofluorescence in circulating tumor cells (CTC; n = 20). Cox regression and Kaplan–Meier methods were used to evaluate the association of SLFN11 expression with radiographic progression-free survival (rPFS) and overall survival (OS). Multivariate analysis included tumor histology (i.e., adenocarcinoma or neuroendocrine) and the presence or absence of DNA repair aberrations. Patient-derived organoids with SLFN11 expression and after knockout by CRISPR-Cas9 were treated with platinum and assessed for changes in dose response. Patients were treated with platinum combination (N = 38) or platinum monotherapy (N = 3). Median lines of prior therapy for CRPC was two. Median OS was 8.7 months. Overexpression of SLFN11 in metastatic tumors by RNA-seq was associated with longer rPFS compared with those without overexpression (6.9 vs. 2.8 months, HR = 3.72; 95% confidence interval (CI), 1.56–8.87; P < 0.001); similar results were observed for patients with SLFN11-positive versus SLFN11-negative CTCs (rPFS 6.0 vs. 2.2 months, HR = 4.02; 95% CI, 0.77–20.86; P = 0.002). A prostate-specific antigen (PSA) decline of ≥50% was observed in all patients with SLFN11 overexpression. No association was observed between SLFN11 expression and OS. On multivariable analysis, SLFN11 was an independent factor associated with rPFS on platinum therapy. Platinum response of organoids expressing SLFN11 was reduced after SLFN11 knockout. Our data suggest that SLFN11 expression might identify patients with CRPC with a better response to platinum chemotherapy independent of histology or other genomic alterations. Additional studies, also in the context of PARP inhibitors, are warranted.




prostate cancer

Histone Demethylase JMJD1A Promotes Tumor Progression via Activating Snail in Prostate Cancer

The histone demethylase JMJD1A plays a key functional role in spermatogenesis, sex determination, stem cell renewal, and cancer via removing mono- and di-methyl groups from H3K9 to epigenetically control gene expression. However, its role in prostate cancer progression remains unclear. Here, we found JMJD1A was significantly elevated in prostate cancer tissue compared with matched normal tissue. Ectopic JMJD1A expression in prostate cancer cells promoted proliferation, migration, and invasion in vitro, and tumorigenesis in vivo; JMJD1A knockdown exhibited the opposite effects. Mechanically, we revealed that JMJD1A directly interacted with the Snail gene promoter and regulated its transcriptional activity, promoting prostate cancer progression both in vitro and in vivo. Furthermore, we found that JMJD1A transcriptionally activated Snail expression via H3K9me1 and H3K9me2 demethylation at its special promoter region. In summary, our studies reveal JMJD1A plays an important role in regulating proliferation and progression of prostate cancer cells though Snail, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer.

Implications:

Our studies identify that JMJD1A promotes the proliferation and progression of prostate cancer cells through enabling Snail transcriptional activation, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer.