power supply

Tile for forming a ground power supply line

A ground power supply line for electric traction vehicles is provided with two conductors carried by a series of tiles aligned to one another; each tile has a conductive plate and a lower supporting structure, which is made of insulating material and accommodates electric connectors, normally open switches, and a control and command unit, which switches the switches for selectively electrically connecting the conductive plate to the conductors in response to a signal deriving from an electric traction vehicle passing over said external conductive plate; the upper surface of the conductive plates is flushed with the remaining part of a road surface.




power supply

Vehicle electric power supply system

The present invention is vehicle electric power supply system (A) that supplies electric power wirelessly to a vehicle (M) that is positioned within an electric power supply area (X). The vehicle electric power supply system (A) has: a power-receiving device (m1) that is provided in the vehicle; a plurality of power-transmitting devices (1a1, 1a2, 1a3, 1b1, 1b2, 1b3, 1c1, 1c2, 1c3) that are provided at mutually different positions within the electric power supply area; a position detecting device (4) that detects the position of the power-receiving device within the electric power supply area; and a control device (4) that, based on detection results from the position detecting device, selects from among the plurality of power-transmitting devices the power-transmitting device that is located in a position that corresponds to the power-receiving device, and then causes power to be supplied wirelessly from the selected power-transmitting device.




power supply

Switched-mode power supply apparatus and method

The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead-time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power amplifier (14) for amplifying a signal supplied by an external signal source (11) and for supplying a load voltage and/or load current to a load (15), and a control unit (12; 12b) for controlling the switching of said switching power amplifier based on a timing setting, said control unit being adapted for simulating the behavior of the switching power amplifier by predicting the average load voltage and/or load current for at least two, in particular a plurality of, timing settings for a desired load voltage and/or load current based on state information about the present state of the switching power amplifier.




power supply

Switched-mode power supply and method of operation

A method of operating a switched-mode power supply (SMPS) for supplying power to a load circuit, which draws a supply current that varies with an input signal to the load circuit is disclosed. The method comprises monitoring the input signal and controlling the amount of accumulated energy transferred for consumption by the load circuit, in use, in accordance with the input signal.




power supply

DC-DC converter, control circuit, and power supply control method

A DC-DC converter includes a first amplifier that amplifies a first difference between a first reference voltage and a feedback voltage corresponding to an output voltage, a second amplifier that amplifies a second difference between the first reference voltage and an integrated value of the feedback voltage, and a controller that controls a switching circuit to change the output voltage when the first difference reaches the second different.




power supply

Power supply for a load control device

A power supply for a load control device generates a DC voltage and provides an asymmetrical output current, while drawing a substantially symmetrical input current. The power supply comprises a controllably conductive switching circuit for controllably charging an energy storage capacitor across which the DC voltage is produced. The energy storage capacitor begins charging at the beginning of a half-cycle and stops charging after a charging time in response to the magnitude of the DC voltage and the amount of time that the energy storage capacitor has been charging during the present half-cycle. The charging time is maintained substantially constant from one half-cycle to the next. The power supply is particularly beneficial for preventing asymmetrical current from flowing in a multiple location load control system having a master load control device supplying power to a plurality of remote load control devices all located on either the line-side or the load-side of the system.




power supply

Power supply device control circuit

In some aspects of the invention, overcurrent protection is carried out by suppressing fluctuations in current flowing through a switching element after overcurrent detection. A peak current reaching time detection circuit detects a peak current reaching time needed until current flowing through a switching element reaches a peak value. A difference voltage detection circuit, including a ½ time detection circuit which detects a time of ½ an ON time of the preceding cycle of the switching element, detects difference voltage between reference voltage used when detecting overcurrent flowing to a load and a signal which has detected current flowing through the switching element for the ½ time. A delay time adjustment circuit, based on at least one of the peak current reaching time and difference voltage, carries out adjustment and control of a delay time occurring until the time when the switching element is turned off after detecting the overcurrent.




power supply

Power supply device

A power supply device includes a first converter which converts an input voltage to a first voltage, a second converter which converts the first voltage from the first converter to a second voltage, a voltage comparison section which compares the first voltage outputted from the first converter with a predetermined reference voltage, a voltage comparison result output section which outputs a first signal until the first voltage is determined to be higher than the predetermined reference voltage by the voltage comparison section and retains a second signal as an output after the first voltage is determined to be higher than the predetermined reference voltage, and a converter control section which controls the second converter to stop when the first signal is outputted from the voltage comparison result output section and controls the second converter to operate when the second signal is outputted from the voltage comparison result output section.




power supply

Bridge-less step-up switching power supply device

A bridge-less step-up switching power supply device includes (i) a first and a second reactor having: a first and a second main winding connected to a first and a second input terminal, respectively; and a first and a second auxiliary winding magnetically coupled to the first main winding and connected to the first and second main windings, the first and second auxiliary windings having a first and a second leakage inductance, respectively; (ii) a first and a second diode connected between the first and second auxiliary windings and a first output terminal, respectively; (iii) a first capacitor connected between the first output terminal and a second output terminal; (iv) a second capacitor connected between a connection point of a third switch and a fourth switch, and the first output terminal; and (v) a controller for controlling turning on/off of first to fourth switches.




power supply

Switched mode power supply and a method for operating a switched mode power supply

A switched mode power supply provides a reduction of switching losses and increased efficiency. The switched mode power supply includes a first switch coupled to an input terminal configured to receive an input voltage, a second switch, an inductor and an output capacitor. The first switch and the second switch are coupled together at a node, the inductor is coupled between the node and an output terminal, and the output capacitor is coupled to the output terminal. The switched mode power supply further includes a transformer coupled between a control input of the first switch and the node and a pulse generator connected to a control input of the second switch. Further, the transformer includes at most two windings, in particular a primary winding and a secondary winding which are not directly connected to each other.




power supply

Power control circuit and power supply system employing the same

A power control circuit for a power supply system including a control unit, a driving circuit and a power supply unit is disclosed. The power control circuit includes a current detection unit, a voltage detection unit and a power detection unit. The current detection unit is used for detecting a current signal. The voltage detection unit is used for detecting a voltage signal. The power detection unit is connected with the current detection unit, the voltage detection unit and the control unit for acquiring a power signal according to the current signal and voltage signal. By comparing an adjustable power reference signal with the power signal, the control unit issues a control signal to the driving circuit. In response to the control signal, the power supply unit is driven by the driving circuit to output an adjusted power to the load according to the adjustable power reference signal.




power supply

Control device for switching power supply circuit, and heat pump unit

A mode controller shifts, along with increase in an electric power in first and second of chopper circuits and, operation modes of the first and the second of the chopper circuits from a first mode to a third mode via a second mode. An operation controller causes, in the first mode, the first of chopper circuit to perform an chopping operation, and the second of chopper circuit to suspend the chopping operation, in the second mode, causes the first and the second of chopper circuits to alternatively perform the chopping operations, and in the third mode causes both of the first and the second of chopper circuits to perform the chopping operations.




power supply

INTERNAL POWER SUPPLY CIRCUIT AND SEMICONDUCTOR DEVICE

A control switch is connected to a power supply voltage and turns on based on a control signal to output a current. A clamp circuit is connected to a load and performs clamp control of the output voltage of the control switch. A current control element conducts or shuts off a current based on the output voltage to be clamp-controlled. A selector switch group includes switches, and performs switching based on a voltage varying with the current control by the current control element, thereby switching between paths for generating an internal power supply. The switch circuit connects or disconnects the coupling between the clamp circuit and the selector switch group.




power supply

CLOCK SELECTION CIRCUIT AND POWER SUPPLY DEVICE EQUIPPED WITH THE SAME

To provide a clock selection circuit capable of reducing clock omission generated when switching from a state of being synchronized with a first clock to a second clock. The clock selection circuit is equipped with a clock detection circuit which detects a first clock to output a detected signal, a switch which outputs the first clock when the detected signal is at a first level and outputs a second clock when the detected signal is at a second level different from the first level, and a one-shot circuit which outputs a one-shot pulse in response to switching of the detected signal from the first level to the second level. The output of the switch and the output of the one-shot circuit are added to be outputted as an output clock.




power supply

LOW INERTIA POWER SUPPLY FOR APPLYING VOLTAGE TO AN ELECTRODE COUPLED TO A FLAME

A system and method for electrically charging a combustion flame with a power supply.




power supply

SEMICONDUCTOR DEVICE, POWER SUPPLY DEVICE AND CONTROL METHOD FOR SEMICONDUCTOR DEVICE

A semiconductor device configured to perform an A/D conversion of a wide range of signals is provided. A semiconductor device includes: an input voltage detection unit configured to detect an analog input voltage; a reference voltage setting unit configured to set a reference voltage based on the detected input voltage; an amplifier configured to amplify a difference between the input voltage and the reference voltage; an ADC configured to perform an A/D conversion of an amplified signal; and an arithmetic processing unit configured to calculate a digital voltage corresponding to the input voltage based on a result of the A/D conversion and the reference voltage.




power supply

To renew the power supply in national parks, think microgrids

America’s national parks are one of the nation’s greatest assets. They preserve and protect vital ecosystems and offer people from all over the world the chance to experience the beauty and majesty of these great spaces.




power supply

To renew the power supply in national parks, think microgrids

America’s national parks are one of the nation’s greatest assets. They preserve and protect vital ecosystems and offer people from all over the world the chance to experience the beauty and majesty of these great spaces.




power supply

Researchers find way to steal data via your power supply

Unlikely to happen but interesting idea




power supply

For first time ever, solar dominates UK power supply

These spikes might be intermittent. But they are getting bigger and more frequent.




power supply

Drivers for R&S®NGE100B Power supply series




power supply

Drivers for R&S®NGE100 Power supply series




power supply

Drivers for R&S®HMC804x DC Power supply




power supply

Drivers for R&S®NGP824 Four-channel power supply




power supply

Drivers for R&S®NGP822 Two-channel power supply




power supply

Drivers for R&S®NGP802 Two-channel power supply




power supply

Drivers for R&S®NGP804 Four-channel power supply




power supply

Drivers for R&S®NGL202 Power Supply Series




power supply

Drivers for R&S®NGL200 Power supply series




power supply

Drivers for R&S®NGP800 Power supply series




power supply

Drivers for R&S®NGL201 Power Supply Series




power supply

Drivers for R&S®NGP814 Four-channel power supply




power supply

Drivers for R&S®NGM200 Power supply series




power supply

Making power supply data a tool for progress


Pune-based NGO Prayas Energy’s ESMI programme provides easily comprehensible data on the extent and quality of power supply in regions across the country, which can be used to demand accountability as well as enable social research. Manasi Mathkar reports.




power supply

Power Supply

Power Supply




power supply

Power Supply Delhi

Power Supply Delhi




power supply

Power Supply Projects Delhi

Power Supply Projects Delhi




power supply

Electrical installations of buildings : part 7-712 : requirements for special installations or locations : solar photovoltaic (PV) power supply systems




power supply

Telangana: Power supply, train services hit, protests turn violent

Shutdown was observed in all 13 Seemandhra districts, clashes were reported in Anantapur and Kurnool.