enzyme Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides By pubs.rsc.org Published On :: Food Funct., 2024, 15,10956-10980DOI: 10.1039/D4FO03549F, Review ArticleJoy I. Obeme-Nmom, Raliat O. Abioye, Samanta S. Reyes Flores, Chibuike C. UdenigweSeveral nutraceutical compounds, such as polyphenols and peptides, modulate the enzymatic antioxidant defence system, providing an avenue for the development of multifunctional functional foods.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
enzyme IISc scientists find a way to break down ‘biofilm barriers’ by using cow’s gut enzyme to aid entry of drugs By www.thehindu.com Published On :: Mon, 11 Nov 2024 23:41:49 +0530 Full Article Karnataka
enzyme Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity By pubs.rsc.org Published On :: Nanoscale, 2024, 16,20194-20201DOI: 10.1039/D4NR03435J, Paper Open Access   This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.Lukas Schubert, Chiara Nenninger, Maximilian Nöth, Thomke Belthle, Robert Dirk de Lange, Andrij Pich, Ulrich Schwaneberg, Dominik WöllThe distribution and local catalytic activity of Cytochrome P450 enzymes immobilized in microgels by electrostatic interaction has been determined with a combination of in situ super-resolution fluorescence microscopy experiments.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
enzyme Enzyme catalyzes cross-membrane reaction By cen.acs.org Published On :: 23 May 2018 19:32:16 +0000 Hydrophilic and hydrophobic molecules don’t have to leave their natural environments to react Full Article
enzyme Artificial metalloenzyme flips switch in cells By cen.acs.org Published On :: 23 May 2018 21:00:56 +0000 Cell-penetrating assembly uncages hormone, turning on gene circuit Full Article
enzyme Discovery of new poppy enzyme might help improve yeast-based opiate synthesis By cen.acs.org Published On :: 31 May 2018 14:53:16 +0000 Adding enzyme to engineered yeast boosts production of thebaine, a key morphine intermediate Full Article
enzyme Giving enzymes floppy surfaces can enhance their activity By cen.acs.org Published On :: 07 Jun 2018 19:59:04 +0000 Added surface glycine residues cause partial unfolding that adapts enyzyme to low temperatures Full Article
enzyme Enzyme conjugate synthesizes DNA By cen.acs.org Published On :: 20 Jun 2018 21:13:26 +0000 Method is possible replacement for phosphoramidite-based DNA synthesis Full Article
enzyme Human enzyme makes antiviral small molecule By cen.acs.org Published On :: 25 Jun 2018 18:44:42 +0000 Naturally occurring compound inhibits replication of Zika virus in living cells Full Article
enzyme Modified enzyme could make bioprocessing zippier By cen.acs.org Published On :: 29 Jun 2018 01:34:37 +0000 Adding positively charged molecules and a surfactant to β-glucosidase makes the enzyme work 30 times as fast Full Article
enzyme Human enzyme makes antiviral small molecule By cen.acs.org Published On :: 30 Jun 2018 13:17:37 +0000 Naturally occurring compound inhibits replication of Zika virus in living cells Full Article
enzyme DNA nanostructure acts as lipid-flipping enzyme By cen.acs.org Published On :: 02 Jul 2018 20:14:44 +0000 Synthetic construct could someday replace damaged counterparts in disease Full Article
enzyme Phosphorylation at different sites of cancer-related enzyme leads to different shape changes By cen.acs.org Published On :: 03 Aug 2018 00:53:40 +0000 Recent work might have implications for drug development Full Article
enzyme A green and sustainable multi-enzyme cascade for the biosynthesis of 1,3-propanediamine from crude glycerol in vitro By pubs.rsc.org Published On :: Green Chem., 2024, Advance ArticleDOI: 10.1039/D4GC03777D, PaperDaocheng Liao, Shiming Tang, Ying Lin, Suiping ZhengThis paper designs a novel multi-enzyme cascade reaction capable of efficiently synthesizing 1,3-propanediamine from glycerol in vitro.To cite this article before page numbers are assigned, use the DOI form of citation above.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
enzyme Electron-mediator-free efficient photocatalytic regeneration of coenzyme NAD(P)H via direct electron transfer using ultrathin Bi2MoO6 nanosheets By pubs.rsc.org Published On :: Green Chem., 2024, Advance ArticleDOI: 10.1039/D4GC05207B, PaperYao Chai, Zirui Pang, Heng Jiang, Chi Chung Tsoi, Liang Wan, Yu Du, Huaping Jia, Yujiao Zhu, Detao Liu, Fengjia Xie, Guangya Zhou, Xuming ZhangThe direct electron transfer mechanism of single-layer Bi2MoO6 ultrathin nanosheets promotes the efficient regeneration of photocatalytic coenzyme NAD(P)H.To cite this article before page numbers are assigned, use the DOI form of citation above.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
enzyme An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
enzyme People with alcohol dependency lack important enzyme By esciencenews.com Published On :: Fri, 02 Sep 2016 18:06:09 +0000 A research group under the leadership of Linköping University Professor Markus Heilig has identified an enzyme whose production is turned off in nerve cells of the frontal lobe when alcohol dependence develops. The deficiency in this enzyme leads to continued use of alcohol despite adverse consequences. read more Full Article Health & Medicine
enzyme Microbes and enzymes: the future for bioremediation of PAH-contaminated soils? By ec.europa.eu Published On :: Thur, 10 August 2017 9:23:19 GMT Microbes and biocatalytic enzymes could offer useful tools for cleaning soils polluted with polycyclic aromatic hydrocarbons (PAHs), suggests a new review of remediation approaches. However, risk assessments and further work are needed before their use can be extended beyond the lab to realworld situations. This comprehensive overview of available and novel methods indicates their constraints and potential for future development and research. Full Article
enzyme This mutant enzyme recycles plastic in hours By www.mnn.com Published On :: Tue, 14 Apr 2020 17:10:34 +0000 Incredible enzyme is capable of breaking down the PET in plastic bottles into raw materials in as little as 10 hours. Full Article Research & Innovations
enzyme Skin 2 Skin's New Enzyme Renewal Mask Improves YOUR Skin Naturally By www.24-7pressrelease.com Published On :: Fri, 16 Mar 2018 07:00:00 GMT Skin 2 Skin, plant-powered skincare announces the launch of its new Enzyme Renewal Mask. Made with papaya enzymes, pumpkin seed extract, avocado oil, and green tee extract, it exfoliates the skin while leaving it renewed, nourished and brightened. Full Article
enzyme Enzyme composition comprising enzyme containing polymer particles By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT The present invention relates to an enzyme composition comprising enzyme containing polymer particles, which is useful for detergent compositions, in particular for liquid detergent compositions. In these enzyme containing particles, the particles comprise i) at least one enzyme, and ii) at least one polymer P, which is selected from homo- and copolymers having a C—C-backbone, wherein the C—C-backbone carries carboxylgroups, which may be present in the acidic form or in the neutralized form, and wherein the C—C-backbone comprises hydrophobic repeating units. Full Article
enzyme Method for producing reduced coenzyme Q10, method for stabilizing same, and composition comprising same By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT An object of the present invention is to provide a substance characterized by ability to reduce oxidized coenzyme Q10 and ability to stabilize reduced coenzyme Q10, which contains nutrients, has a favorable taste, and is excellent in general versatility, and a method for using the same. The present invention relates to a method for producing reduced coenzyme Q10 comprising reducing oxidized coenzyme Q10 with a particular amino acid. The present invention also relates to a method for stabilizing reduced coenzyme Q10 in the presence of a particular amino acid and a composition stabilized by the method. Full Article
enzyme Derivatives of the NF-κB inducing enzyme, their preparation and use By www.freepatentsonline.com Published On :: Tue, 11 Dec 2012 08:00:00 EST The invention relates to the use of NF-κB inducing kinase (NIK) and related molecules for the modulation of signal activities controlled by cytokines, and some new such molecules. Full Article
enzyme Antineoplastic hydrogels, and enzyme-instructed preparations thereof By www.freepatentsonline.com Published On :: Tue, 25 Feb 2014 08:00:00 EST Disclosed is a general methodology to create nano fibers of therapeutic molecules that have a dual role, as both the delivery vehicle and the drug itself. It is shown that with proper molecular design, the integration of enzymatic reaction and self-assembly provides a powerful method to create molecular hydrogels of clinically-used therapeutics without compromising their bioactivities. In addition, the results disclosed herein demonstrate enzyme-instructed self-assembly as a facile strategy for generating the supramolecular hydrogels of molecules that inherently have poor solubility in water. For example, by covalently connecting paclitaxel with a motif that is prone to self-assemble, a hydrogel of paclitaxel can be formed without compromising the activity of the paclitaxel. Full Article
enzyme Saccharification enzyme composition and method of saccharification thereof By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT The present disclosure relates to a Bacillus subtilis alpha-amylase (AmyE) or its variants thereof. AmyE or its variants thereof may be used to more efficiently produce fermentable sugars from starch. Also disclosed are a composition comprising a glucoamylase and AmyE or variant thereof and a method of processing starch utilizing the described enzyme composition. Full Article
enzyme UB chemist awarded $2 million NIH grant for enzyme research By feedproxy.google.com Published On :: Wed, 29 Jan 2020 09:50:14 EST A University at Buffalo-led research team is studying the details of how enzymes perform their job. The focus of the project is on understanding the molecular interactions that enable enzymes to accelerate chemical reactions. Full Article
enzyme Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
enzyme The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
enzyme Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity. Full Article
enzyme Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes [Enzymology] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles. Full Article
enzyme An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
enzyme Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity. Full Article
enzyme A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery. Full Article
enzyme Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis By feedproxy.google.com Published On :: 2008-11-01 Chi-Liang Eric YenNov 1, 2008; 49:2283-2301Thematic Reviews Full Article
enzyme Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation. Full Article
enzyme The single CCA-adding enzyme of T. brucei has distinct functions in the cytosol and in mitochondria [RNA] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 tRNAs universally carry a CCA nucleotide triplet at their 3'-ends. In eukaryotes, the CCA is added post-transcriptionally by the CCA-adding enzyme (CAE). The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes and therefore imports all of its tRNAs from the cytosol. This has generated interest in the tRNA modifications and their distribution in this organism, including how CCA is added to tRNAs. Here, using a BLAST search for genes encoding putative CAE proteins in T. brucei, we identified a single ORF, Tb927.9.8780, as a potential candidate. Knockdown of this putative protein, termed TbCAE, resulted in the accumulation of truncated tRNAs, abolished translation, and inhibited both total and mitochondrial CCA-adding activities, indicating that TbCAE is located both in the cytosol and mitochondrion. However, mitochondrially localized tRNAs were much less affected by the TbCAE ablation than the other tRNAs. Complementation assays revealed that the N-terminal 10 amino acids of TbCAE are dispensable for its activity and mitochondrial localization and that deletion of 10 further amino acids abolishes both. A growth arrest caused by the TbCAE knockdown was rescued by the expression of the cytosolic isoform of yeast CAE, even though it was not imported into mitochondria. This finding indicated that the yeast enzyme complements the essential function of TbCAE by adding CCA to the primary tRNA transcripts. Of note, ablation of the mitochondrial TbCAE activity, which likely has a repair function, only marginally affected growth. Full Article
enzyme Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes [Enzymology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles. Full Article
enzyme An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
enzyme Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity. Full Article
enzyme Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1... Full Article
enzyme The single CCA-adding enzyme of T. brucei has distinct functions in the cytosol and in mitochondria [RNA] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 tRNAs universally carry a CCA nucleotide triplet at their 3'-ends. In eukaryotes, the CCA is added post-transcriptionally by the CCA-adding enzyme (CAE). The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes and therefore imports all of its tRNAs from the cytosol. This has generated interest in the tRNA modifications and their distribution in this organism, including how CCA is added to tRNAs. Here, using a BLAST search for genes encoding putative CAE proteins in T. brucei, we identified a single ORF, Tb927.9.8780, as a potential candidate. Knockdown of this putative protein, termed TbCAE, resulted in the accumulation of truncated tRNAs, abolished translation, and inhibited both total and mitochondrial CCA-adding activities, indicating that TbCAE is located both in the cytosol and mitochondrion. However, mitochondrially localized tRNAs were much less affected by the TbCAE ablation than the other tRNAs. Complementation assays revealed that the N-terminal 10 amino acids of TbCAE are dispensable for its activity and mitochondrial localization and that deletion of 10 further amino acids abolishes both. A growth arrest caused by the TbCAE knockdown was rescued by the expression of the cytosolic isoform of yeast CAE, even though it was not imported into mitochondria. This finding indicated that the yeast enzyme complements the essential function of TbCAE by adding CCA to the primary tRNA transcripts. Of note, ablation of the mitochondrial TbCAE activity, which likely has a repair function, only marginally affected growth. Full Article
enzyme COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
enzyme The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
enzyme COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
enzyme Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches By feedproxy.google.com Published On :: 2020-05-01 Payman Samavarchi-TehraniMay 1, 2020; 19:757-773Review Full Article
enzyme Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation. Full Article
enzyme COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
enzyme Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
enzyme Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities By feedproxy.google.com Published On :: 2020-04-07 Jeroen van SmedenApr 7, 2020; 0:jlr.RA120000639v1-jlr.RA120000639Research Articles Full Article
enzyme Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles] By feedproxy.google.com Published On :: 2020-04-07T14:33:32-07:00 Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. Full Article