combustion

Combustion process

A combustion process wherein a comburent, a fuel and the following components are fed: i) component B) sulphur or compounds containing sulphur in an amount to have a molar ration B1/C1≧0.5, wherein B1 is the sum by moles between the total amount of sulphur present in component B)+the total amount of sulphur (component B11)) contained in the fuel, C1 is the sum by moles between the total amount of alkaline and/or alkaline-earth metals contained in the fuel (component C11))+the amount (component C)) of alkaline and/or alkaline-earth metals in the form of salts and/or oxides contained in component B), ii) component A), comprising low-melting salts and/or oxides or their mixtures, having a melting temperature




combustion

Gasification combustion system

A two stage refuse gasification combustion system for processing refuse is disclosed. The system may contain features such as an advancer, a first and second gasifier, a gas regulator, and a post combustor. Additionally, methods for regulating gas and advancing refuse through a two stage refuse gasification combustion system are disclosed.




combustion

Methods of combustion of powdered fuels and powdered fuel dispersions

Methods of combustion include metering a substantially explosible powder into an oxidizing gas using a positive displacement powder dispersion device to suspend the powder in the gas and directing the powder in the gas to form a controlled stream of a moving explosible powder dispersion. In some embodiments, the method further includes igniting the dispersion with an ignition source to produce a stationary deflagrating combustion wave and sustaining combustion by continuing to meter the powder into the gas. In other embodiments, the method further includes adjusting a nozzle velocity of the dispersion to reflect properties of the dispersion to create a sustainable flame and igniting the dispersion to produce a stationary deflagrating wave of the dispersion. In other embodiments, the method further includes igniting the dispersion in a combustion area to produce a stationary deflagrating wave such that a conductive heat transfer from combustion brings the powder to combustion temperature.




combustion

Piston assembly for internal combustion engine

A piston assembly includes a piston having a crown with an upper combustion surface with a cylindrical outer surface extending downwardly from the upper combustion surface. A pair of pin bosses depends from the crown to a pair of pin bores having generally cylindrical bearing surfaces aligned along a pin bore axis with a top wall portion extending between the pin bosses. The top wall portion has a concave bearing surface forming a continuous concave bearing surface with the pin bores. A separate skirt is fixed to the piston against relative movement. At least one rib extends upwardly from the top wall portion of the piston on opposite sides of the pin bore axis to a lower wall surface of the crown. The at least one rib joins the crown to the top wall portion to provide structural support to the top wall portion against unwanted deflection.




combustion

Spark plug for internal combustion engine and method of manufacturing the same

In a spark plug, a center electrode includes a base member and a discharge chip that has a higher melting point than the base member. The base member and the discharge chip are joined to each other by both a weld and a diffusion layer. The weld is formed, by fusion welding, along an outer periphery of an interface between the base member and the discharge chip into an annular shape. The weld is made up of those parts of the base member and the discharge chip which are molten and mixed together during the fusion welding and solidified after the fusion welding. The diffusion layer is formed radially inside the annular weld. The diffusion layer is made up of those parts of the base member and the discharge chip which are diffused into each other across the interface between the base member and the discharge chip.




combustion

Process and device for fluidized bed torrefaction and grinding of a biomass feed for subsequent gasification or combustion

A process and a unit for fluidized bed torrefaction and grinding of particles of a biomass with a largest dimension of 2 cm to 5 cm, and which unit contains an envelope having a general shape of a sector having a) two substantially vertical walls delimiting that sector; and b) at least one inclined wall defining three zones, from bottom to top: a lower zone provided with a fluidization means, and provided with a grinder placed at the bottom of that zone; an intermediate zone (2) provided with a fluidization means; and an upper zone (3) provided with a fluidization means; and a pipe (11) for introducing the particles reaching into the unit to the level of the intermediate zone.




combustion

Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers

A device for feeding and controlling secondary air from secondary air ducts into flue gas channels of horizontal coke oven chambers is shown. The flue gas channels are located underneath the coke oven chamber floor on which coal carbonization is realized. The flue gas channels serve for combustion of partly burnt coking gases from the coke oven chamber. The partly burnt gases are burnt with secondary air, thus heating the coke cake also from below to ensure even coal carbonization. Secondary air comes from the secondary air ducts connected to atmospheric air and to the flue gas channels. Controlling elements are mounted in the connecting channels between the flue gas channels and secondary air ducts which can precisely control the air flow into the flue gas channels. Thereby, it is possible to achieve a much more regular heating and heat distribution in coke oven chambers. The actual controlling devices in the connecting channels can be formed by turnable pipe sections, wall bricks, or metal flaps. It is particularly advantageous to utilize a hump-like facility (tabouret) which sits in the secondary air ducts and which is comprised of a tabouret plate with a central opening that is slid under the corresponding embranchment to regulate the gas stream. The controlling mechanism can be actuated manually, electrically, or pneumatically. Thereby, the controlling device can also be automated.




combustion

Oil supply device for an internal combustion engine

An oil supply device for a crankcase of an internal combustion engine feeds oil from a reservoir to a main oil duct of the crankcase. A filter switching device allows a selection from a plurality of oil filter units in the flow path of the oil to be selectively connected into the oil flow path, to set a proportion of the oil filter units to active and a proportion of the oil filter units to passive. A switching unit switches between the active and passive states and opens up a pressurized oil flow path to the active oil filter unit(s) and also a drainage flow path between the passive oil filter unit(s) and a drainage duct. An evacuation device drains or evacuates oil from the drainage duct which has accumulated at the passive oil filter unit(s).




combustion

Supplementary intercooler for internal combustion engines

A supplementary intercooler cools engine air after it has passed through the turbocharger of a vehicle's turbocharged internal combustion engine, but before it enters the engine. The unit has an inlet for capturing the turbo's air charge and an outlet for routing the air charge to the engine after passing through the intercooler. A container stores water until it is needed and a water pump transfers water from the container to the unit. This loosened bond of water is then sprayed on capacitor plates under turbo pressure to be converted into hydrogen and injected into the air intake stream making it a totally “hydrogen-on-demand” intercooler.




combustion

Combustor with a combustion region between an inner pipe and outer pipe with an ignition device upstream of the combustion region

Includes a low flow-rate region (R2) that is disposed on an upstream side of a combustion region (R1) within a second pipe (2), and that has a relatively slow flow-rate of combustion gas (G1) within the second pipe, and a flame kernel formation unit (3a) is disposed in the low flow-rate region.




combustion

Near net shape fabrication of high temperature components using high pressure combustion driven compaction process

New net shape strength retaining high temperature alloy parts are formed from fine metallurgical powders by mechanically blending the powders and placing them in die, placing a piston in the die, extending the piston into a driving chamber, filling the chamber with CH4 and air and compressing the powders with the filling pressure. Igniting gas in the chamber drives the piston into the cavity, producing pressures of about 85 to 150 tsi, compacting the powders into a near net shape alloy part, ready for sintering at 2300° C. without shrinking. The alloy parts are Re, Mo—Re, W—Re, Re—Hf—HfC, Re—Ta—Hf—HfC, Re—Mo—Hf—HfC, Mo—Re—Ta, Mo—Re-f-HfC, W—Re—Hf—HfC, W—Re—Ta—Hf—HfC or W—Re—Mo—Hf alloys.




combustion

FILTER FAILURE DIAGNOSTIC DEVICE FOR AN INTERNAL COMBUSTION ENGINE

A device is provided, which makes it possible to perform a failure diagnostics for a filter more accurately even in the case of an internal combustion engine which is constructed to be capable of using both of gaseous fuel and liquid fuel. The device of the invention comprises judging means which judges any failure of the filter by comparing the added-up amount of the particulate matter contained in the exhaust gas as detected by a PM amount detecting sensor during a predetermined period and the added-up amount of the particulate matter contained in the exhaust gas as estimated by PM amount estimating means during the predetermined period, wherein the PM amount estimating means estimates the added-up amount of the particulate matter contained in the exhaust gas on the basis of the predetermined parameter and only a fuel injection amount of the liquid fuel out of a fuel injection amount of the gaseous fuel and the fuel injection amount of the liquid fuel.




combustion

HEAT GENERATION RATE WAVEFORM CALCULATION DEVICE OF INTERNAL COMBUSTION ENGINE AND METHOD FOR CALCULATING HEAT GENERATION RATE WAVEFORM

A combustion speed, for example, is estimated or evaluated, with a required accuracy, more simply than the conventional art, while reducing man-hours to produce a heat generation rate waveform of an internal combustion engine. An increase rate of a heat generation rate relative to a change in a crank angle in a heat generation rate increasing period (e.g., a first-half combustion period a) in which the heat generation rate increases after ignition of an air-fuel mixture is defined as a heat generation rate gradient b/a that is one of characteristic values of the heat generation rate waveform. The heat generation rate gradient is estimated based on a fuel density (e.g., fuel density ρfuel@dQpeak at heat generation rate maximum time) at a predetermined time set in advance in the heat generation rate increasing period so as to produce the heat generation rate waveform using the estimated heat generation rate gradient.




combustion

Fuel preprocess system for coal combustion boiler

A fuel preprocess system for a coal combustion boiler is disclosed. The fuel preprocess system for a coal combustion boiler that dries biomass or refuse-derived fuel in accordance with the present invention can include: a dryer configured to dry the biomass or refuse-derived fuel by use of flue gas generated after combustion in the boiler; and a torrefier configured to devolatilize a fibrous component contained in the dried fuel from the fuel dried in the dryer by use of primary air that is heat-exchanged after the combustion in the boiler.




combustion

Method of manufacturing a valve for an internal combustion engine

A method of manufacturing a valve for an internal combustion engine, comprises: (i) a primary step of forging a bulging portion at one end of a rod material to form a generally disk-shape valve head of the valve having a tapered periphery; (ii) an thickness adjustment step of machining an excessively thick portion of the valve head; and (iii) a secondary step of forging a peripheral region of the valve head to create radial slip deformations therein to form a valve face of the valve head. In the step of thickness adjustment, only the front end of the disk-shape valve head is machined without harming dense grain flow lines induced in the tapered face (16a) in the primary forging while advantageously saving the valve material and reducing thickness adjustment time. In the secondary forging, the hardness of the valve face is further enhanced.




combustion

Control device for internal combustion engine

A control apparatus for an internal combustion engine having a means for performing a model calculation to calculate, as an exhaust temperature calculation value, the temperature of exhaust gas in an exhaust branch tube at the time of starting an engine, using a model representing the temperature behavior of the exhaust gas in the exhaust branch tube during stop of an engine; and an exhaust temperature actual measurement value output means for detecting the temperature of exhaust gas in the exhaust branch tube, and outputting the detected temperature as an exhaust temperature actual measurement value, wherein the model includes at least one parameter.




combustion

Unit for simulating the pressure and temperature conditions of the air drawn in by a reciprocating internal combustion engine

The invention relates to a unit for simulating the pressure and temperature conditions of an air flow drawn in by a reciprocating internal combustion engine (1) at a height above sea level, corresponding to the operating height of said reciprocating internal combustion engine (1). According to the invention, the unit comprises at least: (a) a radial inward-flow turbine (2) for expanding an air flow towards the pressure and temperature of the air drawn in by the reciprocating internal combustion engine; (b) a first container (4) and (c) a second container (5) connected to the first container (4) by means of at least a connection pipe (7) in order to balance the pressure between the two containers; (d) a centrifugal compressor (3); and (e) a vacuum pump (6) for maintaining a pressure equal to the pressure of the air flow drawn in by the reciprocating internal combustion engine (1). The invention also relates to the use of said unit for simulating the pressure and temperature conditions of the air drawn in by a reciprocating internal combustion engine.




combustion

Internal combustion engine valve drive arrangement

In an internal combustion engine valve drive arrangement having cam elements which are supported on a camshaft so as to be axially displaceable and having switch gates which are coupled to the cam elements and have gate tracks with track segments and switching segments for displaceing the cam elements, the track segments and the switching segments are formed, at least in part, in partial areas of the switch gates.




combustion

Intake air control system for multi-cylinder combustion engine

An intake control system for a multi-cylinder combustion engine with control valves positioned within intake passageways that can vary the cross-sectional area of the intake runners to increase air intake velocity at low engine speeds. The control system includes an inner frame that can be inserted into a lower manifold after manufacture. The inner frame includes a plurality of flapper valves that are actuated by a four-bar link design, which is driven by a hypoid gear-set. The control system controls an internal DC electric motor that actuates a worm-drive gear-set, which in turn drives the hypoid gear-set to either engage or retract the flapper valves within the intake passageways.




combustion

Rotary internal combustion engine with pilot subchamber

A Wankel engine having an insert in the peripheral wall of the stator body, the insert being made of a material having a greater heat resistance than that of the peripheral wall, having a subchamber defined therein and having an inner surface bordering the cavity, the subchamber communicating with the cavity through at least one opening defined in the inner surface and having a shape forming a reduced cross-section adjacent the opening, a pilot fuel injector having a tip received in the subchamber, an ignition element having a tip received in the subchamber, and a main fuel injector extending through the housing and having a tip communicating with the cavity at a location spaced apart from the insert.




combustion

Flow limiter assembly for a fuel system of an internal combustion engine

A flow limiter for a fuel system is provided. The flow limiter includes a self-contained portion that enables testing of the flow limiter prior to assembly into a fuel system. A housing of the flow limiter is arranged to provide reduced or no pressure differential across a wall of the housing, permitting the housing to be reduced in size and thickness and providing improved consistency of operation.




combustion

Fastening structure of fuel delivery pipe and cylinder head of internal combustion engine

A fastening structure of a fuel delivery pipe and a cylinder head of an internal combustion engine includes three or more bosses provided on each of the cylinder head and the fuel delivery pipe, and fastening portions formed by bolting the bosses on the cylinder head to the bosses on the fuel delivery pipe. The fastening portions at both end portions of the fuel delivery pipe are less rigid than one or more fastening portions in a middle between the fastening portions positioned at both end portions of the fuel delivery pipe.




combustion

Internal combustion engine with intake air heating, and method for operating an internal combustion engine of said type

Embodiments for an engine system are provided. One example internal combustion engine having at least one cylinder head and at least two cylinders, in which each cylinder has at least one inlet opening for the supply of combustion air into the cylinder, comprises an intake line leading to each inlet opening, an overall intake line where the intake lines of at least two cylinders merge, such that a distributor junction point is formed, and a heating device arranged in the overall intake line which has at least one strip-like heating element, a first narrow side of a cross section of which faces toward intake combustion air flow, wherein the heating device is arranged adjacent to the distributor junction point at which the intake lines merge to form the overall intake line, a spacing between the heating device and the distributor junction point being smaller than the diameter of a cylinder.




combustion

NOx feedback for combustion control

A method for controlling combustion in an engine is provided. The method comprises under a first condition, adjusting an EGR amount of a total cylinder charge in response to engine out NOx levels being below a first threshold. In this way, NOx levels may be used as feedback to control combustion stability.




combustion

Variable valve operating apparatus for internal combustion engine

A variable valve operating apparatus for an internal combustion engine includes a drive camshaft, and a driven cam lobe that is rotatably supported by the drive camshaft. The variable valve operating apparatus further includes a control sleeve that has a raceway surface, a center of which is eccentric with respect to a center of rotation of its own. The variable valve operating apparatus further includes a link mechanism that is connected to each of the drive camshaft and the driven cam lobe and has a control roller which is in contact with the raceway surface. The variable valve operating apparatus further includes an actuator that drives the control sleeve. The variable valve operating apparatus further includes a control amount of the actuator is controlled to change a moving amount of the raceway surface in the above described plane direction in accordance with an operation condition of an internal combustion engine.




combustion

INTERNAL COMBUSTION ENGINE

An internal combustion engine which can be miniaturized, even where it includes an oil filter between a hydraulic clutch and an oil pump, without significantly increasing the length of an oil passage for the hydraulic clutch, the oil pump and a hydraulic pressure adjustment apparatus. A second oil filter is provided on an oil pan at a lower portion of the internal combustion engine so as to be disposed at a position at which the second oil filter does not overlap with any of a controlling oil pump and a hydraulic pressure adjustment apparatus as viewed in side elevation and which is lower than those of the oil pump and the hydraulic pressure adjustment apparatus.




combustion

ENERGY SAVING COMBUSTION DEVICE FOR BURNING REFRACTORY HAZARDOUS GAS AND METHOD FOR OPERATING THE SAME

The present invention relates to a combustion device 100 for burning refractory hazardous gases and a burning method for the combustion device. More particularly, the combustion device 110 for burning refractory hazardous gases, which is provided in a scrubber system 1 for burning waste gases, the combustion device 110 includes: a first porous body 141; a second porous body 142; and an igniter for forming a flame surface 143 at the interior of the combustion device 110, wherein the flame surface 143 formed by the igniter is located between the first porous body 141 and the second porous body 142, and so as to form the flame surface 143, at least one of the first porous body 141 and the second porous body 142 is moved to conduct excess enthalpy combustion.




combustion

CATALYST FOR HYDROGEN COMBUSTION, PROCESS FOR PRODUCING SAME, AND METHOD FOR HYDROGEN COMBUSTION

The hydrogen combustion catalyst includes a catalyst metal supported on a carrier made of an inorganic oxide, wherein: a functional group having at least one alkyl group with three or less carbon atoms is bonded to a terminal of a hydroxyl group on the carrier surface by substitution; platinum and palladium are supported as the catalyst metal; and a chlorine content is 300 ppm to 2,000 ppm per 1 mass % of the total supported amount of a supported amount of platinum and a supported amount of palladium. The total supported amount of platinum and palladium is preferably 0.1 to 5.0 mass % based on mass of a whole catalyst. In the hydrogen combustion catalyst according to the present invention, when treating a gas that contains iodine and hydrogen, catalyst poisoning by iodine is suppressed.




combustion

COMBUSTION RESONANCE SUPPRESSION

Methods, devices, and systems for combustion resonance suppression are described herein. One device includes a memory, and a processor configured to execute executable instructions stored in the memory to receive a number of operating conditions of a burner, determine whether resonance characteristics are present in a combustion chamber housing the burner based on the number of operating conditions of the burner, and modify at least one of an air supply and a fuel supply to the burner upon determining resonance characteristics are present in the combustion chamber.




combustion

METHOD AND SYSTEM FOR STARTING AN INTERMITTENT FLAME-POWERED PILOT COMBUSTION SYSTEM

A flame powered intermittent pilot combustion controller may include a first power source and a second power source separate from the first power source, a thermal electric and/or photoelectric device, an igniter and a controller. The thermal electric and/or photoelectric device may charge the first power source when exposed to a flame. The controller and the igniter may receive power from the first power source when the first power source has sufficient available power, and may receive power from the second power source when the first power source does not have sufficient available power.




combustion

ELECTRODYNAMIC COMBUSTION CONTROL WITH CURRENT LIMITING ELECTRICAL ELEMENT

An charge element disposed proximate to a combustion reaction is caused to carry a voltage while also being prevented from arc-discharging or arc-charging to or from the combustion reaction, by a current limiting element in electrical continuity with the charge element.




combustion

Burner For The Combustion Of Particulate Fuel

This invention relates to a burner (1) for burning a suspension of solid fuel in oxygen containing gas. A portion of the suspension is passed through a first conduit (10) which contains a bluff body (12) and helical vanes to impart turbulence and swirl to the suspension. A further portion of the suspension is passed through a second conduit (40) which is coaxial with the first conduit. Means for varying the relative sizes of each portion are provided. The arrangement allows improved fuel/air mixing, flame shape, heat transfer and control of NOx emissions.




combustion

Control System and Method for a Solid Fuel Combustion Appliance

Techniques for controlling a solid fuel combustion appliance, e.g., a wood burning stove, are disclosed. A control system measures an exhaust gas temperature of airflow through an outlet of the solid fuel combustion appliance. The control system determines a derivative of the exhaust gas temperature with respect to time. The derivative of the exhaust gas temperature with respect to time is compared to a predetermined threshold. The control system modulates the inlet damper in response to determining that the derivative of the exhaust gas temperature with respect to time reaches the predetermined threshold.




combustion

METHOD AND APPARATUS FOR DIFFUSE COMBUSTION OF PREMIX

A method directs fuel-oxidant premix into a reaction zone through a first total premix inlet flow area, and causes the premix to combust and form a stable flame projecting into a process chamber through an outlet from the reaction zone. At a time when the process chamber has a temperature at or above an auto-ignition temperature of the fuel, the flame is blown off to initiate diffuse combustion in the process chamber without a stable flame. The flame is blown off by directing the premix into the reaction zone through a second total premix inlet flow area greater than the first total premix inlet flow area.




combustion

DEVICE FOR CONTROLLING THE COMBUSTION OF A BURNER

Described is a device (11) for controlling the combustion of a burner (1), comprising: •first means (12) for measuring the fuel flow rate (Vg); •second means 13 for measuring the flow rate of the comburent (Va) •first operator means (14) for controlling the opening of an inlet valve (5) as a function of the quantity of fuel to be supplied to the burner (1); •second operator means (15) for controlling the comburent flow regulator means (8) as a function of the quantity of comburent to be supplied to the burner (1); According to this invention, the device (11) comprises a unit (16) for controlling the first operator means (14) and the second operator means (15) as a function of the values measured by the first measuring means (12) and by the second measuring means (13).




combustion

Process for purifying solid carboniferous fuels prior to combustion, liquefaction or gasification using a rotary chamber

Solid carboniferous fuels contain varying quantities of moisture, mercury, chlorine, nitrogen, sulfur, heavy metals and other materials that attain vapor pressure at elevated temperatures. The cost effective removal of these degrading and sometimes hazardous materials is important to the further use of the fuel for combustion as a solid, liquid, or gas. The solid fuel is cut, shredded, ground or sieved to appropriate size, and heated in a chamber that can exclude oxygen and air thus preventing ignition. The unwanted materials are driven in the gaseous state and extracted for disposal. The solid fuel cleaned of pollutants exits the chamber and is cooled below ignition temperature prior to contact with oxygen. The solid fuel thus purified is more appropriate for combustion, liquefaction or gasification due to the reduced costs in use as a fuel or in the post combustion clean up.




combustion

Staged combustion of sulfureous combustible effluents with recovery of the sulfur in the claus process

A process for advantageously efficiently treating a sulfureous combustible effluent stream by recovering the sulfur in elemental form comprises a step of combustion of the sulfureous combustible effluent stream with an oxidant gas in excess, and then a step of post-combustion of the effluents from the combustion step with an acidic gas. The stream of the post-combustion effluents, free of chemical compounds that are harmful to the efficacy of the Claus catalysts, is treated in a Claus unit, which performs the recovery of the sulfur in elemental form.




combustion

HEAT GENERATION RATE WAVEFORM CALCULATION DEVICE OF INTERNAL COMBUSTION ENGINE AND METHOD FOR CALCULATING HEAT GENERATION RATE WAVEFORM

A first-half combustion period, for example, is estimated/evaluated, with a required accuracy, more simply than the conventional art, while reducing man-hours to produce a heat generation rate waveform of an internal combustion engine. Within a combustion period of an air-fuel mixture, a period from an ignition time FA to a heat generation rate maximum time dQpeakA where the heat generation rate is maximum is defined as the first-half combustion period a that is one of characteristic values of the heat generation rate waveform. The first-half combustion period a is estimated based on an in-cylinder volume at the heat generation rate maximum time, and furthermore by being corrected using an exponential function of the engine rotation speed with a value depending on a tumble ratio as exponent. Thus, the heat generation rate waveform is produced using the estimated first-half combustion period a.




combustion

Methods of improving combustion of solid fuels

A method comprising applying a chemical change reagent to coal prior to combustion of the coal is provided. In some instances, the chemical change reagent can include an effective amount of a material to reduce NOx emissions, SOx emissions, or both from combustion of the coal.




combustion

STAGED FUEL AND AIR INJECTION IN COMBUSTION SYSTEMS OF GAS TURBINES

A gas turbine that includes: a combustor coupled to a turbine that define a working fluid flowpath; a compressor discharge cavity; a staged injection system that includes the forward injector and a staged injector; a stator blade positioned extending across the working fluid flowpath between an inboard sidewall and an outboard sidewall. A one-way continuous coolant flowpath that includes: an intake section that comprises an upstream port connected to the compressor discharge cavity and a downstream port formed through one of the inboard and outboard sidewalls; an outtake section that comprises a downstream port connected to the staged injector and an upstream port formed through the same one of the inboard and outboard sidewalls; and a cooling circuit extending through an interior of the airfoil of the stator blade and connecting to the downstream port of the intake section and the upstream port of the outtake section.




combustion

Gas Separation Process Using Membranes with Permeate Sweep to Remove CO2 from Combustion Exhaust

A gas separation process for treating exhaust gases from combustion processes. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.




combustion

METHOD OF IMPROVING EXHAUST EMISSION OF A COMBUSTION ENGINE, AND COMBUSTION ENGINE

In a method of reducing pollutants of a combustion engine, exhaust gas, generated by a cylinder of the combustion engine, is fed to an exhaust gas aftertreatment system as a function of a predefined condition solely via a first exhaust channel which communicates with a first one of first and second exhaust valves of the cylinder. The first exhaust channel is hereby coated, at least in part, by a thermally insulating layer selected such that a heat input is transmitted to the exhaust gas aftertreatment system which heat input is greater than a heat input in a second exhaust channel communicating with a second one of the first and second exhaust valves. The predefined condition is defined as a function of a coolant temperature of the combustion engine.




combustion

CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE

A controller is provided, which detects operating conditions of an internal combustion engine on the basis of detection results from a group of sensors and drives an actuator that modifies an opening position of a wastegate valve on the basis of the operating conditions. When driving the wastegate valve to a fully closed opening, the controller initially drives the actuator toward a preset provisional fully closed position, and after determining on the basis of a detection result from a position sensor that an actual opening of the wastegate valve has reached the provisional fully closed opening, switches a target opening to the fully closed opening and drives the actuator accordingly.




combustion

CONTROL APPARATUS AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE

A required opening correction amount is calculated based on a target supercharging pressure and an actual supercharging pressure, a target opening is calculated based on a required opening and the required opening correction amount, an actual operating position of a wastegate valve is determined to correspond to a fully closed position when the wastegate valve is in a fully closed condition, an actual opening of the wastegate valve is calculated based on the fully closed position and the actual operating position, an operation amount of an actuator for aligning the target opening with the actual opening is calculated based on the target opening and the actual opening, and when the target opening corresponds to the fully closed condition and the actual operating position is not decreased at or above a prescribed rate, the fully closed position is updated to the actual operating position.




combustion

System for Injecting a Liquid Fuel into a Combustion Gas Flow Field

A system for injecting a liquid fuel into a combustion gas flow field includes an annular liner that defines a combustion gas flow path. The annular liner includes an inner wall, an outer wall and a fuel injector opening that extends through the inner wall and the outer wall. The system further includes a gas fuel injector that is coaxially aligned with the fuel injector opening. The gas fuel injector includes an upstream end and a downstream end. The downstream end terminates substantially adjacent to the inner wall. A dilution air passage is at least partially defined by the gas fuel injector. A liquid fuel injector extends partially through the dilution air passage. The liquid fuel injector includes an injection end that terminates upstream from the inner wall.




combustion

CHARGE AIR COOLER FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR OPERATING A CHARGE AIR COOLER

A charge air cooler for an internal combustion engine, includes a charge air inlet and a charge air outlet which are fluidly connected with each other via multiple charge air channels which are arranged parallel to each other and arranged parallel to each other and subjectable to a coolant flow; and at least one flow guide element arranged upstream of the charge air channels, wherein the flow guide element at least in one operating state of the internal combustion engine deflects charge air entering through the charge air inlet the direction of a condensate accumulation volume of the charge air cooler.




combustion

#151: Spontaneous Combustion




combustion

Combustion emissions

Schofield, Keith.
9780128191279 (electronic bk.)




combustion

Application of liquid biofuels to internal combustion engines [Electronic book] / Soo-Young No.

Singapore : Springer, [2019]




combustion

[ASAP] Effects of Graphene Oxide on the Mechanical and Microscopic Characteristics of Cement-Based Plugging Material for Preventing Spontaneous Combustion of Coal

Energy & Fuels
DOI: 10.1021/acs.energyfuels.0c00493