to

Problem Notes for SAS®9 - 65886: Trying to bulk load data into a Google BigQuery database might result in an error

When you bulk load data into a Google BigQuery database, you might encounter this error: "Error while reading data, error message: CSV table encountered too many errors, giving up...Error detected while parsing row starting at position: 0...Data




to

Problem Notes for SAS®9 - 65898: A misleading SASTRACE message appears in the log when you insert a row into an Oracle table using SAS/ACCESS Interface to Oracle with DBIDIRECTEXEC

When you add one row to an Oracle table using DBIDIRECTEXEC, you see the following misleading trace message: "ORACLE: 4294967296 rows inserted/updated/deleted." You should see something similar to the following: "ORACLE: 1 rows inserte




to

Problem Notes for SAS®9 - 65893: Custom sorts are sorted incorrectly when they are used in a hierarchy in SAS Visual Analytics Designer

A custom sort might be sorted incorrectly when the data item is used in a custom category, which is then used in a hierarchy. The issue can occur in the following scenario:




to

Problem Notes for SAS®9 - 65883: SAS Workflow Studio returns a "cannot load" error when you try to open the CECL_Cycle_AFS workflow template for SAS Solution for CECL

You might see the following error in SAS Workflow Studio when you try to open the CECL_Cycle_AFS workflow template that is shipped with SAS Solution for CECL:



to

Problem Notes for SAS®9 - 65869: SAS Visual Data Builder does not enable you to schedule with multiple time-event triggers

SAS Visual Data Builder might not enable you to create multiple time-event triggers. The + button to add another trigger is not available to select, as shown in the following display: imgalt="" src="{fusion_658




to

Around the Horn: Pham, Choi aim to boost Rays

Over the past couple of weeks leading up to Spring Training, MLB.com went around the horn to examine each area of the Rays' 2019 roster. The final installment focuses on Tampa Bay's outfield and designated hitters.




to

Here's your guide to Rays Spring Training

Baseball season is now on the clock and the Rays are looking to get back to the postseason for the first time since 2014. That quest will begin next week as Spring Training is finally upon us. Here's a primer to get you informed on all you need to know this spring.




to

Rays' 2019 mantra: Prepare to win from within

Over the past couple seasons, the Rays have preached patience as the organization provided time for the top prospects to make it up to the Majors. Now, the focus has been primarily in remaining flexible and keeping positions open for the young talent arriving from the Minors.




to

Bulked-up Duffy looks to sustain at plate in '19

As Matt Duffy entered the offseason, he knew that he needed to add strength in order to hold up over the course of a 162-game season. The 28-year old has been at the Rays' Spring Training facility in Port Charlotte, Fla., for about a week, and he believes his improved shape will help the team fight for a playoff spot in 2019.




to

Uniform patch to mark 150 years of pro baseball

All 30 Major League teams will wear special "MLB 150" patches on their uniforms for the entire 2019 season in honor of the 150th anniversary of the 1869 Cincinnati Red Stockings, the first openly all-salaried professional baseball team.




to

Rays two-way prospect McKay to DH only in '19

Brendan McKay is still going to be a two-way player, but the Rays are planning to narrow his focus on the hitting side by keeping him to designated hitter-only duties, a source confirmed to MLB.com's Juan Toribio on Monday.




to

Morton believes Rays can make postseason

After a pair of seasons -- and a World Series title -- with the Astros, Rays pitcher Charlie Morton is confident that his new team has what in takes to make a postseason run in 2019.




to

Pagan working to develop off-speed pitches

As Emilio Pagan enters his first Spring Training with the Rays, he's looking to prove that he can perform well against hitters on either side of the plate.




to

Glasnow working to quicken delivery

Tyler Glasnow is hoping to build off a positive 2018, but his delivery is going to look a little different this season.




to

Rays' Top 30 Prospects list

Who do the Rays have in the pipeline? Get scouting reports, video, stats, projected ETAs and more for Tampa Bay's Top 30 Prospects on MLB Pipeline's Prospect Watch.




to

The Rays' Spring Training battle to watch

The next five weeks will see lots of shuffling on Major League rosters. Here are the most intriguing positional battles on each of the 30 MLB clubs.




to

Here are 10 Rays players to watch this spring

While most of the attention will fall on the players who are expected to make the Opening Day roster, manager Kevin Cash and the rest of the organization will be keeping a close eye on some of the players that could find their way to the big leagues at some point within the next year.




to

Diaz aims to turn heads, cement everyday role

When Yandy Diaz arrived at Rays camp on Sunday, he quickly established himself as the most muscular player inside the clubhouse. During Spring Training, his focus will be to establish himself as an everyday player.




to

Cognitive symptoms of Alzheimer’s disease: clinical management and prevention




to

Linking risk factors and outcomes in autism spectrum disorder: is there evidence for resilience?




to

Autoimmune complications of immunotherapy: pathophysiology and management




to

Advances in regenerative medicine for otolaryngology/head and neck surgery




to

Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology]

Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.




to

ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease]

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.




to

ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




to

Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice

Objective:

GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis.

Research Design and Methods:

Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed.

Results:

In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates.

Conclusions:

Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes.




to

Glucagon Resistance at the Level of Amino Acid Turnover in Obese Subjects with Hepatic Steatosis

Glucagon secretion is regulated by circulating glucose, but it has turned out that amino acids also play an important role, and that hepatic amino acid metabolism and glucagon are linked in a mutual feed-back cycle, the liver-alpha cell axis. On this background, we hypothesized that hepatic steatosis might impair glucagon’s action on hepatic amino acid metabolism and lead to hyperaminoacidemia and hyperglucagonemia.

We subjected 15 healthy lean and 15 obese steatotic male participants to a pancreatic clamp with somatostatin and evaluated hepatic glucose and amino acid metabolism during basal and high physiological levels of glucagon. The degree of steatosis was evaluated from liver biopsies.

Total RNA sequencing of liver biopsies revealed perturbations in the expression of genes predominantly involved in amino acid metabolism in the obese steatotic individuals. This group was also characterized by fasting hyperglucagonemia, hyperaminoacidemia and an absent lowering of amino acid levels in response to high levels of glucagon. Endogenous glucose production was similar between lean and obese individuals.

Our results suggest that hepatic steatosis causes resistance to the effect of glucagon on amino acid metabolism resulting in increased amino acid concentrations as well as increased glucagon secretion providing a likely explanation of fatty liver-associated hyperglucagonemia.




to

Novel Detection and Restorative Levodopa Treatment for Pre-Clinical Diabetic Retinopathy

Diabetic retinopathy (DR) is diagnosed clinically by directly viewing retinal vascular changes during ophthalmoscopy or through fundus photographs. However, electroretinography (ERG) studies in humans and rodents have revealed that retinal dysfunction is demonstrable prior to the development of visible vascular defects. Specifically, delays in dark-adapted ERG oscillatory potential (OP) implicit times in response to dim flash stimuli (<-1.8 log cd·s/m2) occur prior to clinically-recognized diabetic retinopathy. Animal studies suggest that retinal dopamine deficiency underlies these early functional deficits. Here, we randomized persons with diabetes, without clinically detectable retinopathy, to treatment with either low or high dose Sinemet (levodopa plus carbidopa) for 2 weeks and compared their ERG findings with those of control (no DM) subjects. We assessed dim flash stimulated OP delays using a novel hand-held ERG system (RETeval) at baseline, 2 and 4 weeks. RETeval recordings identified significant OP implicit-time delays in persons with diabetes without retinopathy compared to age-matched controls (p<0.001). After two weeks of Sinemet treatment, OP implicit times were restored to control values, and these improvements persisted even after a two-week washout. We conclude that detection of dim flash OP delays could provide early detection of DR, and that Sinemet treatment may reverse retinal dysfunction.




to

Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice

Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has been recently shown to act as a neurotrophic factor to control the development of AP->NTS and ARC->PVN axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. To investigate the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR) was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment.




to

Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.




to

Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic {beta}-cells

A sustained increase in intracellular Ca2+ concentration (referred to herein as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high fat diet (HFD) on Abcc8 knock-out mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation and mitochondrial biogenesis, and their key regulator Ppargc1a. Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure.




to

Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.




to

Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling

Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity.




to

Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice

Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress.




to

Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Induced Obese Mice

Sodium glucose co-transporter-2 inhibitors (SGLT2i) have favorable cardiovascular outcomes in diabetic patients. However, whether SGLT2i can improve obesity-related cardiac dysfunction is unknown. Sestrin2 is a novel stress-inducible protein that regulates AMPK-mTOR and suppresses oxidative damage. The aim of this study was to determine whether empagliflozin (EMPA) improves obesity-related cardiac dysfunction via regulating Sestrin2-mediated pathways in diet-induced obesity. C57BL/6J mice and Sestrin2 knockout mice were fed a high-fat diet (HFD) for 12 weeks and then treated with or without EMPA (10 mg/kg) for 8 weeks. Treating HFD-fed C57BL/6J mice with EMPA reduced body weight, whole-body fat, and improved metabolic disorders. Furthermore, EMPA improved myocardial hypertrophy/fibrosis and cardiac function, and reduced cardiac fat accumulation and mitochondria injury. Additionally, EMPA significantly augmented Sestrin2 levels, increased AMPK and eNOS phosphorylation, but inhibited Akt and mTOR phosphorylation. These beneficial effects were partially attenuated in HFD-fed Sestrin2 knockout mice. Intriguingly, EMPA treatment enhanced the Nrf2/HO-1-mediated oxidative stress response, suggesting antioxidant and anti-inflammatory activity. Thus, EMPA improved obesity-related cardiac dysfunction via regulating Sestrin2-mediated AMPK-mTOR signaling and maintaining redox homeostasis. These findings provide a novel mechanism for the cardiovascular protection of SGLT2i in obesity.




to

Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis

Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure.




to

Myo-Inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulo-Interstitial Injury in Diabetes

Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP-1, a transcription factor of ER stress response. Previous studies indicate that MIOX’s upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated if hyperglycemia leads to accentuation of oxidant and ER stress, while boosting each other’s activities and thereby augmenting tubulo-interstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and -knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2Akita to generate Ins2Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/DHE staining, perturbed NAD/NADH and GSH/GSSG ratios, increased NOX-4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP-1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers) and accelerated tubulo-interstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2Akita/KO mice, and likewise in vitro experiments with XBP1-siRNA. These findings suggest that MIOX expression accentuates while its deficiency shields kidneys from tubulo-interstitial injury by dampening oxidant and ER stress, which mutually enhance each other’s activity.




to

Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells

Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.




to

The Metabolic Responses to 24-h Fasting and Mild Cold Exposure in Overweight Individuals are Correlated and Accompanied by Changes in FGF21 Concentration

A greater decrease in 24-h energy expenditure (24EE) during 24h fasting defines a thriftier metabolic phenotype prone to weight gain during overfeeding and resistant to weight loss during caloric restriction. As the thermogenic response to mild cold exposure (COLD) may similarly characterize this human phenotype identified by acute fasting conditions, we analyzed changes in 24EE and sleeping metabolic rate (SLEEP) in a whole-room indirect calorimeter during 24h fasting at thermoneutrality (24°C) and during energy balance both at thermoneutrality (24°C) and mild cold (19°C) in 20 healthy volunteers (80% male, age: 36.6±11.4y, percentage body fat: 34.8±10.5%). Greater decrease in 24EE during fasting (thriftier phenotype) was associated with less increase in 24EE during COLD, i.e. less cold-induced thermogenesis. Greater decreases in plasma fibroblast growth factor 21 (FGF21) after 24h fasting and after COLD were highly correlated and associated with greater decreases in SLEEP in both conditions. We conclude that the metabolic responses to short-term fasting and COLD are associated and mediated by the liver-derived hormone FGF21. Thus, the 24EE response to COLD further identifies the thrifty versus spendthrift phenotype, providing an additional setting to investigate the physiological mechanisms underlying the human metabolic phenotype and characterizing the individual susceptibility to weight change.




to

The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates

Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting PEGylated FGF21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy, and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease, administration of B1344 via subcutaneous injection for eleven weeks caused a profound reduction of hepatic steatosis, inflammation and fibrosis, and amelioration of liver injury and hepatocyte death as evidenced by liver biopsy and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkey, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, administration of B1344 were performed in mice fed with methionine and choline deficiency diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis at a dose-dependent manner. These results provide preclinical validation for an innovative therapeutics to NAFLD, and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.




to

Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 with Clostridia and Insulin Sensitivity in Humans

Recent studies using mouse models suggest that interaction between the gut microbiome and IL-17/IL-22 producing cells plays a role in the development of metabolic diseases. We investigated this relationship in humans using data from the prediabetes study of the Integrated Human Microbiome Project (iHMP). Specifically, we addressed the hypothesis that early in the onset of metabolic diseases there is a decline in serum levels of IL-17/IL-22, with concomitant changes in the gut microbiome. Clustering iHMP study participants on the basis of longitudinal IL-17/IL-22 profiles identified discrete groups. Individuals distinguished by low levels of IL-17/IL-22 were linked to established markers of metabolic disease, including insulin sensitivity. These individuals also displayed gut microbiome dysbiosis, characterized by decreased diversity, and IL-17/IL-22-related declines in the phylum Firmicutes, class Clostridia, and order Clostridiales. This ancillary analysis of the iHMP data therefore supports a link between the gut microbiome, IL-17/IL-22 and the onset of metabolic diseases. This raises the possibility for novel, microbiome-related therapeutic targets that may effectively alleviate metabolic diseases in humans as they do in animal models.




to

Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction

Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear if these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy we generated transgenic mice with inducible cardiomyocyte-specific expression of the glucose transporter (GLUT4). We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in non-diabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset, exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.




to

Dextran Sulfate Protects Pancreatic {beta}-Cells, Reduces Autoimmunity and Ameliorates Type 1 Diabetes

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.




to

Low Dose IL-2 Combined with Rapamycin Led to an Expansion of CD4+CD25+FOXP3+ Tregs and Prolonged Human Islet-allograft Survival in Humanized Mice

Islet transplantation is an emerging therapy for type 1 diabetes (T1D) and hypoglycaemic unawareness. However, a key challenge for islet transplantation is cellular rejection and the requirement for long-term immunosuppression. In this study we established a diabetic-humanized NOD-scidIL2Rnull(NSG) mouse model of T cell mediated human islet-allograft rejection and developed a therapeutic regimen of low-dose recombinant human interleukin2(IL-2) combined with low-dose rapamycin to prolong graft survival. NSG-mice that had received renal-subcapsular human islet-allografts and were transfused with 1x107 of human-spleen-mononuclear-cells (hSPMCs), reconstituted human CD45+ cells that were predominantly CD3+ T cells and rejected their grafts with a median survival time of 27 days. IL-2 alone (0.3x106 IU/m2 or 1x106 IU/m2), or rapamycin alone (0.5-1mg/kg) for 3 weeks did not prolong survival. However, the combination of rapamycin with IL-2 for 3 weeks significantly prolonged human islet-allograft survival. Graft survival was associated with expansion of CD4+CD25+FOXP3+ Tregs and enhanced TGF-β production by CD4+ T cells. CD8+ T cells showed reduced IFN- production and reduced expression of perforin-1. The combination of IL-2 and rapamycin has the potential to inhibit human islet-allograft rejection by expanding CD4+FOXP3+ Tregs in vivo and supressing effector cell function, and could be the basis of effective tolerance-based regimens.




to

Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway

Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin’s effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression.




to

Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic {beta}-Cell

Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493–1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress."




to

Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes

Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged.




to

Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes

Hepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription. For regulation of lipogenic gene transcription, various known lipogenic transcription factors, such as USF1, ChREBP, and LXR, interact with and recruit specific histone modifiers, directing specificity toward lipogenesis. Alteration or impairment of the functions of these histone modifiers can lead to dysregulation of lipogenesis and thus hepatosteatosis leading to insulin resistance and type 2 diabetes.




to

Exercise Combats Hepatic Steatosis: Potential Mechanisms and Clinical Implications

Hepatic steatosis, the excess storage of intrahepatic lipids, is a rampant clinical problem associated with the obesity epidemic. Hepatic steatosis is linked to increased risk for insulin resistance, type 2 diabetes, and cardiovascular and advanced liver disease. Accumulating evidence shows that physical activity, exercise, and aerobic capacity have profound effects on regulating intrahepatic lipids and mediating susceptibility for hepatic steatosis. Moreover, exercise can effectively reduce hepatic steatosis independent of changes in body mass. In this perspective, we highlight 1) the relationship between obesity and metabolic pathways putatively driving hepatic steatosis compared with changes induced by exercise; 2) the impact of physical activity, exercise, and aerobic capacity compared with caloric restriction on regulating intrahepatic lipids and steatosis risk; 3) the effects of exercise training (modalities, volume, intensity) for treatment of hepatic steatosis, and 4) evidence for a sustained protection against steatosis induced by exercise. Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis.




to

Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to {beta}-Cell Failure in Diabetes

In type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes. In this perspective, we discuss posttranscriptional control of gene expression as a critical, but underappreciated, layer of regulation with broad importance during stress responses. Specifically, regulation of mRNA translation occurs pervasively during stress to activate gene expression programs; however, the convenience of RNA sequencing has caused translational regulation to be overlooked compared with transcriptional controls. We highlight the role of RNA binding proteins in shaping selective translational regulation during stress and the mechanisms underlying this level of regulation. A growing body of evidence indicates that RNA binding proteins control an array of processes in β-cells, including the synthesis and secretion of insulin. Therefore, systematic evaluations of translational regulation and the upstream factors shaping this level of regulation are critical areas of investigation to expand our understanding of β-cell failure in type 2 diabetes.