edi

Webinar: Weekly COVID-19 Pandemic Briefing – The Swedish Approach

Members Event Webinar

29 April 2020 - 10:00am to 11:00am

Online

Event participants

Professor Johan Giesecke, MD, PhD, Professor Emeritus of Infectious Disease Epidemiology, Karolinska Institute Medical University, Stockholm; State Epidemiologist, Sweden (1995-05)
Professor David Heymann CBE, Distinguished Fellow, Global Health Programme, Chatham House; Executive Director, Communicable Diseases Cluster, World Health Organization (1998-03)
Chair: Emma Ross, Senior Consulting Fellow, Global Health Programme, Chatham House

The coronavirus pandemic continues to claim lives around the world. As countries grapple with how best to tackle the virus, and the reverberations the pandemic is sending through their societies and economies, scientific understanding of how the COVID-19 virus is behaving and what measures might best combat it continues to advance.

Join us for the sixth in a weekly series of interactive webinars on the coronavirus with Professor David Heymann and special guest, Johan Giesecke, helping us to understand the facts and make sense of the latest developments in the global crisis. What strategy has Sweden embraced and why? Can a herd immunity strategy work in the fight against COVID-19? How insightful is it to compare different nations’ approaches and what does the degree of variation reveal?

Professor Heymann is a world-leading authority on infectious disease outbreaks. He led the World Health Organization’s response to SARS and has been advising the organization on its response to the coronavirus. 

Professor Giesecke is professor emeritus of Infectious Disease Epidemiology at the Karolinska Institute Medical University in Stockholm. He was state epidemiologist for Sweden from 1995 to 2005 and the first chief scientist of the European Centre for Disease Prevention and Control (ECDC) from 2005 to 2014.




edi

The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation [DNA and Chromosomes]

Histone H2B monoubiquitylation (H2Bub1) has central functions in multiple DNA-templated processes, including gene transcription, DNA repair, and replication. H2Bub1 also is required for the trans-histone regulation of H3K4 and H3K79 methylation. Although previous studies have elucidated the basic mechanisms that establish and remove H2Bub1, we have only an incomplete understanding of how H2Bub1 is regulated. We report here that the histone H4 basic patch regulates H2Bub1. Yeast cells with arginine-to-alanine mutations in the H4 basic patch (H42RA) exhibited a significant loss of global H2Bub1. H42RA mutant yeast strains also displayed chemotoxin sensitivities similar to, but less severe than, strains containing a complete loss of H2Bub1. We found that the H4 basic patch regulates H2Bub1 levels independently of interactions with chromatin remodelers and separately from its regulation of H3K79 methylation. To measure H2B ubiquitylation and deubiquitination kinetics in vivo, we used a rapid and reversible optogenetic tool, the light-inducible nuclear exporter, to control the subcellular location of the H2Bub1 E3 ligase, Bre1. The ability of Bre1 to ubiquitylate H2B was unaffected in the H42RA mutant. In contrast, H2Bub1 deubiquitination by SAGA-associated Ubp8, but not by Ubp10, increased in the H42RA mutant. Consistent with a function for the H4 basic patch in regulating SAGA deubiquitinase activity, we also detected increased SAGA-mediated histone acetylation in H4 basic patch mutants. Our findings uncover that the H4 basic patch has a regulatory function in SAGA-mediated histone modifications.




edi

GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy

Yu Xue
Sep 1, 2008; 7:1598-1608
Research




edi

Reply to Cosgrove: Non-enzymatic action of expansins [Letters to the Editor]

In our computational study, we use molecular simulations to substantiate a hypothetical mechanism for glycosidic bond cleavage in the presence of a single catalytic acid at the active site of the mutant D10N HiCel45A. In addition to discussing this plausible mechanism from the context of structurally related MltA lytic transglycosylase and subfamily C GH45s, we also suggest the implications of the plausible mechanism for our current understanding of the action of expansins and lytic transglycosylases. As correctly pointed out by Professor Cosgrove (1), there is large body of evidence, a significant portion of which was regrettably not discussed in our paper, that suggests that expansins are incapable of lytic action on polysaccharide substrates. Whereas these insights do not change the results or the conclusions of our article, we would like to thank Professor Cosgrove for these additional insights. In particular, our main point with respect to expansins is that our results suggest the possibility that expansins are capable of nonhydrolytic lytic activity. Our intention was not to suggest this was the mechanism of expansins, but that it should be considered based on our results and the similarity of the active sites.The molecular mechanisms of how expansins enable cell wall expansion remains to be fully understood. Whereas our proposed mechanism resulting in the formation of the 1,6-anhdro product might be found in expansins and might contribute to the mode of action of expansins, we would like to emphasize that the intent of this study was only to suggest this as a...




edi

Non-enzymatic action of expansins [Letters to the Editor]

From their simulations of endoglucanase Cel45A, Bharadwaj et al. (1) propose that structurally related expansins and MltA may cut glycan backbones without generating reducing ends. This is tenable for MltA, a peptidoglycan lytic transglycosylase whose action produces nonreducing 1,6-anhydro products, but is untenable for expansins.Expansins loosen plant cell walls and induce wall expansion. Contrary to the assertion by Bharadwaj et al., the conclusion that expansins are not lytic is not merely based on lack of new reducing ends but is supported by multiple (negative) tests for polysaccharide cleavage that do not rely on detection of reducing ends. At least eight studies with three divergent groups of expansins document this point. For instance, α-expansin did not reduce the viscosity of various wall polysaccharide solutions, an endolytic assay that does not rely on measuring reducing ends (e.g. see Ref. 2 and other studies).Walls treated with α-expansin did not release saccharide fragments, measured by pulsed amperometric detection, which can detect nonreducing saccharides (3).In the case of β-expansins, protein treatments did not cleave the backbones of a wide range of dye-coupled cross-linked wall polysaccharides; nor did they cleave backbones of polysaccharides extracted from plant cell walls, measured by gel permeation chromatography (4).For five microbial expansins, tests with a range of dye-coupled cross-linked polysaccharides likewise did not detect lytic activity (e.g. see Ref. 5). Thus, extensive published evidence argues against lytic action by expansins, as proposed by Bharadwaj (1), and attempts to identify 1,6-anhydro products seem unlikely to succeed.




edi

{gamma}-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion [Signal Transduction]

Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell–intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4–10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm. Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.




edi

Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology]

Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.




edi

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




edi

NF-{kappa}B mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages [Signal Transduction]

Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.




edi

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




edi

DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology]

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.




edi

Why Britain’s 2019 Election Is Its Most Unpredictable in Recent History

7 November 2019

Professor Matthew Goodwin

Visiting Senior Fellow, Europe Programme
Leadership concerns and a collapse of traditional party loyalties make the December vote uncommonly volatile.

On 12 December, Britain will hold the most consequential election in its postwar history. The outcome of the election will influence not only the fate of Brexit but also the likelihood of a second referendum on EU membership, a second independence referendum in Scotland, the most economically radical Labour Party for a generation, Britain’s foreign and security policy and, ultimately, its position in the wider international order.

If you look only at the latest polls, then the outcome looks fairly certain. Ever since a majority of MPs voted to hold the election, the incumbent Conservative Party has averaged 38%, the opposition Labour Party 27%, the Liberal Democrats 16%, Brexit Party 10%, Greens 4% and Scottish National Party 3%. Prime Minister Boris Johnson and his party continue to average an 11-point lead which, if this holds until the election, would likely deliver a comfortable majority.

Johnson can also point to other favourable metrics. When voters are asked who would make the ‘best prime minister’, a clear plurality (43%) say Johnson while only a small minority (20%) choose the Labour Party leader, Jeremy Corbyn. Polls also suggest that, on the whole, Johnson is more trusted by voters than Corbyn to deal with Brexit, the economy and crime, while Jeremy Corbyn only tends to enjoy leads on health. All of this lends credence to the claim that Britain could be set for a Conservative majority and, in turn, the passing of a withdrawal agreement bill in early 2020.

But these polls also hide a lot of other shifts that are taking place and which, combined, make the 2019 general election unpredictable. One concerns leadership. While Boris Johnson enjoys stronger leadership ratings than Jeremy Corbyn, it should be remembered that what unites Britain’s current generation of party leaders is that they are all unpopular. Data compiled by Ipsos-MORI reveals that while Johnson has the lowest ratings of any new prime minister, Labour’s Jeremy Corbyn has the lowest ratings of any opposition leader since records began.

Another deeper shift is fragmentation. One irony of Britain’s Brexit moment is that ever since the country voted to leave the European Union its politics have looked more ‘European’. Over the past year, one of the world’s most stable two-party systems has imploded into a four-party race, with the anti-Brexit Liberal Democrats and Nigel Farage’s strongly Eurosceptic Brexit Party both presenting a serious challenge to the two mainstream parties.

In the latest polls, for example, Labour and the Conservatives are attracting only 61 per cent of the overall vote, well down on the 80 per cent they polled in 2017. Labour is weakened by the fact that it is only currently attracting 53 per cent of people who voted Labour at the last election, in 2017. A large number of these 2017 Labour voters, nearly one in four, have left for the Liberal Democrats, who are promising to revoke Article 50 and ‘cancel Brexit’. This divide in the Remain vote will produce unpredictable outcomes at the constituency level.

At the other end of the spectrum, the Conservatives are grappling with a similar but less severe threat. Nigel Farage and the Brexit Party are attracting around one in ten people who voted Conservative in 2017, which will make Boris Johnson’s task of capturing the crucial ‘Labour Leave’ seats harder. There is clear evidence that Johnson has been curbing Farage’s appeal, but it remains unclear how this rivalry on the right will play out from one seat to the next.

One clue as to what happens next can be found in those leadership ratings. While 80 per cent of Brexit Party voters back Johnson over Corbyn, only 25 per cent of Liberal Democrat voters back Corbyn over Johnson. Johnson may find it easier to consolidate the Leave vote than Corbyn will find the task of consolidating the Remain vote.

All of this reflects another reason why the election is unpredictable: volatility. This election is already Britain’s fifth nationwide election in only four years. After the 2015 general election, 2016 EU referendum, 2017 general election and 2019 European parliament elections, Britain’s political system and electorate have been in a state of almost continual flux. Along the way, a large number of voters have reassessed their loyalties.

As the British Election Study makes clear, the current rate of ‘vote-switching’ in British politics, where people switch their vote from one election to the next, is largely unprecedented in the post-war era. Across the three elections held in 2010, 2015 and 2017, a striking 49 per cent of people switched their vote.

This is not all about Brexit. Attachment to the main parties has been weakening since the 1960s. But Brexit is now accelerating this process as tribal identities as ‘Remainers’ or ‘Leavers’ cut across traditional party loyalties. All this volatility not only gives good reason to expect further shifts in support during the campaign but to also meet any confident predictions about the election result with a healthy dose of scepticism.




edi

A Credit-fuelled Economic Recovery Stores Up Trouble for Turkey

17 February 2020

Fadi Hakura

Consulting Fellow, Europe Programme
Turkey is repeating the mistakes that led to the 2018 lira crisis and another freefall for the currency may not be far off.

2020-02-17-TurCB.jpg

Headquarters of the Central Bank of the Republic of Turkey. Photo: Getty Images.

Since the 2018 economic crisis, when the value of the lira plummeted and borrowing costs soared, Turkey’s economy has achieved a miraculous ‘V-shaped’ economic recovery from a recession lasting three quarters to a return back to quarterly growth above 1 per cent in the first three months of 2019.

But this quick turnaround has been built on vast amounts of cheap credit used to re-stimulate a consumption and construction boom. This so-called ‘triple C’ economy generated a rapid growth spurt akin to a modestly able professional sprinter injected with steroids.

This has made the currency vulnerable. The lira has steadily depreciated by 11 per cent against the US dollar since the beginning of 2019 and crossed the rate of 6 lira versus the US dollar on 7 February. And there are further warning signs on the horizon.

Credit bonanza

Statistics reveal that Turkish domestic credit grew by around 13 per cent on average throughout 2019.  The credit bonanza is still ongoing. Mortgage-backed home sales jumped by a record high of 600 per cent last December alone and the 2019 budget deficit catapulted by 70 per cent due to higher government spending.

Turkey’s central bank fuelled this credit expansion by cutting interest rates aggressively to below inflation and, since the start of this year, purchasing lira-denominated bonds equivalent to around one-third of total acquisitions last year to push yields lower.

Equally, it has linked bank lending to reserve requirements – the money that banks have to keep at the central bank – to boost borrowings via state and private banks. Banks with a ‘real’ loan growth (including inflation) of between 5 and 15 per cent enjoy a 2 per cent reserve ratio on most lira deposits, which authorities adjusted from an earlier band of 10-20 per cent that did not consider double-digit inflation.

Cumulatively, bond purchases (effectively quantitative easing) and reserve management policies have also contributed to eased credit conditions.

Commercial banks have also reduced deposit rates on lira accounts to less than inflation to encourage consumption over saving. Together with low lending rates, the boost to the economy has flowed via mortgages, credit card loans, vehicle leasing transactions and general business borrowings.

Accordingly, stimulus is at the forefront of the government’s economic approach, as it was in 2017 and 2018. It does not seem to be implementing structural change to re-orient growth away from consumption towards productivity. 

In addition, governance is, again, a central issue. President Recep Tayyip Erdogan’s near total monopolization of policymaking means he guides all domestic and external policies. He forced out the previous central bank governor, Murat Cetinkaya, in July 2019 because he did not share the president’s desire for an accelerated pace of interest rate reductions.

New challenges

Despite the similarities, the expected future financial turbulence will be materially different from its 2018 predecessor in four crucial respects. 

Firstly, foreign investors will only be marginally involved. Turkey has shut out foreign investors since 2018 from lira-denominated assets by restricting lira swap arrangements. Unsurprisingly, the non-resident holdings of lira bonds has plummeted from 20 per cent in 2018 to less than 10 per cent today.

Secondly, the Turkish government has recently introduced indirect domestic capital controls by constraining most commercial transactions to the lira rather than to the US dollar or euro to reduce foreign currency demand in light of short-term external debt obligations of $191 billion.

Thirdly, the Turkish state banks are intervening quite regularly to soften Lira volatility, thereby transitioning from a ‘free float’ to a ‘managed float’. So far, they have spent over $37 billion over the last two years in a futile effort to buttress the lira. This level of involvement in currency markets cannot be maintained.

Fourthly, the Turkish state is being far more interventionist in the Turkish stock exchange and bond markets to keep asset prices elevated. Government-controlled local funds have participated in the Borsa Istanbul and state banks in sovereign debt to sustain rallies or reverse a bear market.  

All these measures have one running idea: exclude foreign investors and no crisis will recur. Yet, when the credit boom heads to a downturn sooner or later, Turks will probably escalate lira conversions to US dollars; 51 per cent of all Turkish bank deposits are already dollar-denominated and the figure is still rising.

If Turkey’s limited foreign reserves cannot satisfy the domestic dollar demand, the government may have to impose comprehensive capital controls and allow for a double digit depreciation in the value of the lira to from its current level, with significant repercussions on Turkey’s political stability and economic climate.

To avoid this scenario, it needs to restore fiscal and monetary prudence, deal the with the foreign debt overhang in the private sector and focus on productivity-improving economic and institutional reforms to gain the confidence of global financial markets and Turks alike.




edi

Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices]

The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis.




edi

Wish you were here: Meetings, no meetings, meeting reports [Editorial]

We've all been saying it: These are unprecedented times. The impacts of the COVID-19 pandemic are incredibly wide-ranging and affect all facets of life. One that is hitting the scientific community very hard is the cancellation of meetings, large and small. While we are well-versed in connecting with colleagues and collaborators across a variety of online platforms, these do not replace the immensely gratifying aspects of attending meetings in person: the pleasure of catching up with old friends and making new ones, the insights gained from having real-time conversations with others working on the same topic but with different expertise and perspectives, and the stimulating new scientific ideas we carry home. We have all been feeling the disappointment as we learn that one meeting after another is forced to cancel, from the vibrant ASBMB annual meeting to summer conferences of all types.Another loss from the appropriate but painful decision to cancel the ASBMB annual meeting was the chance to hear from our Herbert Tabor Early Career Investigator Awardees, who represent the best science published in JBC in the preceding year. This year, the competition was particularly fierce. We hope and anticipate that we will be able to hear from the winners at next year's ASBMB annual meeting. But in the meantime, we want to raise a toast to Wenchao Zhao, Yue Yang, Manisha Dagar, Febin Varghese, and Ayumi Nagashima-Kasahara as our 2020 winners. We've captured their award-winning 2019 papers (1–5) on the JBC website (6), and extended profiles of the...




edi

Security Challenges in the Mediterranean Region

Members Event

5 March 2020 - 1:00pm to 2:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

HE George Vella, President, Republic of Malta

Chair: Dr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme, Chatham House

The president of Malta discusses the current security challenges in the Mediterranean region, reflecting on the role of international cooperation in addressing climate change, migration and refugee flows.

Members Events Team




edi

Predictions and Policymaking: Complex Modelling Beyond COVID-19

1 April 2020

Yasmin Afina

Research Assistant, International Security Programme

Calum Inverarity

Research Analyst and Coordinator, International Security Programme
The COVID-19 pandemic has highlighted the potential of complex systems modelling for policymaking but it is crucial to also understand its limitations.

GettyImages-1208425931.jpg

A member of the media wearing a protective face mask works in Downing Street where Britain's Prime Minister Boris Johnson is self-isolating in central London, 27 March 2020. Photo by TOLGA AKMEN/AFP via Getty Images.

Complex systems models have played a significant role in informing and shaping the public health measures adopted by governments in the context of the COVID-19 pandemic. For instance, modelling carried out by a team at Imperial College London is widely reported to have driven the approach in the UK from a strategy of mitigation to one of suppression.

Complex systems modelling will increasingly feed into policymaking by predicting a range of potential correlations, results and outcomes based on a set of parameters, assumptions, data and pre-defined interactions. It is already instrumental in developing risk mitigation and resilience measures to address and prepare for existential crises such as pandemics, prospects of a nuclear war, as well as climate change.

The human factor

In the end, model-driven approaches must stand up to the test of real-life data. Modelling for policymaking must take into account a number of caveats and limitations. Models are developed to help answer specific questions, and their predictions will depend on the hypotheses and definitions set by the modellers, which are subject to their individual and collective biases and assumptions. For instance, the models developed by Imperial College came with the caveated assumption that a policy of social distancing for people over 70 will have a 75 per cent compliance rate. This assumption is based on the modellers’ own perceptions of demographics and society, and may not reflect all societal factors that could impact this compliance rate in real life, such as gender, age, ethnicity, genetic diversity, economic stability, as well as access to food, supplies and healthcare. This is why modelling benefits from a cognitively diverse team who bring a wide range of knowledge and understanding to the early creation of a model.

The potential of artificial intelligence

Machine learning, or artificial intelligence (AI), has the potential to advance the capacity and accuracy of modelling techniques by identifying new patterns and interactions, and overcoming some of the limitations resulting from human assumptions and bias. Yet, increasing reliance on these techniques raises the issue of explainability. Policymakers need to be fully aware and understand the model, assumptions and input data behind any predictions and must be able to communicate this aspect of modelling in order to uphold democratic accountability and transparency in public decision-making.

In addition, models using machine learning techniques require extensive amounts of data, which must also be of high quality and as free from bias as possible to ensure accuracy and address the issues at stake. Although technology may be used in the process (i.e. automated extraction and processing of information with big data), data is ultimately created, collected, aggregated and analysed by and for human users. Datasets will reflect the individual and collective biases and assumptions of those creating, collecting, processing and analysing this data. Algorithmic bias is inevitable, and it is essential that policy- and decision-makers are fully aware of how reliable the systems are, as well as their potential social implications.

The age of distrust

Increasing use of emerging technologies for data- and evidence-based policymaking is taking place, paradoxically, in an era of growing mistrust towards expertise and experts, as infamously surmised by Michael Gove. Policymakers and subject-matter experts have faced increased public scrutiny of their findings and the resultant policies that they have been used to justify.

This distrust and scepticism within public discourse has only been fuelled by an ever-increasing availability of diffuse sources of information, not all of which are verifiable and robust. This has caused tension between experts, policymakers and public, which has led to conflicts and uncertainty over what data and predictions can be trusted, and to what degree. This dynamic is exacerbated when considering that certain individuals may purposefully misappropriate, or simply misinterpret, data to support their argument or policies. Politicians are presently considered the least trusted professionals by the UK public, highlighting the importance of better and more effective communication between the scientific community, policymakers and the populations affected by policy decisions.

Acknowledging limitations

While measures can and should be built in to improve the transparency and robustness of scientific models in order to counteract these common criticisms, it is important to acknowledge that there are limitations to the steps that can be taken. This is particularly the case when dealing with predictions of future events, which inherently involve degrees of uncertainty that cannot be fully accounted for by human or machine. As a result, if not carefully considered and communicated, the increased use of complex modelling in policymaking holds the potential to undermine and obfuscate the policymaking process, which may contribute towards significant mistakes being made, increased uncertainty, lack of trust in the models and in the political process and further disaffection of citizens.

The potential contribution of complexity modelling to the work of policymakers is undeniable. However, it is imperative to appreciate the inner workings and limitations of these models, such as the biases that underpin their functioning and the uncertainties that they will not be fully capable of accounting for, in spite of their immense power. They must be tested against the data, again and again, as new information becomes available or there is a risk of scientific models becoming embroiled in partisan politicization and potentially weaponized for political purposes. It is therefore important not to consider these models as oracles, but instead as one of many contributions to the process of policymaking.




edi

Social media and the visibility of horrific violence

7 May 2020 , Volume 96, Number 3

Constance Duncombe

Images are central to social media communication. Billions of images are shared across different social media platforms every day: photos, cartoons, GIFs and short video clips are exchanged by users, facilitating or framing discourse on participatory sites such as Twitter, Facebook and Instagram. Many of these images depict events of extreme violence, which circulate uninhibited by the conventional constraints associated with traditional news media censorship. A question arises here as to how such images mobilize public and policy-making responses to atrocities. This article examines the political dynamics of violent social media images. I argue that the particular qualities of social media can play an important role in how the digital visibility of horrific violence influences policy-making as a response to such atrocities. There is an important connection between the properties of social media platforms that allow user images to reach a global audience in real time and the emotional responses that this level of circulation generates. In turn, the pressure created by events made globally visible through the circulation of violent images and the audience responses to those images puts governments in a position where they are forced to act, which has significant implications for policy-making.




edi

Webinar: Weekly COVID-19 Pandemic Briefing – The Swedish Approach

Members Event Webinar

29 April 2020 - 10:00am to 11:00am

Online

Event participants

Professor Johan Giesecke, MD, PhD, Professor Emeritus of Infectious Disease Epidemiology, Karolinska Institute Medical University, Stockholm; State Epidemiologist, Sweden (1995-05)
Professor David Heymann CBE, Distinguished Fellow, Global Health Programme, Chatham House; Executive Director, Communicable Diseases Cluster, World Health Organization (1998-03)
Chair: Emma Ross, Senior Consulting Fellow, Global Health Programme, Chatham House

The coronavirus pandemic continues to claim lives around the world. As countries grapple with how best to tackle the virus, and the reverberations the pandemic is sending through their societies and economies, scientific understanding of how the COVID-19 virus is behaving and what measures might best combat it continues to advance.

Join us for the sixth in a weekly series of interactive webinars on the coronavirus with Professor David Heymann and special guest, Johan Giesecke, helping us to understand the facts and make sense of the latest developments in the global crisis. What strategy has Sweden embraced and why? Can a herd immunity strategy work in the fight against COVID-19? How insightful is it to compare different nations’ approaches and what does the degree of variation reveal?

Professor Heymann is a world-leading authority on infectious disease outbreaks. He led the World Health Organization’s response to SARS and has been advising the organization on its response to the coronavirus. 

Professor Giesecke is professor emeritus of Infectious Disease Epidemiology at the Karolinska Institute Medical University in Stockholm. He was state epidemiologist for Sweden from 1995 to 2005 and the first chief scientist of the European Centre for Disease Prevention and Control (ECDC) from 2005 to 2014.




edi

Demystifying the media caricatures of Pussy Riot

6 February 2014 , Volume 70, Number 1

Masha Gessen, Words will Break Cement: The Passion of Pussy Riot, Granta, £8.70

Sean Guillory, author of seansrussiablog.org

Guillory.jpg

Maria Alyokhina and Nadazhda Tolokonnikova, two members of Pussy Riot, speak with their lawyer from a glass-walled cage in a court in Moscow. Photo: AFP/Getty Images




edi

Stifling the Media: Barriers to Press Freedom

Under 35s Forum

20 May 2014 - 6:30pm to 7:30pm

Chatham House, London

Event participants

Yavuz Baydar, Columnist, Today's Zaman; Co-Founder, P24, Platform for Independent Journalism; Recipient, Special Award of the European Press Prize 
James Deane, Director of Policy and Learning, BBC Media Action
Kirsty Hughes, Writer; Chief Executive, Index on Censorship (2012-14)
Chair: John Lloyd, Contributing Editor, Financial Times; Director of Journalism, Reuters Institute for the Study of Journalism

From intimidation to restrictive laws and curbs on information, media outlets and individual journalists face a variety of threats to maintaining their independence and integrity in print and online. The panel will outline key challenges to international media freedoms, and Yavuz Baydar will share his experiences as a journalist in Turkey, a country that has faced growing criticism from the international community following a crackdown on social media sites, an increased pressure on its press and high numbers of detained journalists. 

LIVE STREAM: This event will be live streamed for members only. The live stream will be made available here at 18:30 BST on Tuesday 20 May.

ASK A QUESTION: Send questions for the speakers by email to questions@chathamhouse.org or using #askCH on Twitter. A selection will be put to them during the event.

This event will be followed by a reception.

This is an Under 35s Forum event.

Event attributes

Livestream




edi

Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake

S Xu
Jul 1, 1997; 38:1289-1298
Articles




edi

Apolipoprotein-mediated removal of cellular cholesterol and phospholipids

JF Oram
Dec 1, 1996; 37:2473-2491
Reviews




edi

Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression

K Schoonjans
May 1, 1996; 37:907-925
Reviews




edi

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




edi

A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology]

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.




edi

Social media and the visibility of horrific violence

7 May 2020 , Volume 96, Number 3

Constance Duncombe

Images are central to social media communication. Billions of images are shared across different social media platforms every day: photos, cartoons, GIFs and short video clips are exchanged by users, facilitating or framing discourse on participatory sites such as Twitter, Facebook and Instagram. Many of these images depict events of extreme violence, which circulate uninhibited by the conventional constraints associated with traditional news media censorship. A question arises here as to how such images mobilize public and policy-making responses to atrocities. This article examines the political dynamics of violent social media images. I argue that the particular qualities of social media can play an important role in how the digital visibility of horrific violence influences policy-making as a response to such atrocities. There is an important connection between the properties of social media platforms that allow user images to reach a global audience in real time and the emotional responses that this level of circulation generates. In turn, the pressure created by events made globally visible through the circulation of violent images and the audience responses to those images puts governments in a position where they are forced to act, which has significant implications for policy-making.




edi

Genes, Germs and Geography: The Future of Medicine




edi

Ukraine's Unpredictable Presidential Elections




edi

Protection of the Wounded and Medical Care-Givers in Armed Conflict: Is the Law Up to the Job?




edi

Climate Action: A Role for Civil Disobedience?




edi

Security Challenges in the Mediterranean Region




edi

Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines [Research]

Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal.

In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested.

Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation.

Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient.




edi

The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins [Research]

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.




edi

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




edi

X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics]

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.




edi

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




edi

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




edi

Images in Lipid Research [Editorials]






edi

X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics]

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.




edi

Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media

K. D. Cherednichenko, Yu. Yu. Ershova, A. V. Kiselev and S. N. Naboko
Trans. Moscow Math. Soc. 80 (2020), 251-294.
Abstract, references and article information




edi

Predicting Storm Surge

Storm surge is often the most devastating part of a hurricane. Mathematical models used to predict surge must incorporate the effects of winds, atmospheric pressure, tides, waves and river flows, as well as the geometry and topography of the coastal ocean and the adjacent floodplain. Equations from fluid dynamics describe the movement of water, but most often such huge systems of equations need to be solved by numerical analysis in order to better forecast where potential flooding will occur. Much of the detailed geometry and topography on or near a coast require very fine precision to model, while other regions such as large open expanses of deep water can typically be solved with much coarser resolution. So using one scale throughout either has too much data to be feasible or is not very predictive in the area of greatest concern, the coastal floodplain. Researchers solve this problem by using an unstructured grid size that adapts to the relevant regions and allows for coupling of the information from the ocean to the coast and inland. The model was very accurate in tests of historical storms in southern Louisiana and is being used to design better and safer levees in the region and to evaluate the safety of all coastal regions. For More Information: A New Generation Hurricane Storm Surge Model for Southern Louisiana, by Joannes Westerink et al.




edi

Predicting Climate - Part 2

What.s in store for our climate and us? It.s an extraordinarily complex question whose answer requires physics, chemistry, earth science, and mathematics (among other subjects) along with massive computing power. Mathematicians use partial differential equations to model the movement of the atmosphere; dynamical systems to describe the feedback between land, ocean, air, and ice; and statistics to quantify the uncertainty of current projections. Although there is some discrepancy among different climate forecasts, researchers all agree on the tremendous need for people to join this effort and create new approaches to help understand our climate. It.s impossible to predict the weather even two weeks in advance, because almost identical sets of temperature, pressure, etc. can in just a few days result in drastically different weather. So how can anyone make a prediction about long-term climate? The answer is that climate is an average of weather conditions. In the same way that good predictions about the average height of 100 people can be made without knowing the height of any one person, forecasts of climate years into the future are feasible without being able to predict the conditions on a particular day. The challenge now is to gather more data and use subjects such as fluid dynamics and numerical methods to extend today.s 20-year projections forward to the next 100 years. For More Information: Mathematics of Climate Change: A New Discipline for an Uncertain Century, Dana Mackenzie, 2007.




edi

Predicting Climate - Part 1

What.s in store for our climate and us? It.s an extraordinarily complex question whose answer requires physics, chemistry, earth science, and mathematics (among other subjects) along with massive computing power. Mathematicians use partial differential equations to model the movement of the atmosphere; dynamical systems to describe the feedback between land, ocean, air, and ice; and statistics to quantify the uncertainty of current projections. Although there is some discrepancy among different climate forecasts, researchers all agree on the tremendous need for people to join this effort and create new approaches to help understand our climate. It.s impossible to predict the weather even two weeks in advance, because almost identical sets of temperature, pressure, etc. can in just a few days result in drastically different weather. So how can anyone make a prediction about long-term climate? The answer is that climate is an average of weather conditions. In the same way that good predictions about the average height of 100 people can be made without knowing the height of any one person, forecasts of climate years into the future are feasible without being able to predict the conditions on a particular day. The challenge now is to gather more data and use subjects such as fluid dynamics and numerical methods to extend today.s 20-year projections forward to the next 100 years. For More Information: Mathematics of Climate Change: A New Discipline for an Uncertain Century, Dana Mackenzie, 2007.




edi

What's Your Favorite Social Media Platform?




edi

Looking for someone to create a Medium article




edi

55th edition of the Quarterly Report on the Administration of the Convention on Biological Diversity (October-December 2011)




edi

Media accreditation form, with instructions and FAQs, is now available.